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Scope

Communication Networks, Online Social Networks:
Algorithms for their control and optimization

—>Modeling (probability, graphs)

= Analysis (Markov chains, Markov processes,
optimization)

Tools applicable beyond chosen application domain



Communication Networks
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How to manage collisions (i.e. lost transmissions because of
interference) between wireless transmitters

UAloha and Ethernet protocols
—>Markov chains and their long-term properties

Communication Networks

(d How to schedule transmissions in switches, routers,
and multi-hop wireless networks
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1 Markov chains, Max-weight & backpressure algorithms



Communication Networks
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U How to assign bandwidth in networks

L Understanding TCP, the protocol regulating most Internet
traffic

- Convex optimization & dynamical systems

Communication Networks

\ 4

a
- -

L Dynamics of queueing networks

L Dimensioning of service systems (data centers, Velib,...);
Justification of TCP; ...

— Continuous time Markov processes, Poisson processes



Social Networks
epidemic-like propagation along a network

Examples: viruses, news, rumours, bank defaults,...

Spread of “CodeRed” Internet worm, 2001

Social Networks
epidemic-like propagation along a network

Examples: viruses, news, rumours, bank defaults,...

Spread of a picture on facebook
https://stamen.com/work/facebook-flowers/




number of pages

Social Networks

Q What makes an epidemic potent or weak
—>random graphs, branching processes and phase transitions

L What features of network topology affect epidemic outbreak
—>graph topology descriptors, comparison of Markov chains by “coupling”

0 How to maximize size of outbreak (e.g. for viral marketing)
—->NP-completeness, submodular functions and greedy maximization

Social Networks
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L Why are most networks “scale-free” (a.k.a. power-law)
— Coupling and concentration inequalities



Social Networks

dWhat is a “small world” network
JAnd how to search for information in it

+

Social Networks

Political blogs:
Republican vs Democrats

JHow to find community structure and recommend
contacts in a social network

—>spectra of random graphs and spectral methods



Today:
LRandom access protocols for channel access

U Markov chains and their long-term behavior

Aloha: the first random access
protocol for channel access

[Abramson, Hawaii 70]
,

0 Goal: allow machines on remote islands to transmit by radio to
« master machine » without heavy coordination between them



Aloha: the first random access
protocol for channel access

[Abramson, Hawaii 70]
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O Goal: allow machines on remote islands to transmit by radio to
« master machine » without heavy coordination between them

O Key idea: use randomization for scheduling transmissions to avoid
collisions between transmitters

Aloha: the first random access
protocol for channel access

[Abramson, Hawaii 70]
,

0 Goal: allow machines on remote islands to transmit by radio to
« master machine » without heavy coordination between them

O Key idea: use randomization for scheduling transmissions to avoid
collisions between transmitters

- A randomized, distributed algorithm



Aloha’s principle
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Slotted time: fixed transmission intervals

Station with message to send: emits it with probability p
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Slotted time: fixed transmission intervals
Station with message to send: emits it with probability p

By end of interval: learns whether msg successfully received, or not (due to
collision or other interference)

Repeat until no message left to be sent



Aloha’s principle

(SO,
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Slotted time: fixed transmission intervals
Station with message to send: emits it with probability p

By end of interval: learns whether msg successfully received, or not (due to
collision or other interference)

Repeat until no message left to be sent

- Minimal feedback (only listen for ack after having emitted)
—>implicit coordination by receiver’s acknowledgement

Ethernet principles
[Metcalfe, Xerox PARC 73]
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After k failed attempts, waits before retransmitting for random number of
slots picked uniformy from {1,2,...,2%} (so-called contention window)



Ethernet principles
[Metcalfe, Xerox PARC 73]
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Ethernet principles
[Metcalfe, Xerox PARC 73]
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After k failed attempts, waits before retransmitting for random number of
slots picked uniformy from {1,2,...,2%} (so-called contention window)

—>The exponential backoff method, a refinement over Aloha

Other refinement: sense channel before transmitting (allows to compete by
random access only during small fraction of total time)

Principles underly 802.11x (Wi-Fi) protocols



Goals

Understand performance of random access protocols

—>for given traffic, or workload offered to system
(=process of message request arrivals),

Does system transmit them all?
Does it reach some steady state behaviour?

How long do transmissions take?

Outline

introduction to Markov chain theory

Fundamental notions (recurrence, irreducibility,
ergodicity, transience)

U Criteria for ergodicity or transience

(A Performance of Random Access Protocols
UAloha with finitely many stations
UAloha with an infinite number of stations
Results for Ethernet and other variants



@ E a countable set (e.g., N or [n] ={1,...,n})

@ Definition: {X,},en Markov chain with transition matrix P iff
Vn > 0,Vx) = {xo,...,xn} € E™1,
P(X, = Xn|X(§7_1 = Xg_l) = P(Xn = xp| X1 = Xn—1) = Pxr_1
where Vx,y € E, pyy > 0and >, pz =1

(i.e. P is a stochastic matrix)

@ Canonical example
Xo independent of {Y},},>0 an i.i.d. sequence, Y, € E’
For some function f : E x E/ — E,

Vn >0, Xoi1 = F(Xn. Yp)

@ lllustration: reflected Random Walk on N:
Xnt1 = max(0, X, + Y5)

Laurent Massoulié Markov chains — Random access protocols

Basic properties

o By induction P(X7™™ = x+™) = P(Xa = xa) [0 pr_1x,

= PXIT™ = x0T Xy = x0) = P(X0E = 507X = ) X -+

X POXEH = XX = x0)

(past and future independent conditionally on present)
e Noting p7, = P(X, = y[Xo = x), semi-group property:
P = pLrn

zeE

@ Linear algebra interpretation
For finite E (e.g. E = [k]), Matrix p" = n-th power of P

Laurent Massoulié Markov chains — Random access protocols



Further properties

@ Denote P, (-) = IP(:|Xo = x) distribution of chain started in
state x at time 0

o Def: T € NU {+oc0} stopping time iff
Vne N, {T = n} is o(XJ)-measurable, i.e.
¢, EM — {0,1} such that Tr—, = ¢,(X{)

o Key example T, :=inf{n>0: X, = x}

@ Strong Markov property
Markov chain X§* with transition matrix P, stopping time T
Then conditionally on T < 400 and X7 = x,
Xy and X$° independent with X$° ~ P,

Laurent Massoulié Markov chains — Random access protocols

Positive recurrence, null recurrence, transience, periodicity

State x is

@ recurrent if P, (T, < +o00) =1

@ positive recurrent if E,(T,) < +oo
null recurrent if P, (T, < +00) =1 & E,(Ty) = 400
transient if not recurrent, i.e. P, (T, < +00) <1
d-periodic if d = GCD(n > 0: pZ, > 0)

ILLUSTRATION: reflected random walk on N,
Spt1 = max(0,S, + Y,)
State 0 is

e positive recurrent if E(Y,) <0
e transient if E(Y,) >0
e null recurrent if E(Y,) =0& 0 < Var(Y,) < +o0

Laurent Massoulié Markov chains — Random access protocols



Decomposition of recurrent chains in cycles

Fix a state x that is recurrent (Py( T, < +0o0) = 1),

Let T, x = instant of k-th visit to state x

= Trajectory X{°: concatenation of cycles
Cio = AXn} T pcn< T

Strong Markov property = cycles Cy are i.i.d.

Laurent Massoulié Markov chains — Random access protocols

Irreducibility

Markov chain is irreducible iff Vx,y € E,
IneN,x§ € E™ [ xo=x, xp=y &T["_| Px_1x; >0

i.e., graph on E with directed edge (x,y) iff py, > 0 strongly
connected

EXAMPLE
Standard random walk on graph G irreducible iff G connected

Proposition

For irreducible chain, if one state x is transient (resp. null
recurrent, positive recurrent, d-periodic) then all are

Laurent Massoulié Markov chains — Random access protocols



Stationary measures

Non-negative measure 7 on E is stationary for P iff
Vx € E, 7, = ZyeEWyPyx

Notation: P, := 3 . v, P, chain’s distribution when Xy ~ v

= For stationary probability distribution T,
Vn>0,Pr(X° €:)=Pr(X5° €)

Laurent Massoulié Markov chains — Random access protocols

Limit theorems 1
Recurrence and stationary measures

Irreducible recurrent chain admits a stationary measure, unique up
Tx

to multiplicative factor Vy € E, 7, = [E, Z]Ixn:y

n=1
Irreducible chain admits a stationary probability distribution iff it is

positive recurrent

Ergodic theorem

Irreducible, positive recurrent chain satisfies almost sure
convergence

lim. % S (%) = 3 mef(x)
k=1

xeE

for all m-integrable f, where m = unique stationary distribution

Such chains are called ergodic

Laurent Massoulié Markov chains — Random access protocols



Limit theorems 2

Convergence in distribution

Ergodic, aperiodic chain satisfies Vx € E, lim,_,o P(X, = x) = 7y
where 7 unique stationary distribution

Irreducible, non-ergodic chain satisfies
Vx € E,limp 0o P(Xp =x)=0

Laurent Massoulié Markov chains — Random access protocols

Foster-Lyapunov criterion for ergodicity

An irreducible chain such that there exist V' : E — R, a finite set
K C E and ¢, b > 0 satisfying

—€, x ¢ K,

E(V(Xnt1) — V(Xa)|Xn = x) < { b—e, x€K,

is then ergodic.

Laurent Massoulié Markov chains — Random access protocols



Aloha with finitely many stations
Stations s € S, [S| < >
@ New arrivals at station s in slot n: A,s € N, {As}n>0 iid.
@ Probability of transmission by s if message in queue: ps
@ Source of randomness: {B), s} n>0 i.i.d., Bernoulli(ps)
® Transmits iff B}, ; = 1 where B, ; = B, I, >0

Queue dynamics

Ln+1,s = Ln,s + An,s - 81/1,5 H(l - B;,s’)
s'#s

Laurent Massoulié Markov chains — Random access protocols

Aloha with finitely many stations

Assume Vs, 0 < P(A,s =0) <1
Then chain {(Lys)ses }n>0 is irreducible and aperiodic

Sufficient condition for ergodicity

Vs, B(A2,) < 00 and As 1= E(Ans) < ps [[ (1= ps)
s'#s

Sufficient condition for transience

Vs, As > ps H(l — ps')
s'#s

Laurent Massoulié Markov chains — Random access protocols



Aloha with finitely many stations

Symmetric case As = \/|S|, ps = p:
Recurrence if A < |S|p(1 — p)/SI—1
Transience if A > |S|p(1 — p)/SI—1

= To achieve stability (ergodicity) for fixed A, need p — 0 as
|S| — o0

Impractical! (Collisions take forever to be resolved)

Laurent Massoulié Markov chains — Random access protocols

Takeaway messages

@ Markov chain theory: framework for system and algorithm
performance analysis

o Ergodicity (stability) analysis:
— Determines for what demands system stabilizes into steady
state
— A “first order” performance index (know when delays
remain stable, not their magnitude)

@ Foster-Lyapunov criteria to prove ergodicity

Laurent Massoulié Markov chains — Random access protocols



