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Aloha with finitely many stations

Stations s € S, |S| < o0
@ New arrivals at station s in slot n: A,s € N, {A,s}n>0 i.id.
@ Probability of transmission by s if message in queue: ps
@ Source of randomness: {B), s} n>0 i.i.d., Bernoulli(ps)
@ Transmits iff By, . = 1 where B;, ; = B, s/, ~0

Queue dynamics

Ln+1,s = Ln,s + An,s - 8;175 H(l - Bg,s’)
s'#s
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Aloha with finitely many stations

Assume Vs, 0 < P(A,s =0) <1 and Vs, 0 < ps <1 Then chain
is irreducible and aperiodic

Sufficient condition for ergodicity

Vs, B(A2,) < 00 and As 1= E(Ans) < ps [[ (1= ps)
s'#s

Sufficient condition for transience

Vs, As > ps H(l — ps')
s'#s

| A\
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Aloha with finitely many stations

Symmetric case A\s = \/|S|, ps = p:
Recurrence if A < |S|p(1 — p)|5|—1
Transience if A > [S|p(1 — p)SI-1

= To achieve stability (ergodicity) for fixed A, need p — 0 as
|S| — oo

Impractical! (Collisions take forever to be resolved)
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Aloha with infinitely many stations

Many stations, very rarely active (just one message)
® A, new messages in interval n, {A,}p>0 i.i.d.
@ Source of randomness {B, ;}n >0 i.i.d., Bernoulli (p)

@ Queue evolution

Ln+1 = Ln + An - ]IZ:L:nl B, i=1

@ Assumption 0 < P(A, = 0) < 1 ensures irreducibility (and
aperiodicity)
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Aloha with infinitely many stations

ABRAMSON’S HEURISTIC ARGUMENT

For A, ~ Poisson(A), Nb of attempts per slot ~ Poisson(G) for
unknown G

Hence successful transmission with probability Ge= ¢ per slot
Solution to A = Ge™C exists for all A < 1/e

Hence “Aloha should be stable (ergodic) whenever A < 1/¢"

Theorem: Instability of Aloha

With probability 1, channel jammed forever (Z,L;l B, > 1) after
finite time. Hence only finite number of messages ever transmitted.
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metastable behaviour of Aloha (lambda=0.15, p=0.3)
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Fixing Aloha: richer feedback

Assumption: L, known

Backlog-dependent retransmission probability p, = 1/L,
Then system ergodic if A := E(A,) < 1 ~ 0.368

Denote J, = {0, 1, x} outcome of n-th channel use
(0: no transmission. 1: single successful transmission. *: collision)

Weaker assumption: channel state J, heard by all stations

Backlog-dependent retransmission probability p, = 1/[,1, where
estimate L,, computed by

[pi1 = max(1, Lyt ally,—. — Bl,,—0)

renders Markov chain (L,, Z,,),,zo ergodic for suitable o, 5 > 0 if
A :=TE(A,) < 1~0368
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Fixing Aloha: richer feedback

With same ternary feedback J, = {0, 1, «}, can stability hold for
A>1/e?

Yes: rather intricate protocols have been invented and shown to
achieve stability up to A = 0.487

Largest A\ for which some protocol based on this feedback is
stable? Unknown (only bounds)
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Ethernet and variants

Return to Acknowledgement-based feedback (only listen channel’s
state after transmission)

Variant of exponential backoff: transmit with probability 2% after
k collisions

Assume A, ~ Poisson ()

Theorem: instability of Ethernet’s variant

For any A > 0, (modification of) Ethernet is transient.

Weaker performance guarantees

Ethernet and its modification are such that with probability 1:
For A < In(2) ~ 0.693, infinite number of messages is transmitted
For A > In(2), only finitely many messages are transmitted

Unsolved conjecture

No acknowledgement-based scheme can induce a stable (ergodic)
system for any A > 0.
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Conclusions on Random Access Protocols

Analysis of Aloha was useful to guide design of Ethernet.
Negative results in theory (no ergodicity), both for Aloha and
Ethernet, yet...
...In practice, Ethernet and Wi-Fi's 802.11x protocols perform well
@ Finite number of stations helps
@ Time to instability could be huge ( “metastable” behavior)
@ Only small fraction of channel time used for random access
collision resolution:
Once station “wins’ channel access, others wait till its
transmission is over
— Alternative protocols based on ternary feedback have not been
used
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Scheduling in cross-bar switches
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@ Switch with N input and N output ports

® Time slot n: An(i,J) packets arrive at input port /, destined to
port j

@ Transmission: permutation o, € Sy, symmetric group,
matches input port / with output port o, (i)

= How to choose o, to ensure ergodicity, i.e. stationary regime
instead of queue blowup?
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Scheduling downlink wireless transmissions

— [ HiN

@ Wireless source to send packets to wireless receivers

e Time slot n: A,(r) packets arrive at source for receiver r

@ Wireless medium conditions change in each slot n: S,(r) =
number of packets that could be sent to receiver r if it was
chosen then

= How to choose which receiver to schedule based on queue
lengths (backlogs) and medium condition to ensure ergodicity, i.e.
stationary regime instead of queue blowup?
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Max-Weight scheduling

Traffic types r € R, i.i.d. arrivals: A,(r) € N in slot n

ii.d. set S, C {0,...,Smax}® of feasible services in slot n

o X,(r): backlog of type r requests at end of slot n

Evolution equation X,11(r) = (Xn(r) — sa(r))™ + Apta(r),
where s, € S,

(w, a)-Max-weight scheduling rule for w,,a >0 :

Choose s, € Argmax,cs, {>,cr WirXn(r)¥s(r)}
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Max-Weight scheduling: ergodicity properties

® Assume (to ensure irreducibility on set of states reachable
from 0) P(Vr € R, A,(r) =0) €]0,1],
VreR, P(3s€ S,:s(r)>0)>0

o Let schedulable region C be set of vectors x € R such that
3z(9) cenv(S) : Vre R, x, < Z P(S, = 8)z9)(r)
8c{0,...,smax }*
where env(S): convex hull of set S

o Let p, :=E(A,(r))

IfFEAL(r)tT® < 400 and for some € > 0, (p, + €),er € C, then
process { Xy} nenN is ergodic.

Conversely, if p ¢ C, then for any strategy (max-weight or other),
process { Xy} neN is transient.
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Comments

@ Maximizes set of offered loads p for which ergodicity holds
(for p on frontier of C, chain at best null-recurrent)

@ Does not require explicit learning of either p (statistics of
request arrivals) or S, (statistics of time varying capacity)

@ Switch scheduling: convex enveloppe of permutation matrices
Mo = (Tj—4(i))i.je(n) = Doubly stochastic matrices, i.e.
M e IR,_AFIXN such that
Vie [N, Y My=1=> M;
JEIN] JEN]
(Birkhoff-von Neumann theorem)
Hence switch process ergodic if and only if

Vi€ [N], Y B(AG,))) < 1& Y E(A(, 1)) < L.

JE[N] JE[N]
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Proof elements

@ Ergodicity: Use Foster's criterion with Lyapunov function
X1+a

V(X) = ZrER Writa
@ Transience: for p ¢ C, use convex separation theorem:

IbeR®,6>0:Yx€C, > bip, >0+ brx.
reR reR

From monotonicity of C, can choose b, >0, r ¢ R
= Lower bound:

> b Xa(r) ZZbA (r) — Zstn

m=1reR m=1reR

>n | blpe— Y P(Sa=8)z(S) || + o(n)
rer 8c{0,....5max }*
> né + o(n),

by law of large numbers and convex separation result. Hence
almost surely im0 sup,er Xn(r) = +00
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multi-hop, multipath networks
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@ Several traffic types, packets from each type: may be created
at several network locations

@ Each network location: may choose which traffic type to
forward, and to which neighbor to forward it (interferences
may constrain decisions at distinct locations)

@ Each created packet replicated at only one location if still
present; disappears when reaches its destination
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Max-weight backpressure algorithm: general setup

@ Abstract data types r € R, i.i.d. arrivals A,(r) in slot n .
Also, let R’ := R U {ext}

@ Set of potential transmissions per time slot:
/
S C{0,1,...,smax )%,
assumed decreasing, i.e. s<s.s§eS=s5€8
@ X,(r): backlog of type r-data in time slot n

@ Evolution equation

X1 (r) = Xa(r) + D sp(r'sr) = D splry 1) + Anga(r),

reRr reR!

where {s,(r, ')} (r.ryerxrr: sp(r,r') < su(r, r") for some
s, €8, and:

I
Xn(r) — Z si(r,r') = (X,,(r) - Z sn(r, r'))

r/ eR/ r/ eR/
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Max-weight backpressure: policy

® (w, «)-max-weight backpresssure policy, for w, > 0, > 0,
selects s, € S achieving

Maxscs Z s(r, ) [w Xn(r)® — we Xn(r')?]
(r,r")ERXR’

Backpressure from r to r': w, Xp(r)® — wp Xp(r')*.
Schedule transfers r — r’ only if backpressure positive.
By convention, X,(ext) = 0.

o Schedulable region C = set of vectors x € R such that

Jceenv(S): Vre R, x, + Z c(r'yr) < Z c(r,r').
rer reR!
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Ergodicity properties

Denote p, := E(A,(r)). Then

If {Xn}nen is irreducible, BA,(r)'T® < 400 and for some
€>0,(pr+€)rer €C, then {X,}nen is ergodic.

Conversely, if p ¢ C, then for any strategy (max-weight
backpressure or other) {X,}neN is transient.

Proof elements: parallel proof for Max-weight, showing ergodicity

with same Lyapunov function V(x) =", w,

X(r)1+a
1+a
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Comments

Enjoys same optimal ergodicity properties as Max-weight, in
multi-hop setting with varieties of network paths to choose
from

No need to explicitly estimate traffic parameters

Extends to case of i.i.d., rather than constant sets S, of
feasible transmissions

Proposed in '93 as a practical way to schedule transmissions
in wireless networks (Tassiulas-Ephremides), and as an
algorithm to determine approximate solutions to
multicommodity flow problems (Awerbuch-Leighton).
Max-weight special case rediscovered later for switches
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Takeaway messages

@ Markov chain theory: framework for system and algorithm
performance analysis

o Ergodicity (stability) analysis:
— Determines for what demands system stabilizes into steady
state
— A “first order” performance index (know when delays
remain stable, not their magnitude)

@ Foster-Lyapunov criterion to prove ergodicity with adequate
Lyapunov function when stationary distribution not known
explicitly

@ Several models for which schedulable region characterizes
set of traffic parameters (loads per class) which make system
ergodic, and for which known simple policy achieves ergodicity
whenever possible with no explicit inference of traffic
parameters

Laurent Massoulié Random access protocols, scheduling in routers and wireless net



