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Introduction

Many inference problems amount to finding structure hidden in some large data set. Examples include:

• community detection, i.e. clustering of graph nodes into groups of nodes with statistically similar
properties (applications: recommender systems for online social networks; functional groups of proteins
in cell chemistry)

• graph alignment, i.e. finding a mapping of one graph’s nodes to another one’s that is at least approxi-
mately a graph isomorphism (applications: automatic translation; de-anonymization of databases)

• matrix completion, i.e. filling missing entries of large matrix so that the result has low rank (application:
recommender systems)

• Hamiltonian cycle detection, i.e. finding a Hamiltonian cycle in a graph so that most edges connect
nodes that are nearby in the cycle (application: fast sequencing of DNA).

To understand the hardness of the task, and assess the performance of candidate algorithms, one approach
consists in considering random instances where the desired structure has been planted in some random
background.

In the past few years, this approach has been attempted on all the above problems, revealing fasci-
nating phase transition phenomena: For some problem-dependent notion of signal-to-noise ratio (SNR), an
information-theoretic threshold SNRIT exists such that the task is impossible below it, not enough signal
being present in the observation, and feasible above it. There may further exist a computational threshold
SNRComp such that no algorithm is known to succeed in polynomial time below it, while fast algorithms
are known to succeed above it.

Community detection on data generated from the Stochastic Block Model provides a good illustration of
these phenomena, and of the methods from probability, information theory and statistical physics allowing
their characterization.

In these notes we will primarily consider the problems of community detection and tree reconstruction
for large graphs drawn from probabilistic models. For community detection, we will consider the so-called
Stochastic Block Model, which generalizes the Erdős-Rényi random graph. For tree reconstruction, we will
consider Galton-Watson branching trees.

The organization of these notes is as follows.
In a first part we consider community detection in a “strong signal” regime, where it is possible to not

only cluster all but a vanishing fraction of nodes into their correct communities, but it is also possible to
estimate all parameters of the generative Stochastic Block Model from which the graph was drawn. The
analysis for this strong signal regime relies on two complementary tools. Linear algebra provides bounds on
perturbation of the eigenvalues and eigenvectors of Hermitian matrices. We complement it with probabilistic
bounds on the spectral norm of random matrices.

In a second part we consider tree reconstruction. To put this problem in context, we introduce the
framework of Gibbs Markov random fields. We review general properties, and introduce the Bethe free
energy, the belief propagation (or product-sum) algorithm, its properties on tree Markov fields and its link
to Bethe free energy minimization.
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We then establish phase transitions on feasibility of the tree reconstruction problem. First we show that
the so-called Kesten-Stigum threshold determines the phase transition for a particularly simple reconstruction
named census reconstruction. Next we characterize the phase transition for optimal reconstruction from
properties of a fixed point equation.

The third part covers results on community detection in the stochastic block model in a “weak signal”
regime. We show the links between this problem and that of tree reconstruction, establish feasibility of
community detection above the Kesten-Stigum threshold, impossibility of community detection below the
tree reconstruction threshold, and the existence of “hard phase” below the Kesten-Stigum threshold where
community detection is feasible, but known algorithms require exponential time to perform this detection.

Additional topics to be be covered:
-hypothesis testing on presence or not of planted structure in given graph;
-semi-definite algorithms and their application to community detection / hypothesis testing;
-phase transitions on spectra of low-rank deformations of Wigner matrices?
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Part I

The strong signal case: matrix
perturbation bounds
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Chapter 1

Spectral bounds and perturbation
inequalities

Spectral methods will be central in our treatment of graph clustering / community detection. In this
chapter we thus introduce fundamental inequalities and perturbation bounds for eigenvalues and eigenvectors
of matrices that will be needed in the sequel. For Hermitian matrices we shall in particular introduce
inequalities of Weyl on perturbations of eigenvalues, and the famous “sin Θ” theorem of Davis and Kahan
on perturbations of eigenvectors. For general (non-Hermitian) matrices we shall introduce the Bauer-Fike
theorem on eigenvalue perturbations. Finally we shall discuss fundamental inequalities on spectra of graphs,
namely the Cheeger inequality and the Alon-Boppana inequality, and their relationship to the concept of
expander graphs.

1.1 Singular value decomposition and principal components analy-
sis

Consider a rectangular n×p matrix X = (Xij)i∈[n],j∈[p] ∈ Cn×p with complex-valued entries Xij . Its singular
value decomposition is given by the factorization

X = UΛV ∗, (1.1)

where U ∈ Cn×n and V ∈ Cp×p are unitary matrices, i.e. U∗U = In, V ∗V = Ip, where M∗ = M
⊤

is the
transpose of the complex conjugate of a matrix M and In is the identity matrix in dimension n (in case X
is real, U and V can be taken real and orthogonal), Λ ∈ Rn×p, with non-zero elements only on its diagonal.
In addition, the diagonal elements σi of Λ are non-negative, non-increasing: σ1 ≥ σ2 ≥ . . . ≥ σn∧p. They are
known as the singular values of X and the number of non-zero singular values σi > 0 is the rank of matrix
X. The columns of U (respectively, of V ) are the left (respectively, right) singular vectors of X.

Denoting by ui and vi the i-th left and right singular vectors, the above factorization also reads

X =

n∧p∑
i=1

σiuiv
∗
i .

One can show (exercise!) existence of the singular value decomposition by considering the Hermitian (n +
p)× (n+ p)-matrix

M =

(
0 X
X∗ 0

)
,

and applying to it the spectral theorem, which says that Hermitian matrices have a real spectrum and an
orthonormal basis of eigenvectors.
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Recall that the operator norm of a matrix X ∈ Cn×p is defined as

∥X∥op = sup
u∈Cp

∥Xu∥
∥u∥

· (1.2)

It is also equal to the largest singular value, σ1, of X. Operator norm is often called spectral norm.
Recall also that the Frobenius norm of X is defined as

∥X∥F =

√∑
i,j

|Xij |2. (1.3)

It also coincides with the ℓ2-norm of the vector of its singular values, i.e.

∥X∥F =

√∑
i

σ2
i .

Principal components analysis is a dimensionality reduction technique. It amounts to approximating
matrix X, for any given r ≤ r0 ≤ n ∧ p, where r0 is the rank of X, by the rank r-matrix Xr defined as

Xr :=

r∑
i=1

σiuiv
∗
i .

It enjoys the following properties.

Proposition 1.1. Among all rank-r approximations of X, Xr minimizes the approximation error both in
Frobenius norm and operator norm. Moreover one has

∥X −Xr∥op = σr+1, ∥X −Xr∥F =

√√√√ n∧p∑
i=r+1

σ2
i .

1.2 Perturbations of eigenvalues and eigenvectors
We will denote by convention, for a n×n matrix M with real spectrum, λi(M) its i-th eigenvalue, sorted in
decreasing order, i.e. λ1(M) ≥ · · · ≥ λn(M).

The following inequalities are due to Weyl:

Theorem 1.1. For two Hermitian n× n matrices H, W , and any i ∈ [n], one has:

|λi(H)− λi(H +W )| ≤ σ1(W ). (1.4)

Proof. The Courant-Fisher min-max characterization theorem states that for a Hermitian matrix H, one has

λi(H) = sup
V :i−dimensional subspace

inf
u∈V

∥Hu∥
∥u∥

· (1.5)

Use this to bound λi(H + W ), taking for V the subspace spanned by the i first eigenvectors of H, say
u1, . . . , ui, assumed orthonormal. Specifically, let θ = (θ1, . . . , θi), with ∥θ∥2 =

∑i
j=1 |θj |2, and u(θ) =∑i

j=1 θjuj . This gives

λi(H +W ) ≤ infθ:∥θ∥=1 u(θ)
∗(H +W )u(θ)

≤ supu:∥u∥=1 u
∗Wu+ infθ:∥θ∥=1 u(θ)

∗Hu(θ)

≤ σ1(W ) + infθ:∥θ∥=1

∑i
j=1 |θj |2λj(H),

which gives λi(H +W ) ≤ λi(H) + σ1(W ). The same reasoning gives λi(H) ≤ λi(H +W ) + σ1(−W ) =
λi(H +W ) + σ1(W ), hence the result.

10



The Courant-Fisher min-max characterization can also be used to prove the following

Theorem 1.2. (Cauchy interlacing theorem) Let A be a n × n Hermitian matrix, and P ∈ Cn×m, with
m < n be such that P ∗P = Im, the identity matrix. Then the m×m matrix B := P ∗AP is such that

λi(A) ≥ λi(B) ≥ λn−m+i(A).

Proof. Let v1, . . . , vi be an orthonormal collection of eigenvectors ofB associated respectively with λ1(B), . . . , λi(B).
Let Ei denote the space spanned by v1, . . . , vi. Thus denoting Fi the image by P of Ei, one has

λi(B) = inf
u ∈ Ei

∥u∥ = 1

u∗P ∗APu

= inf
v ∈ Fi

∥v∥ = 1

v∗Av

≤ λi(A),

where the last inequality follows from the Courant-Fisher theorem and the fact that Fi has dimension i,
which itself follows from the fact that P has full column rank.

For the converse inequality, the same reasoning can be applied to −A and −B to yield

λm−i+1(−B) = −λi(B) ≤ λm−i+1(−A) = −λn−m+i(A).

We now state a theorem on the perturbation of eigenvectors of Hermitian matrices. It appears in Yu et
al. [46], and is a variant of the celebrated Davis-Kahan “sinΘ” theorem. We refer to [46] for its proof.

Theorem 1.3. Let H, Ĥ ∈ Rp×p be symmetric real matrices with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥
λ̂p respectively. Fix 1 ≤ r ≤ s ≤ p and assume that min(λr−1 − λr, λs − λs+1) > 0, where λ0 = +∞ and
λp+1 = −∞. Let d = s− r + 1 and let V = (vr, . . . , vs) ∈ Rp×d, V̂ = (v̂r, . . . , v̂s) ∈ Rp×d have orthonormal
columns of eigenvectors, Hvj = λjvj, Ĥv̂j = λ̂j v̂j.

Then there exists an orthogonal matrix O ∈ Rd×d such that

∥V̂ O − V ∥F ≤ 23/2 min(d1/2∥H − Ĥ∥op, ∥H − Ĥ∥F )
min(λr−1 − λr, λs − λs+1)

. (1.6)

We give a proof of a version of this theorem when one only aims at controlling the perturbation of a
single eigenvector:

Proposition 1.2. Let H, Ĥ be two Hermitian p× p matrices, r ∈ [p] and let

δ := inf
j:λj ̸=λr

|λj − λr|.

Let v̂r be a normed eigenvector of Ĥ associated with λ̂r. Then, provided that ∥Ĥ −H∥op < δ, there exists a
normed eigenvector w of H associated with λr such that

⟨v̂r, w⟩ ≥

√√√√1−
∥Ĥ −H∥2op

[δ − ∥Ĥ −H∥op]2
. (1.7)

Proof. Decompose v̂r on an orthonormal basis v1, . . . , vp of eigenvectors of v as

v̂r =

p∑
i=1

θivi.
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Apply Ĥ to both sides to obtain

λ̂r

p∑
i=1

θivi =

p∑
i=1

θiλivi + (Ĥ −H)v̂r,

which in turn gives
p∑

i=1

θi[λ̂r − λi]vi = (Ĥ −H)v̂r.

Taking norms, this gives

p∑
i=1

|θi|2[λ̂r − λi]
2 = ∥(Ĥ −H)v̂r∥2 ≤ ∥Ĥ −H∥2op.

For λi ̸= λr, one has
δ ≤ |λi − λr|

≤ |λ̂r − λi|+ |λ̂r − λr|
≤ |λ̂r − λi|+ ∥Ĥ −H∥op,

where we used Weyl’s inequality in the last step. Combined with the previous inequality this gives, assuming
δ > ∥Ĥ −H∥op: ∑

i:λi ̸=λr

|θi|2[δ − ∥Ĥ −H∥op]2 ≤ ∥Ĥ −H∥2op.

Let then
w :=

1√∑
i:λi=λr

|θi|2

∑
i:λi=λr

θivi.

It is easily verified that w is a normed eigenvector of H associated with λr.
Using the fact that

∑p
i=1 |θi|2 = 1, and ⟨v̂r, w⟩ =

√∑
i:λi=λr

|θi|2, this gives

δ > ∥Ĥ −H∥op ⇒ 1− ⟨v̂r, w⟩2 ≤
∥Ĥ −H∥2op

[δ − ∥Ĥ −H∥op]2
,

the announced inequality (1.7).

In contrast, an application of the theorem to the special case d = 1 would give:

2[1− |⟨v̂r, vr⟩|] ≤
23∥Ĥ −H∥2op

δ2
· (1.8)

In that particular case, both (1.7) and (1.8) imply that, when δ ≫ ∥Ĥ−H∥op, eigenvector vr of H associated
with λr appears nearly unchanged, up to sign, as eigenvector v̂r of Ĥ associated with λ̂r. We now give a
version of the celebrated Bauer-Fike theorem, which can be used instead of Weyl’s inequality when dealing
with non-Hermitian matrices.

Theorem 1.4. Let matrix M ∈ Cn×n = TΛT−1 where T is an invertible matrix and Λ is a diagonal matrix
with diagonal entries {λi}i∈[n], so that the λi are the eigenvalues of M . Let W ∈ Cn×n be (non-necessarily
Hermitian) perturbation matrix. Then any eigenvalue µ of matrix N :=M +W verifies

inf
i∈[n]

|µ− λi| ≤ ∥W∥op∥T∥op
∥∥T−1

∥∥
op
. (1.9)
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Proof. Let µ be an eigenvalue of N and u an associated normed eigenvector. The result trivially holds if µ
is an eigenvalue of M . Assume then that µ ̸= λi, i ∈ [n]. Write

µu = (M +W )u,

so that
u = (µIn −M)−1Wu = T (µIn − Λ)−1T−1Wu.

Taking norms, this yields

∥u∥ = 1 ≤
∥∥T (µIn − Λ)−1T−1W

∥∥
op

≤ ∥T∥op supi∈[n] |µ− λi|−1
∥∥T−1

∥∥
op
∥W∥op,

which yields the announced result.

Remark. We will see in subsequent chapter associated results for perturbations of eigenvectors that can be
used instead of Davis-Kahan’s sinΘ theorem for non-Hermitian matrices.

1.3 Graph spectra, expansion and Cheeger inequality
We now look more specifically at spectral properties of matrices associated with graphs. Let then G = (V,E)
be an undirected graph, with vertex set V = [n] and edge set E, E consisting of non-oriented pairs {i, j}
of distinct vertices. The two most fundamental matrices associated with such a graph are: its adjacency
matrix A = A(G) defined by

Aij = 1I{i,j}∈E ,

and its Laplacian matrix L = L(G), defined by

Lij =

{
di :=

∑
k ̸=iAik if j = i,

−Aij if j ̸= i.

In the above we introduced the degree di = di(G) of node i, defined as the number of neighbors of node
i in the graph.

A graph G whose nodes all have the same degree d, i.e. di(G) ≡ d, is called a d-regular graph. For
d-regular graphs on n vertices, it holds that L(G) = dIn −A(G).

We often write L for L(G) and A for A(G) to shorten notations. It is readily verified that for all u ∈ Rn,

u⊤Lu =
∑
i<j

Aij(ui − uj)
2.

This establishes that the Laplacian matrix L is positive semi-definite, a property we denote by

L ⪰ 0.

In fact the above identity gives us more: it implies that λn(L) = 0, and that the constant vector e = {1} is
an associated eigenvector.

By definition, the spectral gap of graph G is given by its second smallest Laplacian eigenvalue,
λn−1(L(G)).

We shall also need the following two quantities associated with graph G:

∆(G) := sup
i∈[n]

di(G)

is the largest degree of nodes in G. For any vertex set S ⊂ V , the corresponding partition of V into S and
its complementary set S = V \S has an associated isoperimetric ratio |E(S,S)|

min(|S|,|S|) , where E(A,B) denotes
the number of edges in E with one endpoint in set A and the other endpoint in set B.
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We then define the isoperimetric constant of G as

I(G) := min

{
|E(S, S)|

|S|
, S ⊂ V, 0 < |S| ≤ n

2

}
. (1.10)

It is readily seen to be the smallest isoperimetric ratio of all partitions of node set V into two parts S, S.

Definition 1.1. An undirected graph G = (V,E) is a γ-expander (respectively, a γ-spectral expander) for
some constant γ > 0 if its isoperimetric constant I(G) (respectively, its spectral gap λ|V |−1(L(G))) is larger
than γ.

A family of undirected graphs {Gn = (Vn, En)}n∈N is an expander (respectively, a spectral expander) if
there exists some γ > 0 that is a lower bound of the isoperimetric constant I(Gn) (respectively, of the spectral
gap λ|Vn|−1(L(Gn))) uniformly in n ∈ N.

It turns out that such expansion and spectral expansion are closely related properties. Indeed we have
the following inequality due to Cheeger:

Theorem 1.5. The isoperimetric constant I(G) of undirected graph G verifies

I(G) ≤
√
2∆(G)λn−1(L(G)). (1.11)

Before we turn to its proof, let us establish the easier result:

Proposition 1.3. The isoperimetric constant I(G) of undirected graph G verifies

I(G) ≥ λn−1(L(G))

2
. (1.12)

Proof. The Courant-Fisher variational characterization gives

λn−1(L) = inf

{
x⊤Lx

∥x∥2
, x : ⟨x, e⟩ = 0

}
,

where we used that λn(L) = 0 admits e as an associated eigenvector.
Define then x ∈ Rn by xi = 1Ii∈S − |S|

n , i ∈ [n], where S is the subset of V achieving the minimum in the
definition of I(G). The above characterization yields

λn−1 ≤ |E(S, S)|
|S|(1− |S|/n)

·

The inequality (1.12) follows since necessarily |S| ≤ n/2.

It directly follows from the Proposition (Exercise!) that graph G is connected if and only if λn−1(L) > 0.

Proof. (of Cheeger’s inequality). Let x be a non-constant eigenvector of L associated with its eigenvalue
λn−1. Possibly after changing the sign of x, assume that S := {i ∈ [n] : xi > 0} verifies |S| ≤ n/2. Let
y := {x+i }i∈[n].

Write
λn−1∥y∥2 =

∑
i∈[n] x

+
i ((Lx)i)

+

=
∑

i x
+
i

[∑
j ̸=iAij(xi − xj)

]+
=
∑

i x
+
i

[∑
j ̸=iAij(x

+
i − xj)

]+
≥
∑

i x
+
i

[∑
j ̸=iAij(x

+
i − xj)

]
≥
∑

i x
+
i

[∑
j ̸=iAij(x

+
i − x+j )

]
=
∑

(ij)∈E Aij(yi − yj)
2,

14



which yields

λn−1 ≥
∑

(ij)∈E Aij(yi − yj)
2

∥y∥2
·

Note next that ∑
(ij)∈E

Aij(yi + yj)
2 ≤ 2

∑
(ij)∈E

Aij(y
2
i + y2j ) ≤ 2∆(G)∥y∥2.

Use now Cauchy-Schwarz inequality to obtain ∑
(ij)∈E

Aij |y2i − y2j |

2

≤

 ∑
(ij)∈E

Aij(yi − yj)
2

 ∑
(ij)∈E

Aij(yi + yj)
2

 .
The three previous inequalities yield the bound

λn−1 ≥
∑

(ij)∈E Aij(yi − yj)
2
∑

(ij)∈E Aij(yi + yj)
2

∥y∥2
∑

(ij)∈E Aij(yi + yj)2
≥ R2

2∆(G)∥y∥4
, (1.13)

where we introduced the term
R :=

∑
(ij)∈E

Aij |y2i − y2j |.

Finally, R can be lower-bounded in terms of the isoperimetric constant I(G) as follows. Let t0 = 0 < t1 <
. . . < tm denote the distinct values taken by the yi. For k = 0, . . . ,m, let Vk := {i ∈ V : yi ≥ tk}. Necessarily,
|Vk| ≤ |S| ≤ n/2 for all k ≥ 1. Write then

R =
∑

(ij)∈E

Aij |y2i − y2j |

=

m∑
k=1

∑
(ij)∈E:yj<yi=tk

Aij(y
2
i − y2j )

=

m∑
k=1

∑
yi=tk,yj=tℓ,ℓ<k

Aij [(t
2
k − t2k−1) + · · ·+ (t2ℓ+1 − t2ℓ)]

=

m∑
k=1

∑
i∈Vk

∑
j∈V k

Aij(t
2
k − t2k−1)

=

m∑
k=1

|E(Vk, V k)|(t2k − t2k−1)

≥ I(G)

m∑
k=1

|Vk|(t2k − t2k−1)

= I(G)

m∑
k=1

t2k(|Vk| − |Vk+1|)

= I(G)∥y∥2.

Combined with (1.13), this inequality yields the annoucned result (1.11).

Remark. The proof given here is taken from [30], which in fact establishes a refined version, with (∆(G)−
λn−1) in place of ∆(G) in the upper bound. The original Cheeger inequality is concerned with Laplace
operators on manifolds, and is obtained through an integration-by-parts argument of which the above proof
contains a discrete analogue.

Remark. Together, Cheeger’s inequality (1.11) and (1.12) entail the following. A family of graphs {Gn}n∈N
with uniformly bounded degrees ∆(Gn) ≤ ∆, n ∈ N is an expander if and only if it is a spectral expander.

15



Remark. Eigenvector x associated with the second smallest eigenvalue λn−1 of the graph Laplacian L(G) is
sometimes referred to as the Fiedler vector of G. The proof of Cheeger’s inequality shows in fact that there
exists some k ∈ [m] such that

|E(Vk, V k)|
|Vk|

≤
√
2∆(G)λn−1.

In other words, there exists some threshold t ∈ R such that the partition of [n] based according to the Fiedler
vector x into S = {i : xi ≥ t} and S = {i;xi < t} necessarily satisfies

|S| ≤ n

2
and

|E(S, S)|
|S|

≤
√
2∆(G)λn−1(L(G)).

Combined with inequality (1.12), this implies

|E(S, S)|
|S|

≤ 2
√
∆(G)I(G).

Thus for some sequence of graphs Gn = (Vn, En) such that I(Gn) → 0 as n→ ∞ and with uniformly bounded
degrees ∆(Gn) ≤ ∆, it follows that there exist graph partitions (Sn, Sn) for Gn, based on the Fiedler vectors
of each Gn, with an asymptotically vanishing isoperimetric ratio, i.e.

lim
n→∞

|En(Sn, Sn)|
min(|Sn|, |Sn|)

= 0,

where En(A,B) is the number of edges of Gn with one endpoint in A and the other in B. This provides
a first justification that spectral partitioning of a graph, i.e. partitioning of a graph based on eigenvectors
of associated matrices, produces interesting partitions, namely here a partition with vanishing isoperimetric
ratio. We will see in the sequel other spectral partitioning methods, as well as desirable properties they enjoy
for graphs sampled from probability distributions of interest.

1.4 Ramanujan graphs are the best expanders: Alon-Boppana in-
equality

We shall need the following notions. The graph distance dG(i, j) between two vertices i, j ∈ V is defined
as the length in edges of the shortest path connecting i to j in G. The graph diameter D(G) is defined as
the largest graph distance dG(i, j) between distinct vertices i, j. For given vertex i ∈ V and integer r ≥ 0,
BG(i, r) := {j ∈ V, dG(, j) ≤ r} is then the ball for dG centered at i and of radius r.

We now focus on undirected d-regular graphs G = (V,E) with node set [n]. In that case, the spectral
gap λn−1(L(G)) also reads

λn−1(L(G)) = d− λ2(A(G)).

It turns out that this spectral gap cannot be arbitrarily large. Indeed we have the following result of Alon
and Boppana:

Theorem 1.6. For a d-regular graph with diameter at least 2r + 1, then necessarily

λ2(A(G)) ≥ 2
√
d− 1 cos

(
π

r + 2

)
. (1.14)

A simple counting argument (Exercise!) guarantees that a graph G = (V,E) with node degrees upper-
bounded by ∆ can have within distance r of any given vertex at most ∆[(∆− 1)r − 1]/(∆− 2) vertices (we
assume implicitly that ∆ ≥ 3: simpler bounds hold for ∆ < 3). Thus if it comprises n vertices, its diameter
D(G) must satisfy

D(G) ≥ ln(1 + n(∆− 2)/∆)

ln(∆)
≥ log∆(n/3) = Θ(log(n)).
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A direct consequence of Theorem 1.6, obtained by taking a Taylor expansion of the term cos
(

π
r+2

)
in (1.14),

is the following

Corollary 1.1. For fixed d, a d-regular graph G on n nodes verifies

λ2(A(G)) ≥ 2
√
d− 1

(
1−O(log(n)−2)

)
, (1.15)

so that in the limit n→ ∞, its spectral gap λn−1(L(G)) is no larger than d− 2
√
d− 1− on(1).

It is interesting at this stage to compare this with the notion of Ramanujan graph that we now define:

Definition 1.2. An undirected d-regular graph G is a Ramanujan graph if it verifies

max(λ2(A(G)), |λn(A(G))|) ≤ 2
√
d− 1. (1.16)

In light of the Alon-Boppana result, we see that there do not exist any d-regular graphs with a spectral
gap larger than that of Ramanujan graphs by a non-vanishing margin Ωn(1). In other words, Ramanujan
graphs are the best possible expanders.

Proof. (of the Alon-Boppana theorem 1.6). Let i, j be two vertices in V at distance dG(i, j) at least 2r + 1,
so that the balls B(i, r), B(j, r) are disjoint. Let M := B(i, r) ∪ B(j, r) be the union of these two balls, and
m := |M| its cardinal. Let G′ denote the subgraph of G induced by the vertices in M. Its adjacency matrix
A(G′) ∈ Rm×m also reads

A(G′) = P ∗A(G)P,

where P ∗ ∈ Rn×m denotes the matrix corresponding to projection onto coordinates in M. It is readily seen
that P ∗P = Im. Thus, by Cauchy’s interlacing theorem, one has

λ2(A(G)) ≥ λ2(A(G
′)).

Note that by construction, G′ consists of two disjoint connected components B(i, r) and B(j, r). By Perron-
Frobenius theorem, the adjacency matrix A(B(i, r)) (respectively, A(B(j, r))) of the subgraph of G induced
by B(i, r) (respectively, B(j, r)) admits a non-negative eigenvalue λ1(A(B(i, r))) (respectively, λ1(A(B(j, r))))
with largest modulus among its eigenvalues. Both are also eigenvalues of A(G′), so that

λ2(A(G)) ≥ min (λ1(A(B(i, r))), λ1(A(B(j, r)))) . (1.17)

For q ≥ 0, denote by W2q(i,B(i, r)) the collection of walks in B(i, r) of length 2q which start and end at
node i, and by w2q(i,B(i, r)) its cardinal. Again by Perron-Frobenius theorem, it holds that

λ1(A(B(i, r))) = lim
q→∞

(w2q(i,B(i, r)))1/(2q) .

To lower-bound this limit, we now introduce the notion of graph cover.

Definition 1.3. Given an undirected graph G = (V,E), graph C = (W,F ) is a cover of G if there exists a
cover map ϕ :W → V such that:

1) ϕ(W ) = V , and
2) for any u ∈W , ϕ defines a bijection between the sets {v ∈W : (uv) ∈ F} and {j ∈ V : (ij) ∈ E}.

Let Td denote the infinite d-regular tree. Specifically, its vertex set consists of sequences (i1, . . . , iℓ) in
[d] × [d − 1]ℓ−1, ℓ ≥ 1, and of the empty sequence (). Its edges consist of all pairs of vertices of the form
{(i1, . . . , iℓ−1), (i1, . . . , iℓ)}.

A fundamental property is then that any d-regular connected graph G admits Td as a cover. This is easily
shown by constructing the cover map ϕ iteratively, starting with some arbitrary choice i0 ∈ V for ϕ(), then
choosing for {ϕ(k)}, k ∈ [d] an arbitrary map with image set {j ∈ V, (i0, j) ∈ E}. The construction can be
carried on indefinitely, and must necessarily cover all of V if G is connected.
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The infinite d-regular tree Td is known as the universal cover of d-regular graphs.
We now use this construct to lower bound w2q(B(i, r)). We may assume that the cover map ϕ is such

that ϕ() = i.
We further denote by Td,r the subgraph of Td made of nodes at distance at most r from the root (). A

key property is then that
w2q(i,B(i, r)) ≥ w2q((), Td,r). (1.18)

To establish this, let us first verify that (i) closed walks u1, . . . , u2q in W2q((), Td,r) are mapped by ϕ to
closed walks (ϕ(u1), . . . , ϕ(u2q)) in W2q(i,B(i, r)). This is readily established, arguing by induction on r that
ϕ maps the vertices in Td,r to those in B(i, r), then using the property that ϕ necessarily maps edges of Td,r
to edges of B(i, r), and finally since by construction ϕ() = i.

Next we argue that (ii) two distinct walks in W2q((), Td,r) must be mapped by ϕ to distinct walks in
W2q(i,B(i, r)). Consider two walks u1, . . . , u2q and v1, . . . , v2q in W2q((), Td,r), and assume that the first
index at which they differ is ℓ ≤ 2q. Then by the local bijection property of the cover map ϕ, it must be
that ϕ(uℓ) ̸= ϕ(vℓ). This establishes (1.18).

We now evaluate the right-hand side in (1.18). Let Pr+1 denote the path graph of length r and with
r + 1 vertices that we take as {0, . . . , r}. A counting argument ensures that

w2q((), Td,r) ≥ (d− 1)qw2q(0,Pr+1). (1.19)

Indeed we can project each walk in W2q((), Td,r) to a walk in W2q(1,Pr+1) by mapping a vertex at distance
s in Td,r from the root to vertex s in Pr+1. We then argue that to each walk i1, . . . , i2q in W2q(0,Pr+1) we
can associate at least (d− 1)q distinct walks in W2q((), Td,r) that get projected onto i1, . . . , i2q, since indeed
we have at least (d− 1) choices for each move away from the root, and there must be q such moves.

Let us now show that
lim
q→∞

(w2q(1,Pr+1))
1/(2q)

= 2 cos(π/(r + 2)). (1.20)

Combined with (1.17)–(1.19) and the fact that i and j are interchangeable, this will conclude our proof of
(1.14).

The limit in the left-hand side of (1.20) coincides with the Perron-Frobenius eigenvalue of A(Pr+1). The
result will thus follow if we can exhibit (x0, . . . , xr) that is an eigenvector of A(Pr+1) with non-negative
entries, and associated with eigenvalue 2 cos(π/(r + 2)). Classical trigonometric identities can be used to
verify that xi = sin

(
(i+1)π
r+2

)
satisfies these conditions.

Remark. The above proof of the Alon-Boppana theorem is inspired from Mohar [32], which establishes
stronger results. In particular the argument extends to show that many eigenvalues of A(G) must exceed the
left-hand side of (1.14), and also extends to give a version of the Alon-Boppana lower bound applicable to
certain classes of non-regular graphs.

1.5 Notes
Good references on linear algebra, PCA and SVD: Horn and Johnson (and Golub and Van Loan). We only
saw a subset of Weyl’s inequalities, a complete treatment is in some blog of Terence Tao. Specific focus
on inequalities for eigenvalues: Bhatia. Non-normal matrices more difficult, give rise to pseudo-spectra:
Trefethen et al.

Reference on graph theory: Bollobas. Specifically on algebraic graph theory, Laplace eigenvalues etc:
Dan Spielman, Fan Chung?

On the role of Cheeger inequality and its relation to graph clustering: see higher order Cheeger inequality
paper [26].

On expander graphs, and construction of Ramanujan graphs: book by Lubotzky.
Recent breakthrough on showing existence of (bipartite) Ramanujan graphs of all sizes: Spielman et al.
On Alon-Boppana inequality and Ramanujan graphs: classical proof given in [36]. Mention Friedman’s

result, or perhaps at a later chapter.
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Chapter 2

Bounding the spectral norm of random
matrices

In this chapter we consider random symmetric matrices W ∈ Rn×n such that {Wij}i≤j are independent
random variables. We introduce bounds on the corresponding spectral, or operator norm ∥W∥op that will
be used in the next Chapter, in conjunction with the tools on perturbation of eigenstructure of matrices of
the previous chapter.

2.1 The trace method

The basic building block of the trace method is the following inequality: for any k ≥ 1,

ρ(W )2k ≤ Tr
(
W 2k

)
. (2.1)

This inequality is asymptotically sharp, in the sense that

ρ(W ) = lim
k→∞

Tr
(
W 2k

) 1
2k ,

and hence not much is lost in the approximation. On the other hand, the trace of W 2k admits the following
combinatorial expansion

Tr(W 2k) =
∑

γ0,...,γ2k∈[n]
γ0=γ2k

2k−1∏
j=0

Wγjγj+1 . (2.2)

This combinatorial representation together with moment assumptions on the variables Wij allows to
establish bounds on the moments of ρ(W ) and in turn bounds on tail probabilities of its distribution. Here
is a simple illustration of this approach.

Proposition 2.1. Assume that the Wij are independent centered random variables such that

|Wij | ≤ 1 a.s. and E
[
W 2

ij

]
≤ d

n

for some (possibly n-dependent) constant d ≥ 1.
Then for any ϵ > 0, one has

lim
n→∞

P
(
ρ(W ) ≥

√
dnϵ
)
= 0. (2.3)
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Proof. Fix some k ≥ 1. For a given path γ = (γ0, . . . , γ2k) appearing in (2.2), we denote by v(γ) (resp. e(γ))
the number of distinct vertices (resp. edges) appearing in γ. Since the Wij are centered, for a term in (2.2)
to be nonzero it is necessary that each edge be traversed at least twice. Additionally the paths γ considered
are connected, so we can restrict our study to paths satisfying

v(γ)− 1 ≤ e(γ) ≤ k.

We first bound the contribution of a fixed path γ: for each edge (x, y) appearing in γ we denote its
multiplicity kxy, i.e. the number of times it is visited. Then

E
2k−1∏
j=0

Wγjγj+1
≤

∏
(x,y)∈γ

E
[
|Wxy|kxy

]
(2.4)

≤
∏

(x,y)∈γ

E
[
W 2

xy

]
(2.5)

≤
(
d

n

)e(γ)

, (2.6)

where we used the fact that |Wxy| ≤ 1 almost surely.
Now, let C(v, e) be the set of paths with v(γ) = v and e(γ) = e, and C ′(v, e) the set of canonical paths,

i.e. paths in C(v, e) with vertex set equal to [v]. Any path in C(v, e) can be uniquely mapped to a canonical
path by labeling its vertices by order of appearance, and hence

|C(v, e)| ≤ nv |C ′(v, e)| ≤ nv max
v(γ)−1≤e(γ)≤k

C ′(v, e), (2.7)

and the above maximum depends only on k. Combining (2.6) and (2.7), we find

E
[
Tr
(
W 2k

)]
≤

k∑
e=0

e+1∑
v=1

|C(v, e)|
(
d

n

)e

≤
k∑

e=0

e+1∑
v=1

nv |C ′(v, e)|
(
d

n

)e

≤ C ′′(k)ndk,

where the last constant only depends on k.
We are now in a position to apply a Markov bound: for ϵ > 0, choose k such that 2kϵ > 1, and write

P
(
ρ(W ) ≥

√
dnϵ
)
≤

E
[
Tr
(
W 2k

)]
dkn2kε

≤ C ′′(k)n1−2kϵ,

which goes to 0 by choice of k.

A finer combinatorial analysis, performed in Anderson et al. [3] (Theorem 2.1.22 p.23), yields a sharper
result:

Theorem 2.1. Assume that the Wij are centered, and such that for some σ > 0, E(W 2
ij) ≤ σ2, and for each

k > 2, one has:
E|Wij |k ≤ σkkCk

where C is a constant that does not depend on n. Then for any ϵ > 0, one has

lim
n→∞

P(ρ(W ) ≥ σ
√
n(2 + ϵ)) = 0. (2.8)
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Note that it requires stronger moment assumptions than the previous result. It is sharp, in that if
EW 2

ij ≡ σ2, then ρ(W )/(σ
√
n) converges in probability to 2. The trace method was introduced by Fűredi

and Komlós in [16], where they established the result (2.8) under the assumptions that EWij = 0, |Wij | ≤ 1
almost surely, and Var(Wij) ≤ σ2 for some fixed σ > 0.

Remark (Further discussion on random matrix theory). Variations on the above-mentioned result in An-
derson et al. [3], Theorem 2.1.22 p. 23 can be found in Bai and Silverstein [4], Theorem 5.1 p. 92. More
recently, Van Vu [44] and Péché and Soshnikov [38] also establish a similar scaling for the spectral radius.
However these results require strong specific conditions on the distributions of the entries of the random
matrices that are typically not satisfied in the random graph context we consider, hence the need for the
alternative tools that we shall next consider.

2.2 Bernstein inequality for sums of centered independent random
matrices

In this section we establish the following inequality:

Theorem 2.2. Let X1, . . . , Xm be independent Hermitian random matrices such that:

E(Xk) = 0, ∥Xk∥op ≤ L almost surely, k ∈ [m]. (2.9)

Let Y =
∑

k∈[m]Xk, and

v(Y ) := ∥E(Y 2)∥op = ∥
∑
k∈[m]

EX2
k∥op. (2.10)

Then for all t > 0,

P(λ1(Y ) ≥ t) ≤ n exp

(
−t2

2(v(Y ) + Lt/3)

)
· (2.11)

This implies for all t > 0

P(∥Y ∥op ≥ t) ≤ 2n exp

(
−t2

2(v(Y ) + Lt/3)

)
· (2.12)

For a Hermitian matrix X = UΛU∗, and a function f : R → R, the matrix f(X) is defined as

f(X) = U diag(f(Λii))U
∗.

We will need the following lemmas, whose proof will be given after that of the Theorem:

Lemma 2.1. For independent Hermitian matrices Xk, k ∈ [m], and Y =
∑

k∈[m]Xk, one has

ETr eθY ≤ Tr exp

 ∑
k∈[m]

lnEeθXk

 . (2.13)

Lemma 2.2. For Hermitian X such that E(X) = 0 and ∥X∥op ≤ L almost surely, then

∀θ ∈ (0, 3/L),

 EeθX ⪯ exp
(

θ2/2
1−θL/3EX

2
)
,

lnEeθX ⪯ θ2/2
1−θL/3EX

2,
(2.14)

where ⪯ represents the semi-definite order on Hermitian matrices.

Lemma 2.3. For two Hermitian matrices A, B such that A ⪯ B, then for all i ∈ [n], λi(A) ≤ λi(B).
For a non-decreasing function f : R → R, it follows that

Tr f(A) ≤ Tr f(B).
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Proof. (of Theorem 2.2) The second property (2.12) follows from two applications of the first inequality
(2.11), to Y and −Y , and a union bound.

To establish (2.11), first note that for arbitrary θ > 0, one has

P(λ1(Y ) ≥ t) ≤ e−θtE eλ1(Y ) ≤ e−θtETr(eθY ).

Optimized over θ > 0 this gives
P(λ1(Y ) ≥ t) ≤ inf

θ≥0
e−θtETr(eθY ). (2.15)

Next use Lemma 2.1 to bound the right-hand side of the previous inequality, and obtain

P(λ1(Y ) ≥ t) ≤ inf
θ≥0

e−θt Tr exp

 ∑
k∈[m]

lnEeθXk

 .

Lemma 2.2 entails that the matrix argument in the exponential is less, for the semi-positive definite
order, than θ2/(1− θL/3)E

∑
k∈[m]X

2
k . Lemma 2.3, used with for f the exponential function, then provides

an upper bound on the right-hand side of this expression, yielding

P(λ1(Y ) ≥ t) ≤ inf
θ∈(0,3/L)

e−θt Tr exp

 θ2/2

1− θL/3
E
∑
k∈[m]

X2
k

 .

This last expression is bounded by

inf
θ∈(0,L/3)

n exp

(
−θt+ θ2/2

1− θL/3
v(Y )

)
.

Chosing θ so that θt = θ2

1−θL/3v(Y ), or equivalently taking θ = t/(v(Y ) + tL/3) yields the announced result
(2.11).

To prove Lemma 2.1, we will exploit Lieb’s theorem, that we now state:

Theorem 2.3. (Lieb). For a fixed n× n Hermitian matrix H, the function

A→ Tr exp (H + ln(A))

defines a concave mapping on the set of n× n Hermitian positive definite matrices A.

Proof. (of Lemma 2.1). Let Y =
∑

k∈[m]Xk. Taking expectations first conditionally on X1, . . . , Xm−1, one
has

ETr exp(Y ) ≤ E
{
E
[
Tr exp

(∑m−1
k=1 Xk + ln(exp(Xm))

)
|Xm−1

1

]}
≤ E

{
Tr exp

(∑m−1
k=1 Xk + ln(E exp(Xm))

)}
,

where we used Jensen’s inequality together with Lieb’s theorem, the latter being applicable because exp(Xm)
is a positive definite matrix. Iterating this argument gives the desired inequality (2.13).

Proof. (of Lemma 2.2). Let θ ∈ (0, 3/L) be fixed. Write

eθX = I + θX (eθX − I − θX) = I + θX +Xf(X)X,

where

f(x) =
eθx − 1− θx

x2
for x ̸= 0, and f(0) =

θ2

2
·
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The function f is non-decreasing (this can be seen from its series expansion). For x ≤ L, one therefore has
f(x) ≤ f(L). By assumption, the eigenvalues of X do not exceed L, so that f(X) ⪯ f(L)I. Thus necessarily,
for all u ∈ Cn,

u∗Xf(X)Xu = (Xu)∗f(X)(Xu) ≤ f(L)u∗X2u,

and thus Xf(X)X ⪯ f(L)X2. It follows that

eθX ⪯ I + θX + f(L)X2. (2.16)

To conclude, note that

f(L) =
eθL − 1− θL

L2
=

1

L2

∑
k≥2

(θL)k−2

k!
≤ θ2

2

∑
k≥2

(θL)k−2

3k−2
=
θ2

2

1

1− θL/3
.

This yields together with (2.16), using the fact that X2 is positive semi-definite:

eθX ⪯ I + θX +
θ2/2

1− θL/3
X2.

Taking expectations, using the fact that X has zero mean, we obtain

EeθX ⪯ I +
θ2/2

1− θL/3
EX2.

Since for all x ∈ R, (1 + x) ≤ ex, we can deduce from this the first inequality of Lemma 2.2, i.e.

EeθX ⪯ exp

(
θ2/2

1− θL/3
EX2

)
.

To deduce from this the second inequality of the Lemma, we exploit the fact that the logarithm is operator-
monotone, stated in the following lemma.

Lemma 2.4. For two positive definite Hermitian matrices A, B such that A ⪯ B, necessarily one has
ln(A) ⪯ ln(B).

Proof. We first establish that for all non-negative u ∈ R+,

− (A+ uI)−1 ⪯ −(B + uI)−1. (2.17)

To that end, let Au = A+ uI, Bu = B + uI. Note that 0 ≺ Au ⪯ Bu, so that

0 ≺ B−1/2
u AuB

−1/2
u ⪯ I.

This entails that
I ⪯ (B−1/2

u AuB
−1/2
u )−1 = B1/2

u A−1
u B1/2

u ,

which in turn guarantees that B−1
u ⪯ A−1

u , or equivalently (2.17). Thus for all u ≥ 0,

(1 + u)−1I − (A+ uI)−1 ⪯ (1 + u)−1I − (B + uI)−1.

Note that the logarithm ln(A) admits an integral representation as

ln(A) =

∫ ∞

0

[(1 + u)−1I − (A+ uI)−1]du.

Since the semidefinite order is preserved by integration against a positive measure, the previous inequality
implies that ln(A) ⪯ ln(B) as desired.
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Proof. (of Lemma 2.3) For any subspace of dimension i, the fact that A ⪯ B implies

inf
x∈E

x∗Ax

x∗x
≤ inf

x∈E

x∗Bx

x∗x
·

Taking suprema over B, the Courant-Fisher theorem then guarantees that λi(A) ≤ λi(B). Since Tr f(A) =∑
i∈[n] f(λi(A)), for non-decreasing f : R → R, the second inequality Tr f(A) ≤ Tr f(B) follows.

For a proof of Lieb’s theorem, and more in-depth discussion of matrix concentration inequalities, the
reader can consult the monograph by Tropp [42], from which the above proof is taken.

2.3 Epsilon-nets and the Feige-Ofek bound

Definition 2.1. Let M be a metric space, endowed with distance dM. For a subset C of M and any ϵ > 0,
an ϵ-net N of C is a collection of points x of C such that C is contained in the union of balls B(x, ϵ) of
radius ϵ whose centres x span N :

A ⊂
⋃
x∈N

B(x, ϵ).

The smallest cardinality of ϵ-nets of C is denoted by N(C, dM, ϵ).

Our use of ϵ-nets will be via the following Lemma, which essentially reduces the control of the spectral
norm of a symmetric matrix A to the control of the supremum of |x⊤Ax| over x in an ϵ-net of the unit sphere
Sn−1.

Lemma 2.5. Let A be a symmetric n × n real matrix and let Sn−1 denote the unit sphere in Rn for the
Euclidean distance. Then for any ϵ ∈ (0, 1/2) and any ϵ-net N of Sn−1, one has

sup
x∈N

∣∣x⊤Ax∣∣ ≤ ∥A∥ ≤ 1

1− 2ϵ
sup
x∈N

∣∣x⊤Ax∣∣ . (2.18)

Proof. Let ϵ ∈ (0, 1/2) and N an ϵ-net of Sn−1. By Courant-Fisher, it holds that

∥A∥ = max(λ1(A), λn(A)) = max
y∈Sn−1

|y⊤Ay|.

This establishes the left-side inequality, since N ⊂ Sn−1.
For the right-side inequality, take any y ∈ Sn−1, and an associated x ∈ N such that ∥x− y∥ ≤ ϵ. Write

then
y⊤Ay = x⊤Ax+ x⊤A(y − x) + (y − x)⊤Ay,

so that
|y⊤Ay| ≤ |x⊤Ax|+ 2ϵ∥A∥ ≤ sup

x∈N
|x⊤Ax|+ 2ϵ∥A∥.

The right-side inequality follows by taking the supremum over y ∈ Sn−1.

Remark. It is readily seen that the conclusion (2.18) of the Lemma also holds when for N we take an ϵ-net
of the ball Bn centered at 0 of radius 1 in Rn rather than a net of its boundary Sn−1.

The following is a typical volume argument to obtain bounds on minimal net sizes n(C, dM, ϵ):

Lemma 2.6. For each n ∈ N, ϵ ∈ (0, 1), letting dn denote the Euclidean distance in Rn, one has

N(Bn, dn, ϵ) ≤
(
1 +

2

ϵ

)n

. (2.19)
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Proof. Fix ϵ ∈ (0, 1) and n > 0. Construct the ϵ-net N in an iterative fashion, adding at each step t a new
point x(t) in Bn \ ∪t−1

s=1B(x(s), ϵ), i.e. a point that is not yet covered. By construction, the points of the net
are separated by distance at least ϵ so that the balls B(x, ϵ/2) have disjoint interiors. Moreover, these balls
are all included in B(0, 1 + ϵ/2). Thus

Vol (∪x∈NB(x, ϵ/2)) = |N |Vol(B(0, ϵ/2)) ≤ Vol(B(0, 1 + ϵ/2)).

The conclusion follows be noting that the volume of a Euclidean ball of radius r in Rn is rnVol(Bn).

Using techniques of Feige and Ofek [15] we shall establish the following

Theorem 2.4. Let G be an Erdős-Rényi random graph with parameters (n, p) where the “average degree
parameter” d := np verifies

c0 log(n) ≤ d, (2.20)

where c0 > 0 is any positive constant. Let A denote the adjacency matrix of G, and Ā its expectation.
Then for every c > 0, there exists c′ > 0 that depends only on c0 and c, and such that, with probability

at least 1− n−c,
∥A− Ā∥ ≤ c′

√
d·

As previously mentioned, the proof uses an ϵ-net N of Bn and the right-side inequality in (2.18). Let then
x ∈ N be a vector of the ϵ-net. Distinguish pairs i < j of indices in [n] according to whether |xixj | ≤

√
d/n,

in which case (i, j) is termed a light couple for x, which we denote (i, j) ∈ l(x), or whether |xixj | >
√
d/n,

in which case (i, j) is termed a heavy couple for x, which we denote (i, j) ∈ h(x).
By Lemma 2.5, inequality (2.18), we have

∥A− Ā∥ ≤ 1

1− 2ϵ
[2Sl + 2Sh] , (2.21)

where

Sl := sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈l(x)

xi(Aij −
d

n
)xj

∣∣∣∣∣∣ ,
Sh := sup

x∈N

∣∣∣∣∣∣
∑

(i,j)∈h(x)

xi(Aij −
d

n
)xj

∣∣∣∣∣∣ .
Bounding the contribution Sl of light couples: Chernoff plus union bound arguments .

Fix some x ∈ N . Let λ ∈ R. Noting Zij := Aij − d/n, write

Eeλ
∑

(i,j)∈l(x) xixjZij =
∏

(i,j)∈l(x) e
−λxixjd/n

(
1− d

n + d
ne

λxixj
)

≤ e
∑

(i,j)∈l(x) −λxixj(d/n)+(d/n)[eλxixj−1],

where we used the inequality (1 + x) ≤ ex. To proceed we will rely on the inequality

∀x ∈ R, |x| ≤ 1

2
⇒ ex − 1− x ≤ 2x2,

established by considering the expansion of ex. Plugged into the above inequality, using the fact that only
light couples (i, j) are considered, this ensures that for all λ such that |λ| ≤ n

2
√
d
, one has

Eeλ
∑

(i,j)∈l(x) xixjZij ≤ e
∑

(i,j)∈l(x) 2(d/n)λ
2x2

ix
2
j .

The Chernoff bounding technique thus yields, taking λ = n/(2
√
d):

P(
∑

(i,j)∈l(x) xixjZij ≥ C
√
d) ≤ e−nC/2e

∑
(i,j)∈l(x)(n/2)x

2
ix

2
j

≤ e−n(C/2−1/4),
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where we exploited the fact that ∥x∥ ≤ 1 to obtain∑
(i,j)∈l(x)

x2ix
2
j ≤ 1

2

∑
i,j∈[n]

x2ix
2
j =

1

2
·

Similarly, taking λ = −n/(2
√
d) we obtain

P(
∑

(i,j)∈l(x)

xixjZij ≤ −C
√
d) ≤ e−n(C/2−1/4).

Taking a union bound, we thus obtain:

P(Sl ≥ C
√
d) ≤ 2|N |e−n(C/2−1/4).

By Lemma 2.6, Inequality (2.19), we thus obtain

P(Sl ≥ C
√
d) ≤ 2en[−C/2+1/4+ln(1+2/ϵ)].

By choosing constant C sufficiently large, the contribution of Sl to the upper bound (2.21) can be made less
than 2C

√
d with probability exponentially close in n to 1.

Bounding the contribution Sh of heavy couples: the bounded discrepancy property.
We can bound Sh as follows:

Sh ≤ Th + Uh, (2.22)

where
Th := sup

x∈N
|
∑

(i,j)∈h(x)

xixjAij |, and Uh := sup
x∈N

|
∑

(i,j)∈h(x)

xixj(d/n)|. (2.23)

For arbitrary x ∈ Bn, consider two independent random variables I, J uniformly distributed in [n]. Write
then

|
∑

(i,j)∈h(x) xixj(d/n)| ≤ (d/n)
∑

i,j∈[n] |xixj |1I|xixj |>
√
dn

≤ ndE[|xIxJ |1I|xIxJ |>
√
d/n]

≤ ndE[|xIxJ | |xIxJ |√
d/n

]

≤ n2
√
dE[x2Ix2J ]

≤
√
d,

where we used E[x2I ] = (1/n)∥x∥2 ≤ (1/n) in the last step. This Markov inequality argument then implies

Uh ≤
√
d. (2.24)

The last (and most delicate) step of the argument will leverage global properties of G, namely the bounded
degree property and the bounded discrepancy property to obtain, uniformly in x ∈ Bn, a bound in
O(

√
d) on Uh.

Definition 2.2. Graph G with vertex set [n] is said to have the bounded degree property with average degree
d and tolerance factor c1 > 0 if and only if every vertex i ∈ [n] of G has degree at most c1d.

Graph G is said to have the bounded discrepancy property with tolerance factors c2, c3 > 0 if and only if the
following holds. For any two vertex subsets A,B ⊂ [n] such that |B| ≥ |A|, letting µ(A,B) := |A| · |B|(d/n),
and e(A,B) denote the number of edges with one endpoint in A and another endpoint in B, then one of the
following two properties holds:

1. e(A,B)
µ(A,B) ≤ ec2;

2. e(A,B) ln
(

e(A,B)
µ(A,B)

)
≤ c3|B| ln

(
n
|B|

)
.

An essential step to bound Th is the following
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Proposition 2.2. Let graph G satisfy the bounded degree and bounded discrepancy conditions with average
degree parameter d and tolerance factors c1, (c2, c3) respectively. Then it holds that

sup
x∈Bn

∑
(i,j)∈h(x)

|xixj |Aij ≤ c4
√
d, (2.25)

where constant c4 depends only on c1, c2, c3.

Proof. Consider x ∈ Bn, and assume without loss of generality that xi ≥ 0 for all i ∈ [n]. For each k ∈ Z, let

γk := 2k, Ak := {i ∈ [n] :
γk−1√
n

≤ xi <
γk√
n
}.

Since xi ≤ 1, necessarily Ak is empty for k > ⌈log2(
√
n)⌉. We shall also use the following notations:

ak := |Ak|, k ≤ ⌈log2(
√
n)⌉;

µkℓ := µ(Ak, Aℓ) = akaℓ
d
n , k, ℓ ≤ ⌈log2(

√
n)⌉;

λkℓ :=
e(Ak,Aℓ)

µkℓ
, k, ℓ ≤ ⌈log2(

√
n)⌉.

We then have ∑
(i,j)∈h(x) xixjAij ≤

∑
k,ℓ:γkγℓ≥

√
d e(Ak, Aℓ)

γk√
n

γℓ√
n

=
∑

k,ℓ:γkγℓ≥
√
d akaℓ

d
nλkℓ

γk√
n

γℓ√
n

=
√
d
∑

k,ℓ:γkγℓ≥
√
d αkαℓσkℓ,

where we introduced the notations

αk := ak
γ2k
n
, σkℓ :=

λkℓ
√
d

γkγℓ
, k, ℓ ≤ ⌈log2(

√
n)⌉.

We then have ∑
(i,j)∈h(x)

xixjAij ≤ 2
√
d
∑
k,ℓ

1Iγkγℓ≥
√
d1Iak≤aℓ

αkαℓσkℓ. (2.26)

We shall use repeatedly the following bound, which follows from x ∈ Bn and the definition of Ak:∑
k

αk ≤ 4
∑
i∈[n]

x2i ≤ 4. (2.27)

To upper bound the right-hand side of (2.26) we shall consider the following distinct cases for pairs of indices
(k, ℓ) such that γkγℓ ≥

√
d and ak ≤ aℓ:

σkℓ ≤ 1 ⇔ (k, ℓ) ∈ C1,
λkl ≤ ec2 ⇔ (k, ℓ) ∈ C2,

γk >
√
dγℓ ⇔ (k, ℓ) ∈ C3,

e(Ak, Aℓ) log(λkℓ) ≤ c3aℓ log(n/aℓ) ⇔ (k, ℓ) ∈ C4.

By the bounded discrepancy property, the sets C2 and C4 cover all possible pairs k, ℓ.
Write then, by definition of C1:∑

k,ℓ

1Iγkγℓ≥
√
d1Iak≤aℓ

1IC1
(k, ℓ)αkαℓσkℓ ≤

∑
k,ℓ

αkαℓ ≤ 16,

where we used (2.27). Write next, recalling the definition of σkℓ:∑
k,ℓ 1Iγkγℓ≥

√
d1Iak≤aℓ

1IC2(k, ℓ)αkαℓσkℓ ≤
∑

k,ℓ 1Iγkγℓ≥
√
dαkαℓ

ec2
√
d

γkγℓ

≤
∑

k,ℓ αkαℓec2
≤ 16ec2.
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By the bounded degree property, one has

λkℓ ≤
akc1d

akaℓ(d/n)
=
nc1
aℓ

·

Thus for fixed k, ∑
ℓ 1IC3(k, ℓ)αℓσkℓ =

∑
ℓ 1IC3(k, ℓ)aℓ

γ2
ℓ

n
λkℓ

√
d

γkγℓ

≤
∑

ℓ 1IC3
(k, ℓ)aℓ

γℓ

nγk

nc1
√
d

aℓ

=
∑

ℓ:γk>γℓ

√
d c1

γℓ

√
d

γk

≤ 2c1,

where we replaced the geometric sum by its value 2. This entails:∑
k,ℓ

1Iγkγℓ≥
√
d1Iak≤aℓ

1IC3
(k, ℓ)αkαℓσkℓ ≤ 2c1

∑
k

αk ≤ 8c1.

We shall now consider summations restricted to pairs (k, ℓ) in C4, the second case of the bounded discrepancy
condition. Expressed in terms of λkℓ and αℓ this condition reads:

λkℓakaℓ
d

n
log(λkℓ) ≤ c3aℓ log

(
γ2ℓ
αℓ

)
,

implying

λkℓ
√
dak

1

n
log(λkℓ) ≤ c3

1√
d
log

(
γ2ℓ
αℓ

)
.

This is equivalent by definition of σkℓ and αk to:

σkℓαk log(λkℓ) ≤ c3
γk

γℓ
√
d
[2 log(γℓ) + log(1/αℓ)] . (2.28)

We further distinguish three conditions on the couples (k, ℓ), which specify the dominant term from λkℓ, γℓ
and 1/αℓ:

log(λkℓ) >
1
4 [2 log(γℓ) + log(1/αℓ)] ⇔ (k, ℓ) ∈ C ′

1,
2 log(γℓ) ≥ log(1/αℓ) ⇔ (k, ℓ) ∈ C ′

2,
2 log(γℓ) < log(1/αℓ) ⇔ (k, ℓ) ∈ C ′

3.

For (k, ℓ) ∈ C4 ∩ C ′
1, (2.28) implies

σkℓαk ≤ 4c3
γk

γℓ
√
d
.

Thus ∑
k

1IC4∩C′
1\C3

(k, ℓ)σkℓαk ≤ 4c3
∑

k:γk≤γℓ

√
d

γk

γℓ
√
d
≤ 8c3,

which yields ∑
k,ℓ

1Iγkγℓ≥
√
d1Iak≤aℓ

1IC4∩C′
1\C3

(k, ℓ)αkαℓσkℓ ≤ 8c3
∑
ℓ

αℓ ≤ 32c3.

For (k, ℓ) ∈ C ′′
2 := C ′

2 \ C ′
1, one has

log(λkℓ) ≤
1

4
[2 log(γℓ) + log(1/αℓ)] ≤ log(γℓ),

hence λkℓ ≤ γℓ. Assume further (k, ℓ) /∈ C1. Thus

1 ≤ σkℓ =
λkℓ

√
d

γkγℓ
≤

√
d

γk
· (2.29)
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Assume also (k, ℓ) /∈ C2, so that λkℓ ≥ ec2, and without loss of generality, that constant c2 appearing in the
bounded discrepancy property satisfies c2 ≥ 1, so that log(λkℓ) ≥ 1. Then, if moreover (k, ℓ) ∈ C4, using
(2.28) we obtain

σkℓαk ≤ c3
γk

γℓ
√
d
4 log(γℓ).

This entails ∑
k

1Iak≤aℓ
1IC′′

2 ∩C4\(C1∪C2)(k, ℓ)αkσkℓ ≤ 4c3
∑
k

1Iγk≤
√
d

γk√
d

log(γℓ)

γℓ
,

where we used (2.29). Upper-bounding log(γℓ)/γℓ by 1, we get that the above sum is at most 8c3. This
entails ∑

k,ℓ

1Iγkγℓ≥
√
d1Iak≤aℓ

1IC′′
2 ∩C4\(C1∪C2)(k, ℓ)αkαℓσkℓ ≤ 8c3

∑
ℓ

αℓ ≤ 32c3.

Assume finally that (k, ℓ) ∈ C ′′
3 := C ′

3 \ C ′
1. Then log(λkℓ) ≤ log(1/αℓ). This implies

σkℓ =
λkℓ

√
d

γkγℓ
≤ 1

αℓ

√
d

γkγℓ
·

Thus ∑
ℓ

1Iγkγℓ≥
√
d1Iak≤aℓ

1IC′′
3
(k, ℓ)σkℓαℓ ≤

∑
ℓ:γℓγk≥

√
d

√
d

γkγℓ
≤ 2.

This entails ∑
k,ℓ

1Iγkγℓ≥
√
d1Iak≤aℓ

1IC′′
3
(k, ℓ)αkαℓσkℓ ≤ 8.

Collecting all bounds, we arrive at∑
(i,j)∈h(x)

xixjAij ≤ 2
√
d [16 + 16ec2 + 8c1 + 64c3 + 8] .

The announced result therefore holds with

c4 := 16[12 + c1 + 2ec2 + 8c3].

Let us now establish the following

Proposition 2.3. For an Erdős-Rényi graph G(n, p) with average degree parameter d = np satisfying

c0 log(n) ≤ d,

where c0 > 0 is an arbitrary positive constant, then for any c > 0 there exist constants c1, c2, c3 > 0
that depend only on c0 and c and such that the bounded degree and bounded discrepancy properties with
corresponding average degree d and tolerance factors ci hold with probability at least 1− n−c.

Proof. Bounded degree property: For a Binomial random variable X ∼ Bin(m, q), a Poisson random
variable Y ∼ Poi(mq) with the same mean and λ ∈ R, one has

EeλX = (1− q + qeλ)m ≤ e(mq)(eλ−1) = EeλY .

Thus a Binomial random variable admits tighter Chernoff bounds than a Poisson random variable with the
same mean.

The degree Di of any node i in G is distributed as Bin(n− 1, d/n). Thus for any κ > 1 we have:

P(Di ≥ κd) ≤ e−dh(κ)
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where h(x) := x ln(x)−x+1 is the so-called Cramér transform of a Poi(1) random variable. The probability
that there is some i ∈ [n] with Di ≥ κd is thus no larger than

ne−dh(κ) ≤ n1−c0h(κ).

It thus suffices to choose c1 > 1 such that: c0h(c1) > c− 1 to ensure that the bounded degree property with
average degree d and tolerance c1 holds with probability at least 1− n−c.

Bounded discrepancy property: Let us assume that graph G satisfies the bounded degree property
with parameter c1. Let A,B ⊂ [n] with respective sizes a, b such that a ≤ b. Let µ := µ(A,B) = ab(d/n).

Assume first that b ≥ n/e. By the bounded degree property, e(A,B) ≤ adc1 so that e(A,B)/µ ≤ ec1.
Assume now that b ≤ n/e. Since e(A,B) is Binomial with mean no larger than µ (the case where it

equals µ corresponds to A∩B = ∅), by the previous Chernoff bound applied to Binomial random variables,
we have for κ > 1 that

P(e(A,B) ≥ κµ) ≤ e−µh(κ).

To use this in a union bound over sets A, B, we will choose κ such that for all a ≤ b ≤ n/e,

e−µh(κ)

(
n

a

)(
n

b

)
≤ n−2−c.

A sufficient condition for this to hold, based on the inequality(
n

m

)
≤
(ne
m

)m
,

is given by
a (1 + ln(n/a)) + b (1 + ln(n/b)) + (2 + c) ln(n) ≤ µh(κ).

It can be checked (exercise!) that the function x→ x ln(n/x) is monotonic non-decreasing on [1, n/e]. Since
a ≤ b and b ≤ n/e, a sufficient condition for the above inequality to hold is then provided by

4b ln(n/b) + (2 + c) ln(n) ≤ µh(κ).

Again by monotonicity, ln(n) ≤ b ln(n/b), hence a further sufficient condition is

(6 + c)
b

µ
ln(n/b) ≤ h(κ).

Remark that for κ ≥ 4, h(κ) ≥ κ ln(κ)/3. Let then for all b, 1 ≤ b ≤ n/e:

κ(b) = inf{k ∈ [4,+∞) : k ln(k) ≥ 3(6 + c)(b/µ) ln(n/b)}.

Then by a union bound we have that with probability at least 1 − n−c, for all A,B ⊂ [n] with a := |A| ≤
b := |B| ≤ n/e,

e(A,B) ≤ κ(b)µ(A,B). (2.30)

If κ(b) = 4, then the first condition for bounded discrepancy holds with ec2 = 4. Otherwise, κ(b) ln(κ(b)) =
3(6 + c)(b/µ) ln(n/b) so that

e(A,B) ≤ 3(6 + c)b

ln(κ(b))
ln(n/b),

and in turn
e(A,B) ln(κ(b)) ≤ 3(6 + c)b ln(n/b).

In view of (2.30), this entails

e(A,B) ln

(
e(A,B)

µ(A,B)

)
≤ 3(6 + c)|B| ln

(
n

|B|

)
,

that is to say the second condition for bounded discrepancy holds, with tolerance c3 = 3(6 + c).
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Remark (Sharpness of conditions in Theorem 2.4 ). .
The fact that the spectral radius of ∥A− Ā∥ is of order at least

√
d, where d = np is the average degree,

can readily be obtained by considering the all-ones vector.
This spectral radius can be ≫

√
d for d≪ log(n). This is for instance seen by considering d = Θ(1), for

which there are in G(n, p) isolated stars with Θ(log(n)/ log log n) branches, inducing eigenvalues of A of order
Θ(
√
log(n)/ log log n), hence eigenvalues in A− Ā of the same order that is large compared to

√
d = O(1).

Finer analysis of the exact necessary condition on d for which ∥A− Ā∥ = O(
√
d): add reference to recent

paper by Bordenave et al.

We shall in fact need the following consequence of Theorem 2.4:

Theorem 2.5. Let A be a random symmetric matrix, with entries Aij independent up to symmetry, Aij ∈
[0, 1], and such that E(Aij) ≤ d/n for some upper bound parameter d. Assume that for some positive constant
c0,

c0 log(n) ≤ d ≤ n(1− c0). (2.31)

Then for all c > 0 there exists c̃ > 0 such that with probability at least 1− 1/nc, one has

ρ(A− E(A)) ≤ c̃
√
d. (2.32)

Proof. The centred matrix A−E(A) has its entries in [−d/n, 1], so that the centred matrix B := (1−d/n)(A−
E(A)) has its entries in [−d/n, 1− d/n]. It is therefore stochastically smaller, for the convex ordering, than
the matrix C − E(C) where C is the adjacency matrix of a G(n, d/n) Erdős-Rényi random graph (maybe
more details on this comparison). By Strassen’s theorem one can construct the matrices B and C on the
same probability space such that

E(C − E(C)|B) = B.

The spectral radius ρ(·) is a convex function. Thus by Jensen’s inequality,

ρ(B) = ρ(E(C − E(C)|B)) ≤ E(ρ(C − E(C))|B).

Let for notational convenience S = ρ(B) and R = ρ(C − E(C)). The previous display then implies S ≤
E(R|S). By Theorem 2.4 we have the existence, for all c > 1, of c′ such that R ≤ c′

√
d with probability at

least 1− n−c. Moreover, the spectral radius of an n× n matrix with entries bounded in absolute value by 1
is at most n.

We thus have, for t = c′
√
d,

R ≤ n1R>t + t1R≤t.

Multiplying by 1S>t+1 and taking conditional expectations with respect to S this yields

S1S>t+1 ≤ n1S>t+1P(R > t|S) + t1S>t+1P(R ≤ t|S),

so that
P(R > t|S) ≥ 1S>t+1

S − t

n− t
≥ 1S>t+1

1

n− t
·

In turn, taking expectations this yields

P(S > t+ 1) ≤ nP(R > t) ≤ n1−c.

Letting c′ = ϕ(c) be the constant provided by Theorem 2.4, the previous display gives

P((1− d/n)∥A− Ā∥ ≥ ϕ(c+ 1)
√
d+ 1) ≤ n−c,

so that, using the assumption (1− d/n) ≥ c0, and taking n large enough to ensure 1 ≤
√
d, Inequality (2.32)

indeed holds with probability at least 1− n−c for c̃ = [ϕ(c+ 1) + 1]/c0.
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2.4 Kolchinskii-Giné results for graphon-related matrices

Before stating the main result of this section, we recall without proof the following result.

Theorem 2.6. (Kato [21]) Let T be a linear, self-adjoint operator acting on a Hilbert space of functions
L2(X , π), where π is a non-negative measure. Assume that T is compact, i.e. it maps any bounded set to a
set whose closure is compact. Then T admits a discrete spectrum {λk}k≥1, an associated orthonormal basis
of eigenfunctions {ϕk}k≥1, and it can be represented as

Tf(x) =
∑
k≥1

ϕk(x)λk

∫
X
ϕk(y)f(y)π(dy).

We now establish the following result, which is a special case of results by von Luxburg et al. [43],
themselves variations on earlier results by Koltchinskii and Giné, see [24].

Theorem 2.7. Fix a compact metric space X , a symmetric, continuous function K : X × X → R+,
and a probability measure π on X . Let X1, . . . , Xn be i.i.d., distributed according to π. Let M (n) =
(n−1K(Xi, Xj))i,j∈[n]. Define the operator T on L2(X , π) via

Tf(x) :=

∫
X
K(x, y)f(y)π(dy).

Consider its spectrum, split into {λ+i }i≥1, its positive eigenvalues sorted in decreasing order, and {λ−i }i≥1,
its negative eigenvalues sorted in increasing order.

Denote by λ+,(n)
i the i-th largest positive eigenvalue of M , and λ−,(n)

i its i-th smallest negative eigenvalue.
Then for each i ≥ 1, we have the convergence in probability limn→∞ λ

±,(n)
i = λ±i .

Let i0 such that λ±i0 ̸= 0 is of multiplicity d, with λ±i0 = · · · = λ±i0+d−1 and v±,(n)
i orthonormal eigenvectors

of M associated to λ±,(n)
i , i = i0, . . . , i0 + d− 1. There exist orthonormal functions {ψ±

i } for i = i0, . . . , i0 +

d− 1 of T associated with λ±i0 such that in probability, ∥v±,(n)
i − {n−1/2ψ±

i (Xk)}k∈[n]∥ → 0.

Proof. By Example 2.19, p.264 in [21], operator T is compact, and thus admits a discrete spectrum {λi}i≥1,
here considered as sorted by decreasing modulus. Denote by {ϕi}i≥1 an associated orthonormal basis of
eigenfunctions. K is moreover such that

K(x, y) =
∑
i≥1

λiϕi(x)ϕi(y),

and ∑
i≥1

λ2i =

∫
X 2

K(x, y)2π(dx)π(dy).

Let δ0 > 0 be defined as
δ0 := inf

j:λj ̸=λ±
i0

|λj − λ±i0 |.

Fix some (small) ϵ > 0, and let j0 ≥ i0 be such that∑
j>j0

λ2j ≤ ϵ2,

and that λ±i0 appears d times (its multiplicity) in the sequence (λ1, . . . , λj0). Let for each j ∈ [j0],

vj(k) =
ϕj(Xk)√

n
, k ∈ [n].
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For all i, j ∈ [i0], one has, by the law of large numbers, almost sure convergence of ⟨vj , vj⟩ to 1i=j . Let
w1, . . . , wj0 be the n-dimensional vectors obtained by Gram-Schmidt orthonormalization of (v1, . . . , vj0). Let
V := [v1, . . . , vj0 ], W := [w1, . . . , wj0 ], and R the j0 × j0 matrix such that

V R =W.

Thus R converges almost surely to the identity matrix.
Let wj0+1, . . . , wn complement w1, . . . , wj0 into an orthonormal basis. Let Λ = Diag(λ1, . . . , λi0). De-

compose M (n) as

M (n) = A+B + C +D, where :
A =WΛW⊤, B = (M (n) − V ΛV ⊤), C = V Λ(V ⊤ −W⊤), D = (V −W )ΛW⊤.

The fact that V R = W with R converging almost surely to the j0 × j0 identity matrix as n → ∞ ensures
that

∥C∥op ≤ ∥W∥op∥R−1∥op∥Λ∥op∥R−1 − I∥op∥W∥op
= ∥R−1∥op|λ1|∥R−1 − I∥op
→ 0 almost surely as n→ ∞.

A similar evaluation yields the almost sure limit limn→∞ ∥D∥op = 0.
Note that

Bkℓ =
1

n
K ′(Xk, Xℓ),

with
K ′(x, y) = K(x, y)−

∑
j∈[j0]

λjϕj(x)ϕj(y) =
∑
j>j0

λjϕj(x)ϕj(y).

One then has
∥B∥2F =

1

n2

∑
k,l∈[n]

K ′(Xk, Xl)
2.

The following

lim
n→∞

1

n2

∑
k,l∈[n]

K ′(Xk, Xl)
2 =

∫
X 2

K ′(x, y)2π(dx)π(dy)

holds almost surely, see e.g. Serfling (it can be proven straightforwardly from the usual strong law of large
numbers for continuous K ′ and compact X , but holds more generally). From the expression of K ′, this
yields

lim
n→∞

∥B∥2F =
∑
j>j0

λ2j ≤ ϵ2.

Thus M (n) =WΛWT + E, where ∥E∥op ≤ 2ϵ for large enough n.
We can now apply Weyl’s inequality, to deduce that for all fixed j ≥ 1,

lim sup
n→∞

|λ±,(n)
j − λ±j | ≤ 2ϵ.

Consider now the eigenvalues λ±,(n)
j of M (n) for j = i0, . . . , i0+d−1. Let Ṽ = [ṽ±i0 , . . . , ṽ

±
i0+d−1] where the ṽ±j

are an orthonormal system of eigenvectors of M (n) associated with the λ±,(n)
j , and W̃ = [w±

i0
, . . . , w±

i0+d−1] is
constructed from the columns of W whose indices j are such that λj = λ±i0 . The Davis-Kahan sinΘ theorem
yields the existence of a d× d-orthogonal matrix Θ such that

∥ṼΘ− W̃∥F ≤ 23/2d1/2∥E∥op
δ0

·
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The right-hand side is asymptotically no more than 23/2d1/22ϵ/δ0. Let V̂ := [v±i0 , . . . , v
±
i0+d−1] be constructed

from the columns vj of V such that λj = λ±i0 . Since R converges to the identity, we have

lim
n→∞

∥W̃ − V̂ ∥F = 0.

This then yields
lim sup
n→∞

∥ṼΘ− V̂ ∥F ≤ 23/2d1/22ϵ/δ0.

Since ϵ can be chosen arbitrarily small, Ṽ is asymptotically close in Frobenius norm to V̂Θ⊤. By construction,
this latter matrix’s columns can be written (n−1/2ψ±

j (Xk))k∈[n] for a system of orthonormal eigenfunctions
ψ±
j of K associated with eigenvalue λ±i0 .
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Chapter 3

Community detection in the strong
signal regime

3.1 The Stochastic Block Model and the Graphon Model
For a number of vertices n ∈ N, a number of blocks or communities K > 0, a probability distribution
α = {αk}k∈[K] and a symmetric matrix P ∈ [0, 1]K×K , the Stochastic Block Model G(n, α, P ) is defined as
follows.

The types σi of nodes i ∈ [n] are sampled i.i.d. according to α. Conditionally on σ[n] := {σi}i∈[n], each
(unoriented) edge (i, j) is present with probability Pσi,σj

, independently over pairs (i, j), 1 ≤ i < j ≤ n.
Accordingly, for a target collection of types s[n] ∈ [K]n and an edge set e,

P(σ[n] = s[n], E = e) =
∏
i∈[n]

αsi

∏
i<j

(
Psi,sj1(i,j)∈e + (1− Psi,sj )1(i,j)/∈e

)
.

We shall also consider the following extension. Let X be a compact metric space, endowed with a
probability measure π and a symmetric, continuous function F : X × X → [0, 1]. The graphon model
G(n, π, F ) is then defined as follows. Node types σi are sampled i.i.d. from X according to π. Conditionally
on σ[n], edge (i, j) is present with probability F (σi, σj).

3.2 Spectral community detection for the SBM in the strong signal
regime

We define the strong signal regime for the SBM as follows. We assumeK, α, and theK×K symmetric matrix
B to be given. We then consider the random graph G distributed as G(n, α, (d/n)B) where d represents the
average degree, or the signal strength in our observed graph G. We say we are in a strong signal regime
when d diverges to infinity with n.

We shall first establish the following

Theorem 3.1. Assume that
√
ln(n) ≪ d ≪ nδ for some constant δ ∈ (0, 1). Assume that mink∈[K] αk > 0

and that matrix B ∈ RK×K
+ has distinguishable blocks, i.e. for all k ̸= ℓ ∈ [K], ∃m ∈ [K] such that

Bkm ̸= Bℓm. Let R be the rank of matrix B. The with high probability:
i) The spectrum of A, the adjacency matrix of a spectral block model G ∼ G(n, α, (d/n)B) consists of R

eigenvalues λ1, . . . , λR of order Θ(d), and n−R eigenvalues of order o(d).
ii) Spectral embedding based on the orthonormal set of eigenvectors x1, . . . , xR of A associated with

λ1, . . . , λR, associating to vertex i the vector zi =
√
n(x1(i), . . . , xR(i)) ∈ RR captures the block structure in

the following sense:
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For some ϵ > 0 depending only on B and α, for all vertices i, j ∈ [n]\B, where B is a set of “bad” vertices
of negligible size |B| = o(n), one has

∥zi − zj∥ =

{
o(1) if σi = σj ,
≥ ϵ otherwise.

Let

Ai,j :=
d

n
Bσiσj

and W = A−A. (3.1)

The proof of Theorem 3.1 proceeds with the following steps. We first etablish the following

Lemma 3.1. Under the assumptions of Theorem 3.1,

with high probability, ρ(W ) ≪ d. (3.2)

Proof. Perturbation matrix W is the sum of diagonal matrix Diag({−(d/n)Bσiσi), whose spectral radius is
obviously O(d/n) and thus a fortiori o(d), and of matrix (Aij − E(Aij))i,j∈[n], whose spectral radius can be
bounded using the results of the previous chapter. In particular, Theorem 2.5 applies in case d ≤ nδ with
δ < 1/5, with b̄ = O(1) and ω = max(d, log n), yielding

ρ(W ) = O
(√

max(d, log n)
)
.

The assumption
√
log n≪ d then implies (3.2).

In the case where d ≥ nκ for some κ > 0, Proposition 2.1 entails that with high probability, ρ(W ) ≤
√
dnξ

for arbitrary ξ > 0. Choosing ξ < κ/2 implies again (3.2).

Remark. Under the assumption d≫ log n, Bernstein’s inequality 2.2 applies here (exercise!) with v = Θ(d)
and L = Θ(1), and can also be used to establish (3.2).

The next result describes the structure of matrix A:

Lemma 3.2. For all t ∈ RK , define ϕ(t) ∈ Rn as ϕ(t)i := tσi . Symmetric matrix A ∈ Rn×n defined in (3.1)
verifies

Aϕ(t) = dϕ(Mt), t ∈ RK , (3.3)

where M = BDiag({α̃u}u∈[K] ∈ RK×K and α̃u = n−1
∑

i∈[n] 1σi=u.
Let (µu, tu)u∈[R] be pairs of non-zero eigenvalues and associated eigenvectors of M . The spectrum of A

consists in R non-zero eigenvalues λu = dµu, u ∈ [R] with associated eigenvectors ϕ(tu), and eigenvalue 0
with multiplicity n−R.

Proof. Identity (3.3) follows from the block structure of A. The image of any vector by A is block-constant so
that any eigenvector associated with a non-zero eigenvalue is block-constant. Thus any eigenvector associated
with a non-zero eigenvalue reads ϕ(t) for some t ∈ RK . The result follows.

Corollary 3.1. By the distinguishability assumption of blocks (for all k ̸= ℓ ∈ [K], there exists m ∈
[K] with Bkm ̸= Bℓm) ensures the existence of positive ϵ function of B et {α̃m}m∈[K] such that for any
choice of orthonormal eigenvectors x̄1, . . . , x̄R of A associated with its non-zero eigenvalues λu, u ∈ [R], the
eigenvectors z̄i =

√
n(x̄1(i), . . . , x̄R(i))

⊤ ∈ RR verify

∀i, j ∈ [n],

{
σi = σj ⇒ ∥z̄i − z̄j∥ = 0,
σi ̸= σj ⇒ ∥z̄i − z̄j∥ > ϵ.

(3.4)
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Proof. Let tu ∈ RK be such that
√
nx̄u = ϕ(tu). Then noting

√
α̃ = Diag({

√
α̃u}u∈[K]), the vectors

{
√
αtu}u∈[R] are orthonormal, since the x̄u are orthonormal. tu is an eigenvector of M , so that

√
αtu is an

eigenvector of symmetric matrix
√
α̃B

√
α̃ with associated eigenvalue µu. Thus

√
αB

√
α =

∑
u∈[R]

µu

√
α̃tut

T
u

√
α̃,

hence
B =

∑
u∈[R]

µutut
T
u . (3.5)

Clearly for two vertices i, j ∈ [n] such that σi = σj , then z̄i = z̄j . If σi = u ̸= σj = v, as z̄i =
(t1(u), . . . , tR(u))

⊤ and z̄i = (t1(v), . . . , tR(v))
⊤, we conclude from (3.5) that, if z̄i = z̄j held, then B would

have two identical lines, which contradicts the distinguishability hypothesis. The set of possible collections
of eigenvectors {tu}u∈[R] is compact, and the quantities

∥z̄i − z̄j∥ =

√ ∑
w∈[R]

(tw(u)− tw(v))2

for u ̸= v are continuous functions of these vectors, which are strictly positive. They are thus lower-bounded
by some ϵ > 0 that is a function of B and α̃ only.

Proof. (of Theorem 3.1). Weyl’s inequalities (1.4) together with (3.2) and Lemma 3.2 ensure the announced
property of the eigenvalues of A.

The Davis-Kahane theorem 1.3 ensures that for a system of orthonormal eigenvectors x1, . . . , xR of A
associated with its R eigenvalues of magnitude Θ(d), there exists a corresponding orthonormal system of
eigenvectors x̄1, . . . , x̄R of A associated with its non-zero eigenvalues and verifying

⟨xi, x̄i⟩ = 1−O((ρ/d)2),

where ρ = ρ(W ), or equivalently ∥xi − x̄i∥2 = O((ρ/d)2) = o(1). For i ∈ [n], the R-dimensional vector zi is
defined as

√
n(x1(i), . . . , xR(i))

⊤. We define similarly z̄1(i) =
√
n(x̄1(i), . . . , x̄R(i))

⊤. Thus∑
i∈[n]

∥zi − z̄i∥2 = n
∑
j∈[R]

∥xj − x̄j∥2 = nθ(n),

where θ(n) = o(1). Bienaymé-Tchebitchev inequality then yields:

|{i ∈ [n] : ∥zi − z̄i∥ ≥ θ(n)1/3}| ≤ nθ(n)1/3 = o(n).

Corollary 3.1 ensures that the z̄i coincide within a block, and differ by at least some ϵ > 0 bounded away
from 0 between block, which concludes the proof.

This result suggests algorithms for the choice of the embedding dimension k used to construct the spectral
embedding zu :=

√
n(x1(u), . . . , xk(u)) ∈ Rk, for instance letting R̂ = min{i ∈ [n] : |λi| ≥ T |λi+1|}, where

the eigenvalues λi of A are sorted by decreasing absolute value and T > 1 is a large constant. With high
probability, for large enough T , R̂ = R under the assumptions of the theorem.

It can also be used to prove that specific clustering algorithms applied to the R-dimensional spectral
embedding will correctly classify all but a vanishing fraction of the vertices.

Consider for instance the following clustering strategy. Having formed ℓ groups C1, . . . , Cℓ of vertices in
[n], so long as there remain ϵ1n un-grouped vertices, i.e. so long as

ℓ∑
m=1

|Cm| ≤ (1− ϵ1)n,
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choose one un-grouped vertex iℓ+1 uniformly at random, and define group Cℓ+1 as those remaining vertiecs
j such that ∥ziℓ+1

− zj∥ ≤ ϵ2.
Then part ii) of the theorem ensures that, for ϵ1, ϵ2 > 0 sufficiently small, with high probability this

procedure produces K groups, and there exists a permutation s of [K] such that for all ℓ ∈ [K]:

|Cℓ \Ds(ℓ)|+ |Ds(ℓ) \ Cℓ| = o(n), (3.6)

where Dℓ := {i ∈ [n] : σi = ℓ}. In other words, this procedure correctly reconstructs the K blocks assciated
with the underlying vertex classes σi ∈ [K], except perhaps for a negligible fraction of vertices, which could
be either mis-classified or unclassified.

To see this, assume that property (3.6) is verified at step ℓ < K. If ϵ1 < minm∈[K] αm, the construction
does not stop, and a uniform choice for vertex iℓ+1 falls with probability 1 − o(1)in one of the Dm, m ∈
[K] \ {s(1), . . . , s(ℓ)}, and does not belong to the set B of “bad vertices”. For ϵ2 > 0 sufficiently small, ii)
ensures that Cℓ verifies

Dm \ B ⊂ Cℓ ⊂ Dm ∪ B.

Defining s(ℓ+ 1) = m, the announced property (3.6) is then satisfied at step ℓ+ 1. Finally, after the K-th
step, the number of remaining vertices is o(n) and thus the process stops.

The schemes we just described involve three parameters T−1, ϵ1, ϵ2 and the argument necessitates all
three to be sufficiently small with respect to model parameters. Schemes have been proposed for selecting
such parameters as functions of the observed graph so as to ensure these schemes succeed with probability
1− o(1) for arbitrary values of the model parameters. Details can be found in [28].

3.3 Inference for graphon models in the strong signal regime
Let X be a compact metric space, endowed with a probability measure π and a symmetric, continuous
function F : X × X → [0, 1]. The graphon model G(n, π, F ) is then defined as follows. Node types σi are
sampled i.i.d. from X according to π. Conditionally on σ[n], edge (i, j) is present with probability F (σi, σj).

It can be seen as an extension of the SBM to an infinite collection of blocks. The definition of successful
reconstruction in that setup must therefore be adapted.

One possible notion of reconstruction is as follows: infer from the observed graph a symmetric matrix
K̂ij providing an accurate estimation of the matrix F (σi, σj) of probabilities of edge presence.

We consider the following strong signal regime: assume that the distribution π on metric compact
space X is fixed, together with a continuous symmetric function K : X × X → R+. Assume then that
F (x, y) = d

nK(x, y), for some “signal strength” parameter d. By strong signal regime, we refer to this special
setting, with signal strength d→ +∞ with n→ ∞.

The following statement will involve the spectral analysis of operator

T : f ∈ L2(π) → Tf(y) =

∫
X
K(x, y)f(y)π(dy) ∈ L2(π),

in terms of its eigenvalues λi(T ), sorted by decreasing absolute value: |λ1(T )| ≥ |λ2(T )| ≥ · · · , and orthonor-
mal systems of associated eigenfunctions ψi:∫

X
ψi(y)ψj(y)π(dy) = 1i=j .

Theorem 3.2. Let A ∼ G(n, π, (d/n)K). Let R ≥ 1 be fixed , and such that |λR+1(T )| < |λR(T )|. Let
u1, . . . , uR be an orthonormal collection of eigenvectors of A associated with the eigenvalues λ1(A), . . . , λR(A)
of A. Assume that

√
log n≪ d≪ nδ for some fixed δ ∈ (0, 1). Define for all i, j ∈ [n],

K̂ij =

R∑
ℓ=1

λℓ(A)uℓ(i)uℓ(j). (3.7)
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Then with high probability, one has∑
i,j∈[n]

[n
d
K̂ij −K(σi, σj)

]2
= o(n2) +O(n2ϵ2R), (3.8)

where σi ∈ X is the type of vertex i, i ∈ [n], and

ϵ2R =
∑
ℓ>R

λℓ(K)2. (3.9)

Proof. Let

M =
1

n
(K(σi, σj))i,j∈[n] ,

and let {λℓ(M)}ℓ∈[n] denote its eigenvalues, sorted by decreasing absolute value. Then the argument of
Lemma 3.1 applies, showing, with W = A − dM , that with high probability ρ(W ) ≪ d. Weyl’s inequality
(1.4) then ensures that ∣∣∣∣1dλℓ(A)− λℓ(M)

∣∣∣∣ = o(1), ℓ ∈ [R]. (3.10)

The Davis-Kahane theorem 1.3 also ensures the existence of an orthonormal collection of eigenvectors
v1, . . . , vR of M associated with λ1(M), . . . , λR(M) such that

∥uℓ − vℓ∥ = o(1), ℓ ∈ [R]. (3.11)

Moreover, Theorem 2.7 ensures that the eigenvalues λℓ(K) of operator T satisfy

|λℓ(M)− λℓ(T )| = o(1), ℓ ∈ [R], (3.12)

and guarantees the existence of an orthonormal system of eigenfunctions ψℓ such that∑
i∈[n]

[
vℓ(i)−

1√
n
ψℓ(σi)

]2
= o(1), ℓ ∈ [R]. (3.13)

Note that for some constant CR, one has for each i, j ∈ [n]:[n
d
K̂ij −K(σi, σj)

]2
≤ CR

∑
ℓ∈[R]

[Yij(ℓ, 1) + Yij(ℓ, 2) + Yij(ℓ, 3)] + Yij(ℓ, 4)

 ,

where:
Yij(ℓ, 1) =

[
(ndλℓ(A)− nλℓ(T ))uℓ(i)uℓ(j)

]2
,

Yij(ℓ, 2) = [nλℓ(T )[uℓ(i)uℓ(j)− vℓ(i)vℓ(j)]
2
,

Yij(ℓ, 3) = [λℓ(T )[nvℓ(i)vℓ(j)− ψℓ(σi)ψℓ(σj)]]
2
,

Yij(4) =
[∑

ℓ∈[R] λℓ(T )ψℓ(σi)ψℓ(σj)−K(σi, σj)
]2
.

Evaluations (3.10), (3.12) together with the fact that the vectors uℓ are normed ensures that
∑

i,j Yij(ℓ, 1) =

o(n2).
Evaluations (3.11) and (3.13) guarantee respectively that

∑
i,j Yij(ℓ, 2) and

∑
i,j Yij(ℓ, 3) are both o(n2).

Finally, the law of large numbers mentioned in the proof of Theorem 2.7 ensures that

lim
n→∞

1

n2

∑
i,j∈[n]

Yij(4) =

∫
X 2

[
∑
ℓ∈[R]

λℓ(T )ψℓ(x)ψℓ(y)−K(x, y)]2π(dx)π(dy).

The conclusion then follows from the fact that the integral in the right-hand side of the previous display
equals precisely ϵ2R, in view of the spectral decomposition

K(x, y) =
∑
ℓ≥1

λℓ(T )ψℓ(x)ψℓ(y).
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Part II

Statistical physics and Belief
Propagation

41





Chapter 4

Graphical models prerequisites

In this chapter we introduce the basic definitions of graphical models, and classical results that will be needed
later on.

4.1 Pairwise graphical models and Markov random fields
Definition 4.1. Let G := (V, E) be a simple undirected graph with vertex set V and edge set E, X a finite
alphabet, and functions ψi : X → R+, i ∈ V, ψe : X ×X → R+, e ∈ E. The probability distribution µ on XV

defined by

µ(x) :=
1

Z

∏
i∈V

ψi(xi)
∏

e=(i,j)∈E

ψi,j(xi, xj)

is a pairwise graphical model with underlying graph G. In the above expression, Z is a normalization constant
given by

Z =
∑

x∈XV

∏
i∈V

ψi(xi)
∏

e=(i,j)∈E

ψi,j(xi, xj),

and also referred to as the partition function.

Example 4.1. The Ising model from statistical physics corresponds to the alphabet X = {−1, 1}, ψi(xi) =
exp(hixi) and ψi,j(xi, xj) = exp(Jijxixj). In that case random variable Xi is known as the spin at site (or
vertex) i, parameter hi ∈ R is the external field at site i, and Jij is the coupling coefficient between the spins
at sites i and j.

Definition 4.2. Given an undirected graph G = (V, E), a finite alphabet X and a distribution µ on XV , the
pair (G, µ) is a Markov random field if there exist functions ψK : XK → R+ indexed by the cliques K of G
and a normalization constant Z such that:

µ(x) =
1

Z

∏
K

ψK(xK), , x ∈ XV , (4.1)

where we denote xK := (xi)i∈K , and the product runs over all cliques of G.

It is immediate that a pairwise graphical model is a Markov random field (if the graph has cliques K
that contain more than two vertices, take the corresponding ψK identically equal to 1).

The factored form of a Markov random field has the following implication. Let A, B, C be subsets of
vertices such that C separates A from B, that is any path in G from A to B must traverse C. Let A′ denote
the set of nodes i ∈ V \ (A∪B ∪C) such that there is a path in the graph from A to i that does not cross C.
Let also B′ = V \ (A∪B∪C∪A′). Then, because C separates A from B, (A∪A′)∩ (B∪B′) = ∅, and cliques
K of G can comprise, besides nodes of C, either nodes of A ∪ A′, or nodes in B ∪ B′, but cannot comprise
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nodes of both A ∪ A′ and B ∪ B′. This implies that µ(x) can be factored as F (xA∪A′∪C)G(xB∪B′∪C). It
follows that under µ, conditionally on XC , XA and XB are independent. Indeed this amounts to showing
that

P(XA∪C = xA∪C)P(XB∪C = xB∪C) = P(XA∪B∪C = xA∪B∪C)P(XC = xC),

which follows by writing these probabilities as sums over values yA, yA′ , yB , yB′ . It constitutes the direct
part of the following theorem:

Theorem 4.1. (Hammersley-Clifford). Given a Markov random field (G, µ), for any subsets A,B,C of V
such that C separates A from B, then XA and XB are independent conditionally on XC under µ.

Conversely, let µ be a distribution on XV such that µ(x) > 0 for all x ∈ XV and for all subsets A,B,C
of V such that C separates A from B, then XA and XB are independent conditionally on XC under µ. Then
(G, µ) is a Markov random field.

Proof. The argument for the direct part has been sketched above. The converse is established as follows.
Fix x∗ ∈ XV . For any subset S ⊆ V, let

ϕS(xS) :=
∏
U⊆S

µ(xU , x
∗
V \U )

(−1)|S\U|
.

We first establish that
µ(x) = µ(x∗)

∏
S⊆V,S ̸=∅

ϕS(xS). (4.2)

Recall the identity ∑
B⊆A

(−1)|B| =
∑
B⊆A

(−1)|A\B| = 1A=∅. (4.3)

Next note that, since by (4.3),
∑

S⊆V (−1)|S| = 0, one has∏
S⊆V,S ̸=∅

ϕS(xS) =
∏

S⊆V,S ̸=∅

∏
U⊆S

µ(xU , x
∗
V \U )

(−1)|S\U|
=
∏
U⊆V

µ(xU , x
∗
V \U )

κU ,

where
κU :=

∑
S ̸=∅,U⊆S⊆V

(−1)|S\U |.

Using (4.3), one has that κ∅ = −1, κV = 1 and κU = 0 for U ̸= ∅,V. This establishes (4.2).
We now show that for each S that is not a clique of G, necessarily ϕS(xS) ≡ 1.
To that end, first remark that, if for some j ∈ S, xj = x∗j , necessarily ϕS(xS) = 1. Indeed:

ϕS(xS) =
∏

U⊆S\{j}

(
µ(xU , x

∗
V\U )

µ(xU+j , x∗V\(U+j))

)(−1)|S\U|

,

and the ratio in the above equals 1 when x∗j = xj .
Next assume that S is not a clique, i.e. there are i, j ∈ S such that (i, j) is not an edge of G. Write then

ϕS(xS) =
∏

U⊆V\{i}

(
µ(xU , x

∗
V\U )

µ(xU+i, x∗V\(U+i))

)(−1)|S\U|

.

Now the above ratio is, by the Markov conditional independence property, independent of the value of xj .
Indeed, for a fixed U , let K = V \ {i, j}, for k ∈ V, yk = xk if k ∈ U , yk = x∗k if k ∈ V \ U . One then has:

µ(xU , x
∗
V\U )

µ(xU+i, x∗V\(U+i))
=

P(Xi = x∗i |XK = yK)P(Xj = yj |XK = yK)

P(Xi = xi|XK = yK)P(Xj = yj |XK = yK)
=

P(Xi = x∗i |XK = yK)

P(Xi = xi|XK = yK)
·

We may thus replace xj by x∗j . Having done so, we can now conclude by the previous result that ϕS(xS) =
1.
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4.2 Extremal characterization of Gibbs measures
The Markov random field distributions we have just seen are of the form

µ(x) =
1

Z
ψ(x), x ∈ XV ,

where ψ is given in explicit form, but Z is not. Equivalently, it can be written as the celebrated Boltzmann
distribution Z−1e−E(x)/T with energy function E(x) and temperature T by making the identification ψ(x) =
e−E(x)/T .

We have the following

Definition 4.3. The Gibbs free energy functional G is defined on the set M(XV) of probability measures on
XV as

G(ν) := −H(ν)− Eν lnψ(x), (4.4)

where H(ν) :=
∑

x ν(x) ln(1/ν(x)) is the Shannon entropy.

We then have the following

Proposition 4.1. The Gibbs free energy G(ν) is strictly convex on M(XV), is minimal at ν = µ, the
Boltzmann-Gibbs distribution, at which point it equals − ln(Z).

Proof. The function z → z ln(z) is strictly convex on R+, hence strict convexity of G. To determine the
minimum of G over M(XV), introduce the Lagrangian

L(ν, λ) := G(ν) + λ(1−
∑
x

ν(x)).

Setting dL/dν(x) = 1 + ln(ν(x)) − lnψ(x) − λ to zero yields ν(x) = Cψ(x) for some constant C. This
constant must be Z−1 for ν to be a probability measure. Using the expression of µ(x) it is readily verified
that G(µ) = − ln(Z).

Remark. Recall that the Kullback-Leibler divergence D(p∥q) between two distributions p, q on the discrete
set X is by definition

D(p∥q) :=
∑
x∈X

p(x) ln

(
p(x)

q(x)

)
.

The Gibbs free energy G(ν) can then be expressed as

G(ν) = − ln(Z) +D(ν∥µ),

and the proof of the above proposition gives the classical result that Kullback-Leibler divergences D(p∥q) are
non-negative, equal to zero if and only if p = q.

4.3 Tree Markov fields and belief propagation
Consider a tree Markov field, that is a Markov random field (G, µ) where graph G is in fact a tree. In that
particular case, tasks of interest such as evaluation of the partition function Z, computation of marginal
distributions, etc become tractable.

Specifically, assume to be given functions ψi : X → R+, ψij : X 2 → R+ such that

µ(x) =
1

Z

∏
i∈V

ψi(xi)
∏

(ij)∈E

ψij(xi, xj), x ∈ XV .

For any edge (ij) of G, let i→ j be an arbitrary orientation associated to it. Consider the subtree Ti→j of G,
consisting of nodes k ∈ V that remain connected to i in G if we remove the edge (ij) from G. In other words,
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Ti→j is the connected component of i in the graph (V, E \ (ij)). We let Vi→j , Ei→j denote the corresponding
sets of vertices and edges respectively.

Consider further the Markov random field on Ti→j corresponding to the functions {ψk, k ∈ Vi→j} and
{ψkℓ, (kℓ) ∈ Ei→j}.

Let {bi→j(xi)}xi∈X denote the corresponding marginal distribution of Xi. We will further let µi(xi)
(respectively, µij(xi, xj) ) denote the marginal distribution of Xi (respectively, (Xi, Xj)) for the original
Markov random field.

We then have:

bi→j(xi) =
1

Zi→j

∑
xk,k∈Vi→j\{i}

∏
k∈Vi→j

ψk(xk)
∏

(kℓ)∈Ei→j

ψkℓ(xk, xℓ), (4.5)

where the normalization constant Zi→j is given by

Zi→j =
∑

xk,k∈Vi→j

∏
k∈Vi→j

ψk(xk)
∏

(kℓ)∈Ei→j

ψkℓ(xk, xℓ). (4.6)

For a leaf node i of G, this simplifies to

bi→j(xi) =
1

Zi→j
ψi(xi), Zi→j =

∑
xi∈X

ψi(xi). (4.7)

For a non-leaf node i, to obtain a recursive relation on bi→j we split the product in (4.5) into the factor
ψi(xi)

∏
k∼i,k ̸=i ψki(xk, xi) and, for each k ∼ i, k ̸= i, the factor∏

ℓ∈Vk→i

ψℓ(xℓ)
∏

(ℓm)∈Ek→i

ψℓm(xℓ, xm).

This readily implies, by distributing for each k ∼ i, k ̸= j the summation over xℓ, ℓ ∈ Vk→i \ {k} to the
corresponding factor, the identity:

bi→j(xi) =
1

Zi→j
ψi(xi)

∏
k∼i,k ̸=j

∑
xk

ψki(xk, xi)Zk→ibk→i(xk). (4.8)

This identity implies a recursive formula for the normalization constants:

Zi→j =
∑
xi∈X

ψi(xi)
∏

k∼i,k ̸=j

∑
xk

ψki(xk, xi)Zk→ibk→i(xk). (4.9)

Exactly the same reasoning further gives the following identities:

µi(xi) =
1

Z
ψi(xi)

∏
k∼i

∑
xk

ψki(xk, xi)Zk→ibk→i(xk), (4.10)

and
Z =

∑
xi∈X

ψi(xi)
∏
k∼i

∑
xk

ψki(xk, xi)Zk→ibk→i(xk). (4.11)

The above equations allow to compute recursively, for each edge of the original tree graph and its two
orientations, both the partial normalization constants Zi→j and the distribution bi→j . They further allow
to compute the marginal distributions µi and the partition function Z. Moreover, they readily imply that
the joint marginal distribution µij , for an edge (ij) ∈ E , is given by

µij(xi, xj) =
1

Z
ψij(xi, xj)Zi→jbi→j(xi)Zj→ibj→i(xj). (4.12)

46



One usually does not keep track of the partial normalization constants Zi→j , and rather expresses the
above relations as:

bi→j(xi) ∝ ψi(xi)
∏

k∼i,k ̸=j

∑
xk

ψki(xk, xi)bk→i(xk), (4.13)

µi(xi) ∝ ψi(xi)
∏
k∼i

∑
xk

ψki(xk, xi)bk→i(xk), (4.14)

µij(xi, xj) ∝ ψij(xi, xj)bi→j(xi)bj→i(xj). (4.15)

The first equation, (4.13), is known in the literature as “belief propagation”, and also as the sum-product
algorithm. The above derivations establish the following

Theorem 4.2. For a Markov random field (G, µ) whose graph G is a tree, the belief propagation (or sum-
product) algorithm (4.13), initialized on leaf nodes i of G with (4.7), converges in a finite number of steps.
Its limit is such that the marginal distributions µi and µij for i ∈ V and (ij) ∈ E are given by (4.14) and
(4.15) respectively.

We end this section with another remarkable property of tree Markov fields.

Theorem 4.3. For a tree Markov random field (G, µ), the distribution µ can be written as:

µ(x) =
∏
i∈V

µi(xi)
∏

(ij)∈E

µij(xi, xj)

µi(xi)µj(xj)
, x ∈ XV . (4.16)

Denoting by di the degree of node i in G, it can alternatively be written

µ(x) =
∏
i∈V

µi(xi)
1−di

∏
(ij)∈E

µij(xi, xj), x ∈ XV . (4.17)

Proof. The proof is by induction on the number of nodes n = |V|. Formula (4.16) obviously holds for n = 1.
For n > 1, let i ∈ V be a leaf node of G, and j be the only neighbour of i in G. Node j separates i from V \ i.
We then have, by the conditional independence property 4.1:

µ(x) = µij(xi, xj)
1

µj(xj)
P(XV\i = xV\i).

Now, XV\i is a Markov random field on the tree graph obtained from G by removing node i and the edge
(ij). Indeed, this can be shown by summing over xi ∈ X the expression for µ(x). The induction hypothesis
applied to this tree Markov field then gives the result.

4.4 Chow-Liu trees and maximum likelihood estimation
Given a sample X(1), . . . , X(N), where each X(n) ∈ XV is a vector with coordinates in X indexed by i ∈ V,
consider the question of determining a tree Markov field (µ, T ) maximizing the (log-) likelihood

L =

N∑
n=1

logµ(X(n)).

We shall parameterize the desired tree Markov field by its graph component T = (V, E) and by the marginal
distributions µi, µij , i ∈ V, (ij) ∈ E .

Introduce for all i ̸= j ∈ V the empirical distributions

µ̂i(x) =
1

N

N∑
n=1

1Xi(n)=x, µ̂ij(xi, xj) =
1

N

N∑
n=1

1Xi(n)=xi,Xj(n)=xj
.
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The log-likelihood reads, in view of (4.17):

L =
∑N

n=1

∑
i∈V(1− di) ln[µi(Xi(n))] +

∑
(i,j)∈E ln [µij(Xi(n), Xj(n))]

= N
∑

i(1− di)
∑

xi
µ̂i(xi) lnµi(xi) +N

∑
(i,j)∈E

∑
xi,xj

µ̂ij(xi, xj) ln [µij(xi, xj)]

We denote this formula by N ∗∆[µ̂, µ|T ]. Let i0 be a leaf node of T , with edge (i0, j0) incident to i0 in T .
Define also T ′ to be the tree obtained from T by removal of i0 from V and (i0, j0) from E . We then have

∆[µ̂, µ|T ] =
∑
x,y

µ̂i0,j0(x, y) ln

[
µi0,j0(x, y)

µj0(y)

]
+∆[µ̂, µ|T ′]. (4.18)

The first term in the right-hand side of (4.18) reads∑
y µ̂j0(y)

∑
x µ̂i0|j0(x|y) lnµi0|j0(x|y) =

∑
y µ̂j0(y)

∑
x µ̂i0|j0(x|y)

[
ln
(

µi0|j0 (x|y)
µ̂i0|j0 (x|y)

)
+ ln

(
µ̂i0|j0(x|y)

)]
=
∑

y µ̂j0(y)
[
−D(µ̂i0|j0(·|y)∥µi0|j0(·|y))−H(µ̂i0|j0(·|y)

]
.

From the property of Kullback-Leibler divergence discussed in Remark 4.2, we see that we should choose
µi0|j0(x|y) ≡ µ̂i0|j0(x|y) to maximize this first term.

Since the second term ∆[µ̂, µ|T ′] in the right-hand side of (4.18) is of similar nature to the left-hand side,
with a tree T ′ with one node less than T , we obtain by induction on |V| that for fixed tree T , one should
choose µij = µ̂ij for each edge (i, j) in order to maximize the likelihood of the observations.

Maximum likelihood estimation is then completed by optimizing over tree T . In view of (4.17), this
corresponds to the following

max
T : tree on V

∑
(i,j)∈E(T )

∑
x,y

µ̂ij(x, y) ln

(
µ̂ij(x, y)

µ̂i(x)µ̂j(x)

)
. (4.19)

Note that the sum corresponding to edge (i, j) in the above is the mutual information I(Xi;Xj) between
variables Xi and Xj with joint distribution µ̂ij .

Thus maximum likelihood estimation is performed by identifying a tree T on the node set V of maximal
weight, as measured by the sum over its edges (i, j) of the mutual information I(Xi;Xj).

Efficient algorithms for determining a maximum weight tree are available, for instance Kruskal’s algorithm
iteratively adds edges of maximal weight which do not lead to cycles in the graph being constructed.

4.5 Bethe free energy and belief propagation
For a given distribution ν on XV , the “energy” term −Eν ln(ψ(x)) in the Gibbs free energy reads, for a
pairwise graphical model,

−Eν ln(ψ(x)) = −
∑

x∈XV ν(x)
[∑

i∈V ln(ψi(xi)) +
∑

(ij)∈E ln(ψij(xi, xj))
]

= −
∑

i∈V
∑

xi∈X νi(xi) ln(ψi(xi))−
∑

(ij)∈E
∑

xi,xj∈X νij(xi, xj) ln(ψij(xi, xj)),

where we denoted by νi and νij the one-point and two-point marginals of distribution ν.
The Bethe free energy provides an approximation of the Gibbs free energy that is expressed only in terms

of such marginals νi, νij . The approximation of the entropy term in terms of such marginals is based on the
expression (4.17) of a tree-Markov field distribution, and reads:

HBethe(ν) =
∑

(ij)∈E

∑
xi,xj∈X

νij(xi, xj) ln(1/νij(xi, xj)) +
∑
i∈V

∑
xi∈X

(1− di)νi(xi) ln(1/νi(xi)).

This leads to the expression for the Bethe free energy of a Markov random field in terms of the marginal
distributions νi, νij :

GBethe({νi}, {νij}) =
∑

(ij)∈E
∑

xi,xj∈X νij(xi, xj) [− lnψij(xi, xj) + ln(νij(xi, xj))]

+
∑

i∈V
∑

xi∈X νi(xi) [− lnψi(xi) + (1− di) ln(νi(xi))] .
(4.20)
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Determining µ by minimizing the Gibbs free energy may not be tractable for general graphs G. Instead, one
can try to minimize the Bethe free energy (4.20) over sets of distributions νi, νij that satisfy the natural
constraints ∑

xi∈X
νi(xi) = 1, i ∈ V, (4.21)

∑
xi,xj∈X

νij(xi, xj) = 1, (ij) ∈ E , (4.22)

νi(xi) =
∑
xj∈X

νij(xi, xj), i ∈ V, xi ∈ X , (ij) ∈ E . (4.23)

Remark. 1) The number of variables is reduced from |X ||V| to |V| · |X |+ |E| · |X |2 when going from Gibbs
free energy minimization to Bethe free energy minimization.

2) In general, for marginal distributions νi, νij satisfying constraints (4.22), (4.23) there may not exist
any distribution ν on XV of which these are the marginals.

3) The constraints (4.21) and (4.22) are redundant when (4.23) holds, but their inclusion facilitates the
derivation to follow.

Minimization of (4.20) under constraints (4.21)–(4.23) can be approached by introducing the Lagrangian

L((νi, νij), (αi, βij , λi→j)) = GBethe({νi}, {νij}) +
∑

i∈V αi(
∑

xi∈X νi(xi)− 1)
+
∑

(ij)∈E βij(
∑

xi,xj∈X νij(xi, xj)− 1)

+
∑

(i→j)

∑
xi∈X λi→j(xi)[νi(xi)−

∑
xj∈X νij(xi, xj)].

(4.24)

Consider a stationary point of the Lagrangian, i.e. a pair {(νi, νij), (αi, βij , λi→j)} such that partial deriva-
tives of L with respect to all its variables are zero. The conditions

∂L/∂αi = ∂L/∂βij = ∂L/∂λi→j(xi) = 0

state that νi and νij satisfy the constraints (4.21)–(4.23).
One further has

∂L
∂νij(xi,xj)

= 0 ⇔ − lnψij(xi, xj) + 1 + ln νij(xi, xj)− λi→j(xi)− λj→i(xj) + βij = 0,
∂L

∂νi(xi)
= 0 ⇔ − lnψi(xi) + (1− di)(1 + ln νi(xi)) + αi +

∑
j∼i λi→j(xi) = 0.

This allows to prove the following

Theorem 4.4. Assume that ψi(xi) and ψij(xi, xj) > 0 for all (i, j) ∈ E and xi, xj ∈ X . There is then
a one-to-one correspondence between stationary points of the Lagrangian (4.24) associated with Bethe free
energy minimization and fixed points bi→j(xi) of belief propagation.

Proof. Consider a stationary point of L. The previous identities obtained by setting to zero the partial
derivatives of L with respect to the primal variables νi(xi) and νij(xi, xj) yield

νi(xi) ∝ exp
(

1
di−1 [− lnψi(xi) +

∑
j∼i λi→j(xi)]

)
, (4.25)

νij(xi, xj) ∝ ψij(xi, xj) exp(λi→j(xi) + λj→i(xj)). (4.26)

Let us then define
bi→j(xi) = exp(λi→j(xi)), i ∈ V, xi ∈ X . (4.27)

Constraint (4.23) guarantees that, for all (ik) ∈ E , as a function of xi one has∑
xk∈X

ψik(xi, xk)bk→i(xk) ∝ bi→k(xi)
−1ψi(xi)

−1/(di−1)
∏
ℓ∼i

bi→ℓ(xi)
1/(di−1).
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Fix now j ∼ i, and multiply the above relations for all k ∼ i, k ̸= j. This yields∏
k∼i,k ̸=j

∑
xk∈X

ψik(xi, xk)bk→i(xk) ∝
∏

k∼i,k ̸=j

bi→k(xi)
−1ψi(xi)

−1
∏
ℓ∼i

bi→ℓ(xi),

which after simplification of the factor
∏

k∼i,k ̸=j bi→k(xi)
−1 shows that the corresponding messages bi→j(xi)

satisfy the belief propagation relation (4.13). It is immediate to verify that the identity (4.26) is equivalent to
(4.15) with νij = µij . To complete the first implication, note that thanks to the belief propagation relation
verified by bi→j , identity (4.26) yields

νi(xi) ∝ ψi(xi)
−1/(di−1)

∏
j∼i

(
ψi(xi)

∏
k∼i,k ̸=j

∑
xk∈X ψki(xk, xi)λk→i(xk)

)1/(di−1)

= ψi(xi)
∏

k∼i

∑
xk∈X ψki(xk, xi)λk→i(xk),

which is precisely the expression (4.14) when setting µi = νi.
Reciprocally, given messages bi→j(xi) that satisfy the belief propagation relation (4.13), these must

necessarily be strictly positive when functions ψi, ψij are. We can then define λi→j(xi) := ln bi→j(xi). By
then letting νi = µi, νij = µij with µi, µij as in (4.14) and (4.15), we again obtain from similar evaluations
that necessarily (νi, νij) constitute a set of primal stationary points of the Lagrangian with associated dual
variables λi→j .

4.6 Notes
The relation between belief propagation and Bethe free energy minimization was identified by Yedidia,
Freeman and Weiss [45].
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Chapter 5

The tree reconstruction problem

Let T be a tree graph with root r. We denote by Ld the set of nodes of generation d, starting with L0 = {r}.
we also denote by Td the tree down to generation d, by Ed the set of its (unoriented) edges and Vd its vertex
set.

Each node i has trait σi ∈ [q] inherited from its parent p(i), potentially with errors. Specifically we
assume that for all d, conditionally on T and the spins σVd−1

of all nodes of generations 0, . . . , d− 1, nodes
i in Ld have independent spins with distribution

P(σLd
= sLd

|T , σVd−1
) =

∏
i∈Ld

Pσp(i)si ,

where P is a stochastic matrix assumed irreducible and with stationary distribution {νs}s∈[q]. The joint
distribution of spins σi of all nodes is then fully specified by imposing that σr is distributed according to ν.
It is easily verified that {σi}i∈Vd

is a Markov random field with conditional independence structure prescribed
by Td.

We will use as an illustration the special case where Pττ = p, Pτs = (1 − p)/(q − 1), s ̸= τ , for which ν
is uniform. In that particular case, one has for all sVd

∈ [q]Vd :

P(σVd
= sVd

) ∝
∏

(i,j)∈Ed

[
p1si=sj +

1− p

q − 1
1si ̸=sj

]
. (5.1)

This is the so-called symmetric Potts model.
The tree reconstruction problem is then: based on knowledge of Td, and traits (or spins) σi of generation

d nodes i ∈ Ld, can one infer σr, the ancestor’s trait, non-trivially as d→ ∞?
In this chapter we consider Galton-Watson trees conditioned on survival, since in case of extinction the

tree reconstruction problem is trivial. An important special case is that of offspring distribution Poi(α) for
fixed α > 1. The results in this chapter also admit versions for trees that are not necessarily Galton-Watson,
see in particular Evans et al. [14] and Mossel and Peres [35].

5.1 Information theory background
Denote by H(ν) :=

∑
s νs ln(1/νs) the entropy of a discrete distribution ν, and by H(X) the entropy of the

(distribution of a) random variable X.
The conditional entropy H(X|Y ) of X given Y is by definition

H(X|Y ) :=
∑

x,y pX,Y (x, y) ln
(

1
pX|Y (x|y)

)
= H(X,Y )−H(Y )
=
∑

y pY (y)H(Law of X conditional on Y = y).
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This last formulation readily extends to the case where the random variable Y is not discrete.
The mutual information I(X;Y ) between two discrete random variables X,Y is by definition

I(X;Y ) = H(X) +H(Y )−H(X,Y )

=
∑

x,y pX,Y (x, y) ln
(

pX,Y (x,y)
pX(x)pY (y)

)
= D(pX,Y ∥pX ⊗ pY ).

This last characterization implies, based on properties of Kullback-Leibler divergence, that I(X;Y ) is non-
negative and equals zero if and only if X and Y are independent.

Given three discrete random variables X,Y, Z, the conditional mutual information I(X;Y |Z) is
defined as

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z)
=
∑

z pZ(z)D(pX,Y |Z=z∥pX|Z=z ⊗ pY |Z=z).

It follows again from properties of the Kullback-Leibler divergence that conditional mutual information
I(X;Y |Z) is non-negative, and equals zero if and only if for almost all values z of Z, X and Y are conditionally
independent given Z = z.

Using this definition, one can obtain by elementary manipulations the following chain rule for computing
mutual information:

I(X; (Y,Z)) = I(X;Z) + I(X;Y |Z).

We now recall the following data processing inequality:

Lemma 5.1. Given three discrete random variables X,Y, Z such that X and Z are independent conditionally
on Y , it holds that

I(X;Y ) ≥ I(X;Z).

Proof. Compute I(X; (Y,Z)) in two ways using the chain rule, to obtain

I(X;Y ) + I(X;Z|Y ) = I(X;Z) + I(X;Y |Z).

Conditional independence of X,Z given Y implies that I(X;Z|Y ) = 0; non-negativity of conditional mutual
information I(X;Y |Z) then gives the result.

5.2 Non-trivial reconstruction

Let Fd = σ(Td, σVd
), Gd = σ(Td, σLd

) and ν̂s,d = P(σr = s|Gd), s ∈ [q].
Mutual information between σr and Gd is by definition

I(σr;Gd) := H(σr)−H(σr|Gd)
= E

∑
s∈[q] ν̂s,d ln(ν̂s,d/νs)

= E
∑

s∈[q] P(σr = s|Gd) ln
(

P(σr=s|Gd)
νs

)
·

By the data processing inequality, since conditionally on Gd, σr and Gd+1 are mutually independent (this
is true for both Galton-Watson and deterministic trees T ), it follows that

I(σr;Gd) ≥ I(σr;Gd+1).

The limit limd→∞ I(σr;Gd) therefore exists. We will then say that

Definition 5.1. Tree reconstruction is feasible if limd→∞ I(σr,Gd) > 0.

Recall the following definitions:
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Definition 5.2. Given a filtration {Gd}d∈N, i.e. an increasing family of σ-fields, the family {Md}d∈N of
random variables is a Gd-martingale if for all d ≥ 0,

E(Md+1|Gd) =Md.

Definition 5.3. A family of random variables Xt indexed by t in some arbitrary set T is uniformly integrable
if:

lim
A→+∞

sup
t∈T

E(|Xt|1|Xt|≥A) = 0.

Let us now recall two classical results on martingales.

Theorem 5.1. Given a filtration {Gd}d∈N and a uniformly integrable Gd-martingale {Md}d∈N, then there
exists a G∞-measurable and integrable random variable M∞ such that: Md = E(M∞|Gd), and limd→∞Md =
M∞, with convergence taking place both almost surely and in L1.

Reciprocally, for any integrable, G∞-measurable random variable M∞, the sequence Md := E(M∞|Gd) is
a uniformly integrable Gd-martingale that converges almost surely and in L1 to M∞.

We shall also make use of the following

Theorem 5.2. Given a decreasing family of σ-fields Hd, for a given integrable random variable X, let
Xd := E(X|Hd). Then almost surely and in L1 it holds that limd→∞Xd = E(X|H∞).

Proposition 5.1. Non-reconstructibilty, i.e. limd→∞ I(σr,Gd) = 0, is equivalent to: ν̂s,d → νs in probability
as d→ ∞ for all s ∈ [q].

Proof. Indeed, let us assume without loss of generality that infs∈[q] νs > 0 (we can otherwise restrict ourselves
to the subset of {s ∈ [q] : νs > 0}). On the simplex M([q]) of probability distributions µ on [q], the Kullback-
Leibler divergence D(µ∥ν) is then continuous, non-negative, and equal to zero only at µ = ν.

Assuming non-reconstructibility, then for all ϵ > 0, the probability that {ν̂s,d}s∈[q] belongs to the set of
probability measures µ such that D(µ∥ν) ≥ ϵ) must go to zero. The fact that ν is the unique minimizer of
D(·∥ν) on M([q]) then implies that ν̂d must converge in probability to ν.

Conversely, if ν̂d converges in probability to ν as d→ ∞, for any ϵ > 0, and d large enough, the probability
that D(ν̂d∥ν) ≤ ϵ must be at least 1 − ϵ. On the complementary event, one has the deterministic upper
bound

D(ν̂d∥ν) ≤ C := ln(q)− ln( inf
s∈[q]

(νs)).

This gives lim supd→∞ I(σr;Gd) ≤ ϵ+ Cϵ, hence the result.

Remark. We can interpret the reconstruction property as follows. Given some loss function L(s, s′),
when asked to produce an estimate ŝ of σr based on observation Gd, to minimize average loss EL(σr, ŝ),
if I(σr,Gd) → 0 as d → ∞, a deterministic rule ŝ ∈ argmins′∈[q]

∑
s νsL(s, s

′) cannot be beaten asymptoti-
cally. In the converse situation limd→∞ I(σr,Gd) > 0, for non-trivial loss functions, the rule

ŝ ∈ argmins′∈[q]

∑
s

ν̂s,dL(s, s
′)

can achieve strictly better performance.
In the particular case L(s, s′) = 1s̸=s′ , the optimal loss is achieved by taking ŝ ∈ argmax(ν̂s,d), and

achieves average loss E(1 − sups∈[q] ν̂s,d). Assuming further that ν is uniform on [q], it follows that the
limiting loss (which must exist, because ν̂s,d is a martingale) is strictly less than (1 − 1/q) if and only tree
reconstruction is feasible. Indeed, sups∈[q] ν̂s,d ≥ 1/q, and the asymptotic loss is 1 − 1/q if and only if
sups ν̂s → 1/q in probability, which is equivalent by Proposition 5.1 to non-reconstructibility.
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5.3 Census reconstruction above the Kesten-Stigum threshold
Let Xs,d denote the number of individuals at generation d with trait s:

Xs,d =
∑
i∈Ld

1σi=s.

We also refer to the vector Xd := {Xs,d}s∈[q] as the census of generation d. We will then consider the
following

Definition 5.4. Census reconstruction is feasible if limd→∞ I(σr;Xd) > 0.

Remark. The data processing inequality guarantees that the limit limd→∞ I(σr;Xd) exists whenever T is
either a deterministic or a Galton-Watson branching tree.

Still by the data processing inequality, census reconstruction implies tree reconstruction.

When T is a Galton-Watson tree with offspring distribution Poi(α), {Xd}d≥0 is a multi-type branching
process where a type τ -individual has Poi(αPτs) children of type s, independently over s ∈ [q]. This is a
special case of the family of multi-type Galton-Watson branching processes studied by Kesten and Stigum
in [22].

Let us order the eigenvalues of P in decreasing order of absolute value, and denote them by λs, s ∈ [q]:
λ1 = 1 > |λ2| ≥ · · · ≥ |λq|. We then have the following

Theorem 5.3. Assume α|λ2|2 > 1, and let T be a Galton-Watson branching tree with offspring of mean
α > 1 and bounded second moment. Then census (and hence tree) reconstruction holds.

Let {xs}s∈[q] denote a (non-constant) eigenvector associated with eigenvalue λ2 of P . Construct from the
census Xd the random variable

Zd := (α · λ2)−d
∑
s∈[q]

Xs,dxs.

Then Zd contains non-trivial information on σr in the sense that there exists some t ∈ R such that
limd→∞ I(σr;1Zd≤t) > 01.

Proof. The second result implies the first since Zd, and hence 1Zd≤t, are functions of the census Xd, and
Gd-measurable, and the data-processing inequality then ensures that I(σr;Gd) ≥ I(σr;Xd) ≥ I(σr;1Zd≤t).

Now, Zd is a uniformly integrable Fd-martingale such that E(Zd|F0) = xσr
. Indeed:

E(Zd|Fd−1) = (α · λ2)−dE
[∑

i∈Ld−1

∑
j:p(j)=i xσj

| Fd−1

]
= (α · λ2)−d

∑
i∈Ld−1

α
∑

s∈[q] Pσisxs
= Zd−1,

because x is an eigenvector of P associated to λ2. To establish uniform integrability, we use the conditional
variance formula to show that the second moment of Zd is bounded:

Var(Zd) = Var(E(Zd|Fd−1)) + E(Var(Zd|Fd−1))
= Var(Zd−1) + |α · λ2|−2dE(Var(

∑
i∈Ld

xσi |Fd−1))

= VarZd−1 + |α · λ2|−2dE(
∑

i∈Ld−1
Var(

∑
j:p(j)=i xσj

|Fd−1))

≤ VarZd−1 + C(α · λ2)−2dE|Ld−1|,

where C := supτ∈[q] Var(
∑

j:p(j)=i xσj
|Fd−1;σi = τ) is finite by the assumption that offspring distribution

has finite second moment. Since E|Ld| = αd, it follows that

Var(Zd) ≤ VarZd−1 + C(α|λ2|2)−d

≤ Var(Z0) +
∑d

k=1 C(α|λ2|2)−k

≤ Var(Z0) + C 1
α|λ2|2−1 ,

1If λ2 and x are complex, then this statement should be modified to: there exists some t ∈ R such that either
limd→∞ I(σr;1ℜ(Zd)≤t) > 0, or limd→∞ I(σr;1ℑ(Zd)≤t) > 0.
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by the assumption that α|λ2|2 > 1.
By the martingale convergence theorem, Zd converges almost surely and in L1 to Z∞ such that E(Z∞|Fd) =

Zd. In particular, E(Z∞|F0] = xσr
.

Recall that the coordinates (xs)s∈[q] are not all equal. We could assume this since the constant vector is
an eigenvector of P associated with eigenvalue 1.

Assume that for (Lebesgue almost) all t ∈ R, 1Z∞≤t is independent of σr. Thus for Lebesgue almost all
t ∈ R, all s ∈ [q],

P(Z∞ ≤ t|σr = s) = P(Z∞ ≤ t).

However, this implies that E(Z∞|σr = s) is independent of s, which is impossible since it equals xs, which
cannot be constant in s. Thus there exists a set of positive Lebesgue measure of t’s such that 1Z∞≤t and
σr are correlated. Choose one that is a continuity point of all conditional distributions P(Z∞ ∈ ·|σr = s),
s ∈ [q]. Then almost surely for all s ∈ [q],

lim
d→∞

P(σr = s|Zd ≤ t) = P(σr = s|Z∞ ≤ t).

The claim follows, because the latter property implies that limd→∞ I(σr;1Zd≤t) = I(σr;1Z∞≤t) > 0.

Another question of interest is: can one obtain non-trivial information about σr if the spins σi for i ∈ Ld

have been slightly distorted? Specifically, assume that each such spin σi is probabilistically modified into
σ′
i ∈ [q], using some Markov transition kernel Msτ = P(σ′

i = τ |σi = s). We pose the following

Definition 5.5. Let µ be a distribution on [q]. Robust distribution holds with respect to µ if for any ϵ > 0, and
Markov transition kernel M given by Msτ = ϵ1s=τ + (1− ϵ)µτ , it holds that lim infd→∞ I(σr; (T , σ′

Ld
)) > 0.

We then have the following

Theorem 5.4. Let T be a Galton-Watson tree with offspring distribution of mean α > 1 and bounded second
moment. Above the Kesten-Stigum threshold, i.e. when α|λ2|2 > 1, robust reconstruction holds, and can
be performed from the perturbed census X ′

s,d :=
∑

i∈Ld
1σ′

i=s. Specifically, let y = M−1x, where x is the
eigenvector of P associated with λ2. Let

Z ′
d := (α · λ2)−d

∑
i∈Ld

yσ′
i
.

Then there is some t ∈ R such that
lim
d→∞

I(σr,1Z′
d≤t) > 0.

Proof. Vector y is well-defined since M is clearly invertible, for arbitrary ϵ > 0 and distribution µ. By
definition of Z ′

d and our choice of y, one has

E(Z ′
d|Fd−1) = |α · λ2|−d

∑
i∈Ld−1

α
∑

s∈[q]

∑
τ∈[q] PσisMsτyτ

= Zd−1.

Moreover, one has:

Var(Z ′
d|Fd−1) = |α · λ2|−2d

∑
i∈Ld−1

Var(
∑

j:p(j)=i yσ′
j
|Fd−1)

≤ C(α|λ2|2)−dα−d|Ld−1|,

for some suitable constant C > 0. However, α−d|Ld−1| is easily seen to be a uniformly integrable martingale
when α > 1, and thus E[(Z ′

d−Zd−1)
2|Fd−1] converges to zero almost surely as d→ ∞. Thus the conditional

distributions P(Z ′
d ∈ ·|σr = s) and P(Zd ∈ ·|σr = s) admit the same weak limits for all s ∈ [q]. The result

follows.
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5.4 Below the Kesten-Stigum threshold

We now establish the following

Theorem 5.5. Consider a Galton-Watson branching tree with Poisson offspring distribution of mean α > 1.
Assume that α|λ2|2 < 1. Then census reconstruction fails, i.e. Xd := {Xs,d}s∈[q] is such that limd→∞ I(σr;Xd) =
0.

While we consider here only the case of Poisson offspring, the result admits extensions to other branching
trees. In particular, the more delicate case of b-ary trees is handled in Mossel and Peres [35].

Proof. When α|λ2|2 < 1, the results of Kesten and Stigum [22] show that conditionally on σr = τ and on
survival of the branching process, {α−d/2(Xs,d − αdνs)}s∈[q] converges in distribution to a q-dimensional
Gaussian vector whose distribution does not depend on the initial value τ of σr.

Survival occurs with a probability that does not depend on σr in our model.
It then follows that for two initial conditions τ , τ ′ in [q], we can generate coupled corresponding vectors

X
(τ)
d , X(τ ′)

d such that for all ϵ > 0, limd→∞ P(|X(τ)
d −X

(τ ′)
d | ≥ ϵαd/2) = 0.

The random variables X(τ)
s,d+1 and X(τ ′)

s,d+1 admit conditionally on Fd the distributions

X
(t)
s,d+1 ∼ Poi

α ∑
s′∈[q]

X
(t)
s′,dPs′s

 , t ∈ {τ, τ ′},

with independence for distinct s.
Let M (t)

s = E(X(t)
s,d+1|Fd), Ms =

1
2 (M

(τ)
s +M

(τ ′)
s ), and

ϵs =
1

2
|M (τ)

s −M (τ ′)
s |M−1/2

s .

The coupling result entails the existence of a function αd going to zero as d → ∞ such that with high
probability, ϵs ≤ αd. Conditionally on Fd, the variation distance between X(τ)

d+1 and X(τ ′)
d+1 is upper-bounded

by ∑
s∈[q]

∑
k≥0

∣∣∣∣∣e−Ms−ϵs
√
Ms(Ms + ϵs

√
Ms)

k − e−Ms+ϵs
√
Ms(Ms − ϵs

√
Ms)

k

k!

∣∣∣∣∣ .
For fixed s we split the corresponding sum over k into two sums, according to whether |Ms − k| ≤ ωd

√
Ms

or not, where ωd = 1/
√
αd. The summation over k such that |Ms − k| > ωd

√
Ms is upper bounded by the

sum of the two ± terms
P(|Poi(Ms ± ϵs

√
Ms)−Ms| ≥ ωd

√
Ms),

which must go to zero on {ϵs ≤ αd}. The summation over k such that |Ms − k| ≤ ωd

√
Ms is upper bounded

by ∑
|k−Ms|≤ωd

√
Ms

e−Ms
Mk

s

k!

∣∣∣e−ϵs
√
Ms(1 + ϵs/

√
Ms)

k − eϵs
√
Ms(1− ϵs/

√
Ms)

k
∣∣∣

We have the equivalent

e±ϵs
√
Ms(1∓ ϵs/

√
Ms)

k = e±ϵs
√
Ms+k(∓ϵs/

√
Ms+O(ϵ2s/Ms))

= eO(ϵsωd)

= 1 +O(
√
αd)

on the event that ϵs ≤ αd. Thus the second summation is, with high probability, upper bounded by
O(

√
αd) = o(1). this implies that the variation distance between X

(τ)
d and X

(τ ′)
d goes to zero as d → ∞.
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This implies in turn that I(σr;Xd) goes to zero. For instance, this can be seen by letting fs(x) := P(Xd =
x|σr = s)/P(Xd = x) for x ∈ Nq. One then has

I(σr;Xd) =
∑

s∈[q],x∈Nq νsP(Xd = x|σr = s) ln
(

P(Xd=x|σr=s)
P(Xd=x)

)
=
∑

x∈Nq P(Xd = x)
∑

s∈[q] νsfs(x) ln(fs(x))

≤
∑

x∈Nq P(Xd = x)
∑

s∈[q] νsfs(x)[fs(x)− 1].

However νsfs(x) ≤ 1 so that the last term is upper bounded by∑
s∈[q]

∑
x∈Nq

P(Xd = x)|fs(x)− 1|.

Note now that, because
∑

τ∈[q] ντfτ (x) = 1:∑
x∈Nq P(Xd = x)|fs(x)− 1| ≤

∑
τ∈[q] ντ

∑
x∈Nq P(Xd = x)|fs(x)− fτ (x)|

≤ sups,τ∈[q] dvar(P(Xd ∈ ·|σr = s),P(Xd ∈ ·|σr = τ))

to obtain
I(σr;Xd) ≤ q sup

s,τ∈[q]

dvar(P(Xd ∈ ·|σr = s),P(Xd ∈ ·|σr = τ)).

Remark. Janson and Mossel [19] showed that below the KS threshold, for bounded degree trees, for any
measure µ that is non-degenerate (i.e. infs∈[q] µs > 0), robust reconstruction with respect to µ is impossible.

5.5 Sufficient condition for non-reconstruction for two symmetric
communities

Consider the case where q = 2, for which it will be convenient to denote the two traits by +1 and −1, or +
and −. Assume further a symmetric transition matrix P , with for some fixed ϵ ∈ (0, 1), P++ = P−− = 1− ϵ,
and P+− = P−+ = ϵ. In that case, λ2 = 1− 2ϵ, and we have the following

Theorem 5.6. For two-type symmetric propagation on a deterministic tree T such that

lim sup
d→∞

1

d
ln(|Ld|) ≤ ln(α), (5.2)

tree reconstruction fails when (λ2)
2α < 1.

To prove Theorem 5.6, we follow [14]. We need the two following lemmas.

Lemma 5.2. Consider the trees T , T ′ depicted on Figure 5.1, where node variables are binary spins, each
uniformly distributed with values ±1, edge weights are in [0, 1] and represent transmission probability, e.g.
P(τ1 = σr) = (1 + θ)/2 or equivalently E(σrτ1) = θ.

Then there exists a probability transition matrix M : {−1, 1}2 → {−1, 1}2 such that

P(σr′ = sr, σ1′ = s1, σ2′ = s2) =
∑

u1,u2=±
P(σr = sr, σ1 = u1, σ2 = u2)M(u1,u2),(s1,s2).

Proof. To be completed

...
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Figure 5.1: Two trees for propagation of binary spins

Lemma 5.3. Consider two random vectors U ∈ {±1}a, V ∈ {±1}b, that are mutually independent and
independent of the spins of the two trees on Figure 5.1. Let X = σ1U , Y = σ2V , X ′ = σ1′U , Y ′ = σ2′V .
Then there is a probability transition matrix M on {±1}a+b such that the joint law of (σr′ , (X

′, Y ′)) is
obtained as the joint law of σr and the image of (X,Y ) by M .

Proof. Reduce the problem to that of the previous lemma: for each set of 4 states {±x,±y} in {±1}a+b, use
the previous channel...

Corollary 5.1. For the binary symmetric transmission of spins on fixed tree T , one has

I(σr;σLd
) ≤

∑
j∈Ld

I(σr;σj).

The proof is by induction, and uses the fact that the mutual information I(X; (Y1, . . . , Yn)) is, provided
the Yi are independent conditionally on X, upper-bounded by

∑n
i=1 I(X;Yi). It alternates between splitting

the tree and applying the previous corollary.

Proof. (of Theorem 5.6). For some node i ∈ Ld, one has again a symmetric channel between σr and σi
characterized by E(σrσi) = (1 − 2ϵ)d = λd2 or equivalently, by P(σi = σr) = [1 + λd2]/2. Thus, letting
θd := λd2,

I(σr;σi) =
∑

s,t=±
1
2
1+stθd

2 ln (1 + stθd)

≤
∑

s,t=±
1
2
1+stθd

2 (stθd))

= θ2d.

Thus by Corollary 5.1, one has
I(σr;σLd

) ≤ |Ld|λ2d2 , (5.3)

and under the assumption (5.2), the right-hand side of the above is upper-bounded by ≤ (αλ22 + o(1))d,
hence goes to zero as d→ ∞. This concludes the proof.

Corollary 5.2. For two-type symmetric propagation on a Galton-Watson tree with mean number of children
α, reconstruction fails when (λ2)

2α < 1.
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The corollary in fact follows from the previous bound (5.3) on the mutual information I(σr;σLd
) for a

deterministic tree, which yields here:

I(σr; (σLd
, Td)) = I(σr; Td) + I(σr;σLd

|Td)
≤ 0 + E((min(1, |Ld|λ2d2 )).

By Markov’s inequality, the probability that |Ld| ≥ α + δ is upper-bounded by (1 + δ/α)−d. Picking δ > 0
such that (α+ δ)λ22 < 1 then implies that limd→∞ I(σr; (σLd

, Td)) = 0.

5.6 Optimal inference and belief propagation
The conditional distribution ν̂s,d = P(σr = s|Gd) can be computed recursively, following the so-called Belief
Propagation (or sum-product) algorithm described in the previous chapter. We rederive it in the context of
the tree reconstruction problem. We need the following notation:

νis := P(σi = s|Gi,d), i ∈ Vd, s ∈ [q],

where Gi,d is the σ-field generated by Td and the spins σj of all nodes j ∈ Ld that admit i in their ancestry
line to the root r. We denote by Li,d the corresponding set of nodes of Ld.

Let us fix some values sLi,d
for the spins σLi,d

.
Write then, introducing the notation S(i) to denote the set of nodes j such that p(i) = j:

P(σi = s|σLi,d
= sLi,d

) ∝ νsP(σLi,d
= sLi,d

|σi = s)
= νs

∑
sj∈[q],j∈S(i) P(σLi,d

= sLi,d
, σS(i) = sS(i)|σi = s)

= νs
∑

sj∈[q],j∈S(i)

∏
j∈S(i) P(σLj,d

= sLj,d
, σj = sj |σi = s)

= νs
∏

j∈S(i)

∑
sj∈[q] P(σLj,d

= sLj,d
|σj = sj)P(σj = sj |σi = s)

∝ νs
∏

j∈S(i)

∑
sj∈[q]

P(σj=sj |σLj,d
=sLj,d

)

νsj
Pssj ,

where we used Bayes’ formula and conditional independence. This computation proves the following recursive
formula for νi:

νis =
1

Zi
νs

∏
j∈S(i)

∑
sj∈[q]

νjsj
νsj

Pssj , (5.4)

where the normalization constant Zi is such that
∑

s∈[q] ν
i
s = 1.

Remark that when νjs ≡ νs, j ∈ S(i), s ∈ [q], one obtains νis = νs. In other words, the distribution ν is a
trivial fixed point of the Belief Propagation recursion.

Besides providing an algorithm for determining the conditional distribution of a node’s spin, it also
provides a basis for analyzing the feasibility of tree reconstruction.

Let us denote by pk the probability that a node has k children, our primary example corresponding to
Poisson offspring, pk = e−ααk/k!. Let us also define the mapping

Fk : M([q])k →M([q])

η1, . . . , ηk →
{

1
Zk(η1,...,ηk)

νs
∏k

j=1

∑
sj∈[q]

ηj(sj)
νsj

Pssj

}
s∈[q]

, (5.5)

where Zk(η1, . . . , ηk) is the normalization constant.
Denote by Qτ,d the probability distribution of the random vector {P(σr = s|Gd)}s∈[q] in the simplex

M([q]) of probability distributions on [q], conditionally on σr = τ . (5.4) then implies the following recursive
characterization of Qτ,d, where ϕ is any continuous function on M([q]):∫

M([q])

ϕ(η)Qτ,d+1(dη) =
∑
k≥0

pk

∫
M([q])k

ϕ(Fk(η1, . . . , ηk))

k∏
ℓ=1

∑
sℓ∈[q]

PτsℓQsℓ,d(dηℓ). (5.6)
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This stochastic recursive equation is known as the density evolution equation (see Mézard and Montanari
[37]).

Consider now the law Q̂d on M([q]) of the random distribution P(σr ∈ ·|Gd), no longer conditioned on
the exact value of σr. Writing this random, Gd-measurable distribution as ν̂d, observe that∫

M([q])
ϕ(η)Qτ,d(dη) = E[ϕ(ν̂d)|σr = τ ]

= 1
ντ
E[ϕ(ν̂d)1σr=τ ]

= 1
ντ
E[ϕ(ν̂d)ν̂d(τ)]

=
∫
M([q])

ϕ(η)η(τ)ντ
Q̂(dη),

or put differently,

Qτ,d(dη) =
η(τ)

ντ
Q̂d(dη). (5.7)

This allows to recover the simple identity

Q̂d =
∑
τ∈[q]

ντQτ,d.

Using these we may re-express (5.6) in terms of the unconditional distributions Q̂d only, as:∫
M([q])

ϕ(η)Q̂d+1(dη) =
∑
τ∈[q]

ντ
∑
k≥0

pk

∫
M([q])k

ϕ(Fk(η1, . . . , ηk))

k∏
ℓ=1

∑
sℓ∈[q]

Pτsℓ

ηℓ(sℓ)

νsℓ
Q̂d(dηℓ). (5.8)

Note that necessarily, for all d,
∫
M([q])

ηQ̂d(dη) = ν. We shall call fixed points Q̂ of (5.8) that verify this
condition consistent fixed points. We then have the following

Lemma 5.4. Any fixed point distribution Q̂ of (5.8) is consistent.

Proof. Given a fixed point Q̂ of (5.8), let for any s ∈ [q], ms :=
∫
M([q])

η(s)Q̂(dη). Taking ϕ(η) = η(s) in
(5.8) gives:

ms =
∑
τ∈[q]

ντ
∑
k≥0

pk

∫
M([q])k

νs
∏k

j=1

∑
tj∈[q]

ηj(tj)
νtj

Pstj

Zk(η1, . . . , ηk)

k∏
ℓ=1

∑
sℓ∈[q]

Pτsℓ

ηℓ(sℓ)

νsℓ
Q̂(dηℓ)

=
∑
k≥0

pk

∫
M([q])k

νs

k∏
j=1

∑
tj∈[q]

ηj(tj)

νtj
Pstj Q̂(dηj)

= νs
∑
k≥0

pk
( ∑
t∈[q]

mt

νt
Pst

)k
.

(5.9)

Summing this identity over s ∈ [q] gives

1 =
∑
s∈[q]

νs
∑
k≥0

pk
( ∑
t∈[q]

mt

νt
Pst

)k
.

By convexity of the function x→ xk on R+ for all k ∈ N, it follows from Jensen’s inequality that∑
s∈[q] νs

(∑
t∈[q]

mt

νt
Pst

)k ≥
(∑

s∈[q] νs
∑

t∈[q]
mt

νt
Pst

)k
=
(∑

t∈[q]mt

∑
s∈[q] νsPst

1
νt

)k
= 1,

where in the last step we used the fact that ν is invariant for P . We must therefore have equality in Jensen’s
inequality for all k ≥ 0 such that pk > 0. Since for some k > 1, we must have pk > 0 (otherwise tree
reconstruction is uninteresting), and the corresponding function k → xk is then strictly convex, this implies
that s→

∑
t∈[q]

mt

νt
Pst must be identically 1. In view of (5.9), this implies that ms = νs for all s ∈ [q].
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We then have the following

Theorem 5.7. The distributional recursion (5.8) admits a unique fixed point if and only if the tree recon-
struction is infeasible.

Proof. Let δτ denote the Dirac distribution on τ . Initialized with Q̂0 =
∑

τ∈[q] ντδτ , recursion (5.8) charac-
terizes the distribution Q̂d of the distribution ν̂d of the root spin σr conditionally on Gd.

Define Hd = σ(Gd, T , {σLk
}k>d). Conditionally on Gd, σr is independent of T and {σLk

}k>d. Thus
ν̂d is also the distribution of σr conditionally on Hd. The sigma-fields Hd decrease with d. Thus by the
backward martingale convergence theorem 5.2, ν̂d converges almost surely to the limit ν̂∞, which is the
conditional distribution of σr given H∞. It follows that Q̂d converges weakly to Q̂∞, the distribution of ν̂∞.
By continuity (details to be added), then necessarily Q̂∞ is a fixed point of (5.8).

The Dirac mass on distribution ν is a fixed point of (5.8). Under the assumption that there is a unique
fixed point, ν̂d then converges in probability to ν, and Proposition 5.1 implies that reconstruction is infeasible.

Conversely, assume that there is a non-trivial fixed point Q̂ of (5.8). Let then, for τ ∈ [q],

Qτ (dη) =
η(τ)

ντ
Q̂(dη).

By Lemma 5.4, Q̂ is consistent, and this thus defines a probability distribution on M([q]). The fixed point
relation (5.8) of Q̂ implies that the Qτ are fixed points of the conditional recursive distribution equation
(5.6). Given observations σi, i ∈ Ld, construct the distributions ηi = Qσi , and propagate them towards the
root r of the tree using belief propagation (5.4).

The fixed point (5.6) verified by the Qτ implies that the obtained distribution at the root is distributed
according to Qσr

. Determine at random an estimate σ̂r of σr by setting σ̂r = s with probability η(s), where
η is the belief thus obtained at the root. Write then

I(σr; σ̂r) =
∑

s,τ∈[q] νs
∫
M([q])

η(τ)Qs(dη) ln

(
νs

∫
M([q])

η(τ)Qs(dη)

νsντ

)
=
∑

s,τ∈[q]

∫
M([q])

η(s)η(τ)Q̂(dη) ln

( ∫
M([q])

η(s)η(τ)Q̂(dη)

νsντ

)
= D(m∥ν ⊗ ν),

where m is the distribution on [q]× [q] specified by

msτ =

∫
M([q])

η(s)η(τ)Q̂(dη).

Assume that I(σr; σ̂r) = 0. Then necessarily, m = ν ⊗ ν. This implies in particular that for all s ∈ [q],

∫
M([q])

η(s)2Q̂(dη) =

(∫
M([q])

η(s)Q̂(dη)

)2

.

Then necessarily, η(s) = νs Q̂-almost surely for all s ∈ [q], i.e. Q̂ = δν , a contradiction.

5.7 Notes
The proof of Theorem 5.7 builds on that of Proposition 1 in Mézard and Montanari [29], that it extends by
relaxing the assumption that ν is uniform.

Sly [40] used the density evolution equation to prove that for b-ary trees and the symmetric Potts model
(5.1), when q ≥ 4, reconstruction is feasible below the Kesten-Stigum threshold. Such results had earlier
been conjectured in Mézard and Montanari [29].
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Chapter 6

Community Reconstruction

We now assume that P is reversible for ν, i.e. νsPst = νtPts, s, t ∈ [q]. We consider the following problem.
Given n nodes i ∈ [n], assign to each a spin σi ∈ [q], drawn i.i.d. according to ν. Conditionally on node
spins, independently for any pair of nodes (i, j) in [n], with respective spins σi = s, σj = t, create an edge
between them with probability Rst/n, where

Rst = αPst
1

νt
·

The reversibility condition on P implies that R is symmetric. Moreover conditionally on node spins, the
average number of neighbors of any node i is asymptotic to α as n→ ∞, irrespective of the value σi ∈ [q].

The resulting random graph is known as the stochastic block model; it generalizes the Erdős-Rényi random
graph G(n, α/n), which would correspond to the case where Rst ≡ α. We will also make use of the mean
progeny matrix (Mst)s,t∈[q] describing the average number of spin t-neighbors of a node with spin s. Is is
readily verified that M = αP .

6.1 Inference problems
Reconstruction is the problem of providing estimates of the underlying block structure, possibly through
spin estimates σ̂i determined from the observed graph.

We have the following definition

Definition 6.1. The overlap of spin estimates σ̂i is by definition

max
π

1

n

∑
i∈[n]

1π(σi)=σ̂i
− sup

s∈[q]

νs, (6.1)

where π runs over permutations of [q].
We say that weak reconstruction is feasible (respectively, polynomial-time feasible) if there exist estimates

σ̂i computed from G (respectively, computed in polynomial time from G), that achieve with high probability
overlap at least ϵ for some ϵ > 0.

Remark. Zero overlap can always be achieved by taking σ̂i ≡ 1. In the case where νs ≡ 1/q, it can also be
achieved by assigning the σ̂i independently of G, in an i.i.d. manner.

An alternative definition of weak reconstruction consists in requiring that there exist estimates σ̂i such
that the two empirical distributions of the σi and σ̂i be asymptotically correlated, i.e. for some ϵ > 0, that
with high probability,

lim inf
n→∞

∑
s,t∈[q]

pn(s, t) ln

(
pn(s, t)

νsqn(t)

)
≥ ϵ, (6.2)
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where pn(s, t) = 1
n

∑
i∈[n] 1σi=s,σ̂i=t and qn(t) =

∑
s∈[q] pn(s, t).

The first notion always implies the second. By the argument of [9] in the proof of Theorem 5, it holds that
when ν is uniform on [q], the second property implies that a possibly different estimate σ̂′

i can be constructed
that achieves strictly positive overlap and thus in that case the two notions coincide. When ν is not uniform
however, the two notions may differ.

6.2 Weak community reconstruction implies tree reconstruction
We have the following

Lemma 6.1. Let d ≤ c ln(n) for c > 0 small enough, and let i ∈ [n]. Then conditional on σi = s, the law
of the d-neighborhood of i in G, constituted of graph edges and node spins, converges in variation to that of
the Poisson Galton-Watson branching process studied in the previous section.

We just sketch the idea and refer the reader to [9] for details. The Stein-Chen method entails that
|Poi(λ) − Bin(n, λ/n)|Var ≤ 2λ/n. We may further show that with high probability, the d-neighborhood
in G of node i is cycle-free, and that its size is o(nc

′
) for some constant c′ less than 1/2 for small enough

c > 0. The proof then consists in building the d-neighborhood of i by successively considering nodes j
already added to this neighborhood, and adding their yet undiscovered neighbors of each type s. At each
step, the probability that the number of newly added type s neighbors differs from Poi(αPσjs) is thus at
most O(nc

′−1) +O(1/n). The overall probability of failure is at most O(n2c
′−1) = o(1).

We need another Lemma, whose idea appeared in Mossel, Neeman and Sly [34], and which was extended in
Gulikers, Lelarge and Massoulié [17]. In both references, only the case of symmetric SBM on two communities
was treated, but the proof generalizes directly to give:

Lemma 6.2. Let i be chosen uniformly at random in [n], d ≤ c ln(n) for c > 0 small enough, U be the
d-neighborhood of i in G, V the set of nodes at distance d+ 1 from i in G and W = [n] \ (U ∪ V ). Then

∀ϵ > 0, lim
n→∞

P(|P(σi = s|σV ∪W , G)− P(σi = s|σV , G|U∪V )| ≥ ϵ) = 0.

Essentially the Lemma states that the spins σi on the graph G follow an approximate version of the
Markov random field conditional independence property.

Combined with the previous lemma it entails that, for randomly selected i and j, provided d → ∞,
assuming the tree reconstruction problem is infeasible, with high probability

P(σi = s|G, σW , σj = t) → νs.

One has a fortiori
P(σi = s|G, σj = t) → νs.

This implies that for any estimates σ̂i = fi(G), with high probability (using Bienaymé-Tchebitchev inequal-
ity), for all s, t,

pn(s, t) = νsqn(t) + o(1).

In turn this readily implies the following

Theorem 6.1. Reconstruction in the SBM is impossible according to the second, weaker definition (6.2)
proposed in the Remark 6.1 whenever the associated tree reconstruction is impossible.

The inverse implication is not expected to hold true in general, see for instance Moore [33] p.29, which
suggests the existence for a particular example of 5-community symmetric block model of parameter ranges
for which tree reconstruction is possible while the corresponding weak community reconstruction is not.

This begs the question: can one identify the exact condition on model parameters for which weak com-
munity reconstruction is feasible?
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6.3 Conjectured condition for community reconstruction
Such a condition has been rigorously identified in Coja-Oghlan et al. [11] for symmetric, disassortative
Stochastic Block Models. The corresponding results in [11] are in fact a confirmation of a more general pre-
diction from statistical physics that might be called the Bethe Ansatz, after the Bethe free energy introduced
in Chapter 4 for pairwise graphical models. We now try to convey its general idea.

Consider the density evolution equation (5.8) of the tree reconstruction problem associated with the
community reconstruction problem at hand. Let Q̂ denote any fixed point solution of (5.8).

The premise for the argument below is that this fixed point characterizes the distribution of messages
that are stationary points of belief propagation in a large graph limit, and hence candidates for distributions
achieving the minimum of the Bethe free energy.

Now, if the graph we are considering was a tree, for an arbitrary node i with degree Di, and i.i.d. samples
η1, . . . , ηDi

, according to formula (4.14), the conditional distribution µi of node i’s community given the rest
of the graph would read

µi(s) ∝ νs

Di∏
j=1

(
∑
sj∈[q]

Pssj

ηj(sj)

νsj
). (6.3)

In our particular setup, where Di admits a Poisson distribution, it turns out that µi is in fact distributed
according to Q̂.

Similarly, for an arbitrary edge (i, j), given i.i.d. samples η, η′ drawn according to Q̂, according to (4.15),
the conditional joint distribution µij of the types of nodes i and j would read

µij(s, s
′) ∝ Pss′

νs′
η(s)η′(s′). (6.4)

These can in turn be used to characterize the Bethe free energy of the corresponding stationary set of
messages, by applying formula (4.20), as:

GBethe({µi}, {µij}) =
∑

(ij)∈E
∑

si,sj∈[q] µij(si, sj)
[
− ln(

Psi,sj

νsj
) + ln(µij(si, sj))

]
+
∑

i∈V
∑

si∈[q] µi(si) [− ln νsi + (1−Di) ln(µi(si))]

≈ n(−E(Q̂)−H(Q̂)),

for functionals E and H defined by

−E(Q̂) :=

∫
Q̂(dη)

∑
s

η(s)[− ln(νs)] +
α

2

∫ ∫
Q̂(dη)Q̂(dη′)

∑
s,s′

µij(s, s
′)[− ln(

Ps,s′

νs′
)]

 ,

and

−H(Q̂) := α
2

∫ ∫
Q̂(dη)Q̂(dη′)

∑
s,s′∈[q] µij(s, s

′) ln(µij(s, s
′))

+
∑

d≥0 P(Poi(α) = d)
∫
· · ·
∫
Q̂(dη1) . . . Q̂(dηd)

∑
s∈[q] µi(s)(1− d) ln(µi(s)).

In the above formula, µij stands for the distribution in (6.4), and µi stands for the distribution in (6.3) with
Di = d.

The ansatz then states that when the graph on which we consider a Markov random field is locally tree-
like with long-range correlations that are “weak” in some suitable sense, the posterior distribution of spins
is well approximated by the minimizer Q∗ of the Bethe free energy functional we have just identified over
fixed points Q̂ of the recursive equation.

In turn, it predicts that the mutual information I(σ[n];G) between the observed graph G and the spin
vector σ[n] is asymptotically equivalent to n[

∑
s νs ln(1/νs)−H(Q∗)]. Thus reconstruction is feasible if and

only if H(Q∗) >
∑

s νs ln(1/νs).
[11] establishes correctness of this formula and adaptations thereof to various models (including symmetric

disassortative SBM, random graph coloring, and random linear binary codes). See also [13], which addresses
the related problem of establishing a law of large numbers for the logarithm of the partition function of
Gibbs measures on a sparse random graph.
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6.4 Failure of classical spectral methods in sparse case
Spectrum pollution: Combination of first and second moment methods imply that in each community s,
there exist nodes i with: degree d = Θ(ln(n)/ ln lnn), and all neighbors of degree at most δ ≪ d. Moreover
this still holds for some i in the complement of the giant component. Hence there are eigenvectors with
associated eigenvalue Θ(

√
ln(n)/ ln lnn) and support in some non-giant connected component. These would

not provide information on the spins. With some additional work one can show that
√
ln(n)/ ln lnn is the

correct order of magnitude for the Perron-Frobenius eigenvalue of such graphs.
Another argument for showing that information is not present in the eigenvectors related to large eigenval-

ues is as follows. Assume that for some eigenvalue µ, the corresponding normed eigenvector x is non-localized,
i.e. for some ϵ > 0, the set I of nodes i such that |xi| ≥ ϵ/

√
n has macroscopic size, i.e.

|I| ≥ ϵn.

Write then by the relation µx = Ax,
i ∈ I ⇒ µ

ϵ√
n
≤
∑
j∼i

|xj |.

Summed over i ∈ I this yields

µϵ2
√
n ≤

∑
j∈[n]

|xj | × |{i ∈ I : i ∼ j}| ≤
√∑

j∈[n]

d2j

by Cauchy-Schwarz, where dj is the degree of node j. Since the sum of squares of degrees concentrates
around n(α2 + α), we get with high probability:

µ ≤
√
α2 + α

ϵ2
.

Thus any eigenvalue µ that is large compared to λ cannot have an eigenvector that is delocalized. While not
a proof, this gives a plausibility argument that standard spectral clustering based on embedding nodes from
eigenvectors of leading eigenvalues of G’s adjacency matrix can’t lead to successful weak reconstruction, even
above the Kesten-Stigum threshold.

6.5 Spectral redemption
The Belief Propagation equations can be written in terms of distributions ψi→j that are passed along neighbor
nodes i ∼ j, and are updated as follows:

ψi→j
s =

νs
∏

k∼i,k ̸=j

∑
sk∈[q] ψ

k→i
sk

Rssk∑
t∈[q] νt

∏
k∼i,k ̸=j

∑
sk∈[q] ψ

k→i
sk

Rtsk

·

The following conjecture was made by Decelle et al. [12]:

Conjecture 6.1. When above the Kesten-Stigum threshold, BP initialized with random starting points con-
verges to some limit messages ψi→j

s such that positive overlap is achieved by σ̂i ∈ argmaxs∈[q]ψ
i
s, where

ψi
s ∝ νs

∏
j∼i

∑
sj∈[q]

ψj→i
sj Rssj .

Despite convincing numerical evidence, this conjecture is still open, and an analysis of the convergence
properties of regular BP message passing on G drawn from the Stochastic Block Model is still missing. The
challenge of analyzing BP therefore led Krzakala et al. [25] to consider its linearized version instead. Writing
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ψi→j
s = νs(1 + ϵi→j

s ), the first order linearization of BP around the trivial fixed point distribution ν reads,
using the relation between Rst and Pst and reversibility of P with respect to ν:

ϵi→j
s =

∑
k∼i,k ̸=j

∑
sk∈[q]

ϵk→i
sk

[Pssk − νsk ].

We can further drop the term νsk in the above since the normalization constraint implies that
∑

s ϵ
k→i
s νs = 0.

Introduce the non-backtracking matrix B, whose columns and rows are indexed by oriented edges (i→ j)
in graph G, hence it is of size 2m where m is the number of non-oriented edges of G, defined by

Bi→j,k→ℓ := 1j=k1ℓ ̸=i.

It is then readily seen that the linearized BP equations read

ϵ = (B⊤ ⊗ P )ϵ.

Krzakala et al. [25] thus conjectured that positive overlap can be achieved above KS by constructing
estimates σ̂i from the leading eigenvectors of non-backtracking matrix B. One motivation for this conjecture
is the separation between parameters Rst, νs and the non-backtracking nature of BP through the tensor
product between B and P . Thus a single spectral clustering algorithm based solely on B could extract signal
from G drawn from any SBM.

Characterization of spectrum of B:
Theorem 4 of [9] gives a characterization of the spectrum of B. To state it, we need the following notation.

Let λi(M) denote the eigenvalues of the mean progeny matrix αP sorted by decreasing absolute value, hence
λi(M) = αλi(P ). Let λi(B) denote the eigenvalues of the non-backtracking matrix B sorted by decreasing
modulus.

Let xi ∈ Rq denote an eigenvector of M associated with eigenvalue λi(M). Let yi ∈ R2m be defined for
any oriented edge e = (u, v) by yi(e) = xi(σu). Finally let zi = BℓB⊤ℓyi, where ℓ = c ln(n) for positive
sufficiently small constant c > 0. Then we have the following

Theorem 6.2. Let r0 = sup{i ∈ [q] : |λi(M)|2 > λ1(M)}. Then for all i ∈ [r0], |λi(B)− λi(M)| converges
to zero in probability. For i > r0, |λi(B)| ≤

√
λ1(M) + o(1).

Moreover for i ∈ [r0] such that eigenvalue λi(M) is simple, B admits an eigenvector ξi associated with
λi(B) that is asymptotically parallel to zi, i.e.

lim
n→∞

⟨zi, ξi⟩
∥zi∥ · ∥ξi∥

= 1.

Moreover for such i ∈ [r0] with i > 1, the vector ϕ ∈ Rn defined by ϕu =
√
n
∑

v∼u ξi(uv) is such that the
empirical distribution 1

n

∑
u∈[n] δ(σu,ϕu)converges in probability to the distribution of a pair (σ, ϕ) such that

I(σ, ϕ) > 0.

The intuition for why iterates of B applied to vectors yi might be good candidates for eigenvectors of B
is as follows. Fix some oriented edge u→ v. By definition of yi,

B⊤ℓyi(u→ v) =
∑
(e,f)

xi(σe)|{number of length ℓ nonbacktracking walks from (e, f) to (u, v)}|.

By coupling the neighborhood of node v with a GW branching process, the latter sum corresponds to the
martingale we studied earlier, up to factor (αλi(P ))ℓ, whose mean is xi(σu). It is uniformly integrable, hence
converges to a limit, with distribution that depends on σu, that we denote ∆u,v. Thus heuristically,

B⊤(B⊤ℓyi)(u→ v) ≈ (λi(M))ℓ+1∆u,v ≈ λi(M)yi(u→ v).

Still heuristically, this gives some indication for why the entries of vector ϕ, obtained by projecting eigenvector
ξi down to Rn, might be correlated with the spin vector, just as the census in the tree reconstruction problem
was correlated with the spin at the root node.
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Remark. In [41], the structure of the eigenvectors ξi of B when λi(M) has multiplicity larger than 1
is elucidated. [41] also establishes the following result. Let ξ(v) =

√
n
∑

u∼v ξ2(u, v), where ξ2 is a normed
eigenvector of B associated with λ2(B). Partition then the nodes v ∈ V into two sets I+, I− in a probabilistic
manner by letting

P(v ∈ I+|ξ2) =
1

2
+

1

2K
ξ(v)1|ξ(v)|≤K .

Assign label 1 to each node in I+ and label 2 to each node in I−. Then, for equal-sized communities (νr ≡ 1/r)
and when above the Kesten-Stigum threshold, this procedure achieves strictly positive overlap.

6.6 Existence of hard phase

Argument in Banks et al. [5]: consider the symmetric SBM on q blocks, with edge probabilities cin/n, cout/n.
The average degree d is [cin + (q − 1)cout]/q. The mean progeny matrix admits d as its Perron-Frobenius
eigenvalue, and λ2 = (cin − cout)/q is its only other eigenvalue (with multiplicity q − 1). Let λ := λ2/d.

Say that a partition of node set [n] is good if it splits it into q equal-sized sets and its number of
within-group edges min and its number of accross-group edges mout verify

|min −min| ≤ n2/3, |mout −mout| ≤ n2/3,

where min = (ncin)/(2q), mout = [n(q − 1)cout]/(2q). It is shown in [5] that, provided

d > dupper :=
2q ln(q)

[1 + (q − 1)λ] ln(1 + (q − 1)λ) + (q − 1)(1− λ) ln(1− λ)
,

then with high probability, any good partition necessarily has overlap β(d, q, λ) > 0 with the true partition,
where β(d, q, λ) is defined as the solution of a fixed-point equation. Thus a brute-force search succeeds to
achieve positive overlap with high probability. The proof follows the first moment method: it shows that
the expected number of good partitions with overlap below the announced one goes to zero as n→ ∞.

6.7 Nature of hard phase

The intuition for the nature of the hard phase is as follows. Feasibility corresponds to the fact that the Bayes
posterior distribution P(σ = ·|G) puts with high probability mass Ω(1) on a set of spin vectors whose overlap
is bounded away from zero. Hardness corresponds to the fact that for an initialization of belief vectors that
is independent of σ, with high probability BP iterations will converge to the uninformative, trivial fixed
point. The hard phase therefore corresponds to a case where the trivial fixed point for BP is attractive while
there exists a set of “good configurations” which captures sizeable mass in the posterior distribution of the
spin vector. Since the energy of the good configurations is lower than that of uncorrelated ones, there must
therefore exist an entropy barrier between the two stable points of BP (add plot).

6.8 Non-backtracking matrices and Ramanujan graphs

Ramanujan graphs, introduced by Lubotzky, Phillips and Sarnak [27] are by definition d-regular graphs
whose adjacency matrix A is such that

sup
λ∈Sp(A),|λ|̸=d

{|λ|} ≤ 2
√
d− 1;

see also Lubotzky [27] for more background. We now relate this property to that of the spectrum of the
nonbacktracking matrix B of the graph. Let thus G = (V,E) be a graph on n := |V | nodes with m := |E|
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edges, and define B to be the 2m × 2m matrix indexed by pairs (e, f) of oriented edges on the edge set E
of G such that

Bef = 1e2=f11e1 ̸=f2

where e = (e1, e2) and f = (f1, f2). We shall use the notation e−1 = (e2, e1), i.e. e−1 is the reversal of edge
e.

We assume that the oriented edges are ordered as e(1), . . . , e(2m) so that for i ≤ m, e(i+m) = e(i)−1.

Following Horton, Stark and Terras [18] set J =

(
0 Im
Im 0

)
. Then define the n × 2m start matrix S

and the n× 2m terminal matrix T by setting Sve = 1v=e1 , v ∈ V , e ∈ E, and Tve = 1v=e2 , v ∈ V , e ∈ E.
Further define A to be the graph’s adjacency matrix, D to be the diagonal matrix of node degrees and

Q = D − In.
We then have (Proposition 1 p. 14 in [18]):

SJ = T, TJ = S;
A = ST ′, SS′ = TT ′ = D = Q+ In;
B + J = T ′S.

(6.5)

We finally reproduce from [18] the identity between (n+ 2m)× (n+ 2m) matrices(
In 0
T ′ I2m

)(
(1− u2)In uS

0 I2m − uB

)
=

(
In − uA+ u2Q uS

0 I2m + uJ

)(
In 0

T ′ − uS′ I2m

)
, (6.6)

where u ∈ C is an arbitrary complex scalar, and which directly follows from (6.5).
Taking the determinant of the above gives the celebrated Ihara-Bass formula, that we now reproduce:

(1− u2)n−mDet(I − uB) = Det(I − uA+ u2Q). (6.7)

The previous identities (6.5,6.6) can further be used to establish basic correspondences between eigenvalue-
eigenvector pairs (λ, y) of B and and vectors x ∈ Cn in the kernel of the n×n symmetric matrix λ2In−λA+Q.
We have the following

Proposition 6.1. Let (λ, y) be an eigen-pair of B such that λ /∈ {−1, 0, 1}. Then the vector x := Sy is in
the kernel of λ2In − λA+Q.

Conversely, let x ∈ Cn be a non-zero vector in the kernel of λ2In − λA + Q, for some λ /∈ {−1, 0, 1}.
Then the vector y := (λJ − I2m)S′x is non-zero, and in the kernel of λI2m −B.

Proof. Let u = λ−1 and z = − u
1−u2Sy, where (λ, y) is an eigenpair of B such that λ /∈ {−1, 0, 1}. Write

(I − uA+ u2Q)Sy = Sy − uST ′Sy + u2(SS′ − In)Sy
= Sy − uS(B + J)y + u2(SJT ′S − S)y
= Sy − uSu−1y − uSJy + u2SJ(B + J)y − u2Sy
= −uSJy + u2SJu−1y + u2Sy − u2Sy
= 0,

where we used identities (6.5), the fact that y is an eigenvector of B with eigenvalue u−1, symmetry of J
and J2 = I2m.

For the converse statement, setting again u = λ−1, write

(I2m − uB)uy = (I2m − uB)(J − uI2m)S′x
= (J − uI2m − uBJ + u2B)S′x
= (JS′ − uS′ − u(T ′S − J)JS′ + u2(T ′S − J)S′)x
= (T ′ − uT ′SJS′ + u2T ′SS′ − u2T ′)x
= T ′(In − uST ′ + u2(Q+ In)− u2In)x
= T ′(In − uA+ u2Q)x
= 0,

where we used repeatedly the identities (6.5) and finished with the identity (In − uA+ u2Q)x = 0, holding
by assumption. To show that y ̸= 0, compute Sy = (λ2 − 1)x and use λ /∈ {−1, 1}, x ̸= 0.
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We then have the

Corollary 6.1. A d-regular graph is Ramanujan if and only if the spectrum of its non-backtracking matrix
B consists of eigenvalues with modulus d− 1 or at most

√
d− 1.

Proof. By Proposition 6.1, λ ∈ Sp(B) if and only if λ ∈ {−1, 0, 1} or λ + (d − 1)/λ ∈ Sp(A). Equivalently,

λ ∈ {−1, 0, 1} or λ =
µ±

√
µ2−4(d−1)

2 for some µ ∈ Sp(A). For |µ| = d, this gives λ ∈ {d − 1, 1}. Thus the
graph is Ramanujan if and only if the spectrum of B consists of eigenvalues in {−1, 0, 1, d − 1}, and equal

to µ±
√

µ2−4(d−1)

2 |µ| < dfor some µ with |µ| ≤ 2
√
d− 1. The corresponding eigenvalue has modulus

√
d− 1,

hence the result.

6.9 From Kesten-Stigum thresholds to the Baik-Ben Arous-Péché
phase transition

The Baik-Ben Arous-Péché transition in random matrix theory implies in particular the following (see
Benaych-Georges and Nadakuditi [7]). Consider a symmetric n × n noise matrix Xn, with independent,
zero mean, Gaussian entries with variance σ2/n off-diagonal and 2σ2/n on the diagonal. The Wigner semi-
circle law entails that its spectral measure converges almost surely to the distribution with density

√
4σ2 − x2

2σ2π
1|x|≤2σ.

Then for Pn with rank r and non-zero eigenvalues θi, i ∈ [r], such that |θ1| ≥ · · · ≥ |θr| one has the following
for all i ∈ [r] as n→ ∞:

λi(Xn + Pn)
a.s.→

{
θi +

σ2

θi
if |θi| > σ,

±2σ otherwise.
(6.8)

Note that reconstruction of the θi and the corresponding eigenvectors is again a planted structure recon-
struction problem, this time under a different assumption on the background noise in which the structure
has been planted.

A parallel can be drawn with Theorem 6.2. The adjacency matrix A corresponds, conditionally on the
node spins, to a noise matrix Xn with variances puv(1− puv) where puv =

Rσuσv

n . The sum of variances on
row u is thus asymptotic to ∑

s∈[q]

νsRσus = α = λ1(M).

We thus have the correspondance σ2 ↔ λ1(M). Moreover, the expectation of matrix A conditional on the
spins has rank at most q, and eigenvalues corresponding precisely to the spectrum of the mean progeny
matrix M . Thus the eigenvalues λi(M) are visible in the spectrum of B if and only if they satisfy the
Kesten-Stigum condition λi(M)2 > λ1(M).

This corresponds precisely to the condition |θi| > σ. Let us show that we can push the correspondence
further, at least when the average degree α is large. Assume that for some fixed u > 0,

λi(M)2 = (1 + u)α,

and that the degrees di of nodes are such that supi∈[n] |di − 1 − α| = o(α). In full rigour Theorem 6.2 is
proven for α = O(1); if it was extended to this range where α ≫ 1, we could justify the following heuristic
argument.

There exists λ = λi(B) = ±
√
(1 + u+ o(1))α. Thus,

Det[λ2I − λA+ αI + αϵ] = 0,

where ϵ is a diagonal matrix with entries α−1(di − 1− α) = o(1). Thus

Det[(λ/α)A− (λ2/α+ 1)I − ϵ] = 0
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The Bauer-Fike theorem implies that the spectrum of (λ/α)A− (λ2/α+ 1)I contains an eigenvalue that is
o(1). Thus A admits an eigenvalue µ that satisfies (using λ≪ α)

µ =
λ2/α+ 1 + o(1)

λ/α
= λ+

α

λ
+ o(1),

which corresponds precisely to (6.8).

6.10 Conclusion
Many exciting areas not covered here, e.g. Approximate Message Passing (see e.g. [20]), a method well suited
to analyze models with average degree α≫ 1, a regime for which averaging phenomena induce simplifications
compared to the sparse regime. A number of exciting open problems too: nature of hard phase, in terms
of landscape for Belief Propagation dynamics, not sufficiently understood; analysis of alternative planted
structure reconstruction problems. More subtle phenomena can also be considered, such as the spinodal
transition (see e.g. [39]), in some models displaying a phase where Belief Propagation successfully performs
non-trivial reconstruction, but nevertheless achieves suboptimal performance.

Finally, this domain sheds new light on the problem of computational complexity, bringing to bear tools
of statistical physics and information theory, and revealing a more refined picture than worst case approaches
popular in Computer Science do.
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Chapter 7

Detection problems

In the previous chapter we considered the problem of reconstructing some structure present in an observed
graph, namely the partition into blocks of nodes underlying the Stochastic Block Model distribution of the
graph.

We now consider the following hypothesis testing problem: given some graph, does it present a specific
underlying structure or not? More precisely, the null hypothesis H0 corresponds to the case where the
observed graph has no specific structure, e.g. it is drawn from the Erdős-Rényi distribution G(n, α/n), while
under H1 it displays some structure, e.g. a block structure for a graph drawn from the stocahstic block model
G(n, ν, (α/n)P ) for some irreducible, reversible transition matrix P on [q], with stationary distribution ν.
Below we will denote by Pn the distribution of the observations under the null hypothesis and by Qn the
corresponding distribution under the alternative hypothesis, omitting the subscript n when convenient.

The likelihood ratio Y = dP
dQ plays a key role in this hypothesis testing problem. Indeed the Neyman-

Pearson lemma states the following. A test T (G) ∈ {0, 1} that maximizes the probability of correct detection
P(T = 1) while guaranteeing a probability of false detection Q(T = 1) to be below a given threshold ϵ > 0
can be constructed by setting T = 1 if Y ≥ t, T = 0 if Y < t, and issuing a random value for T when Y = t,
for some choice of threshold t.

We shall adopt the following definition of detection:

Definition 7.1. We say that detection between {Pn} and {Qn} is feasible if there is a series of tests {Tn}
such that

lim
n→∞

(Pn(Tn = 0) +Qn(Tn = 1)) = 0.

Another relevant notion from hypothesis testing theory is the following

Definition 7.2. The sequence {Pn}n>0 of distributions is contiguous with respect to {Qn}n>0 if for any
sequence of events En, we have the following implication:

lim
n→∞

Qn(En) = 0 ⇒ lim
n→∞

Pn(En) = 0.

The following result is easily shown:

Lemma 7.1. Assume that there is a finite constant C > 0 such that supn>0 EQnY
2
n ≤ C, where Yn = dPn

dQn
.

Then the sequence {Pn}n>0 is contiguous with respect to {Qn}n>0.

Proof. For events En, write

Pn(En) = EQn
(1En

Yn) ≤
√
Qn(En)EQn

Y 2
n ≤

√
Qn(En)C.

The implication directly follows.

We will be using the following consequence:

73



Proposition 7.1. If {Pn} is contiguous with respect to {Qn}, and thus in particular when the assumption
of the previous lemma holds, detection between {Pn} and {Qn} is not feasible.

Proof. Let En = {Tn = 1}, where Tn is a test assumed to succeed at detection between the two se-
quences. Thus necessarily, limn→∞ Qn(En) = 0. By contiguity, it follows that limn→∞ Pn(En) = 0, and
thus limn→∞ Pn(Tn = 1) = 0. This contradicts successful detection, which requires instead Pn(Tn = 0) =
1− Pn(Tn = 1) to tend to zero.

Lemma 7.2. The variation distance |Pn −Qn|var is upper-bounded by 2
√
EQn

(Y 2
n )− 1. As a consequence,

if limn→∞ EQn
Y 2
n = 1, then limn→∞ |Pn − Qn|var = 0, and the two sequences {Pn}, Qn} are mutually

contiguous.

Proof. By definition,

|Pn −Qn|var = 2 supA |Pn(A)−Qn(A)| = 2 supA |EQn1A(1− Yn)|
≤ 2 supA

√
Qn(A)EQn

(Yn − 1)2

≤ 2
√

EQn
(Yn − 1)2

= 2
√

EQnY
2
n − 1,

where we used the fact that EQn(Y ) = 1. The fact that mutual contiguity holds when the variation distance
|Pn −Qn|var tends to zero follows from |Pn(En)−Qn(En)| ≤ |Pn −Qn|var.

We will discuss first detection in the binary symmetric block model, and then consider the planted clique
detection model, a variant with a different scaling in terms of edge presence probabilities and block sizes.

7.1 Detection for the binary symmetric block model

The spins σi, i ∈ [n] are chosen uniformly, i.i.d. in {±}, and P((uv) ∈ E(G)|σ[n]) equals a/n if σi = σj , and
b/n otherwise. This corresponds to ν = (1/2, 1/2), α = (a+ b)/2, and

P =

( a
a+b

b
a+b

b
a+b

a
a+b

)
.

We know from the previous chapter that block reconstruction is possible in polynomial time if τ := (a−b)2

2(a+b) > 1,
and impossible (irrespective of computational resources) if τ < 1. The same transition point determines
feasibility of detection:

Theorem 7.1. Let P denote the law of the binary stochastic block model with parameters (n, a, b), and Qn

the law of the Erdős-Rényi graph G(n, α/n), where α = (a+ b)/2. Let τ := (a−b)2

2(a+b) . Then detection is feasible
when τ > 1, and infeasible when τ < 1.

Proof. We rely for the direct part on Theorem 6.2, which guarantees that, when τ > 1, the two eigenvalues
λ1(B) and λ2(B) of the non-backtracking matrix of the symmetric Stochastic Block Model converge in
probability as n → ∞ to α = (a + b)/2, and (a − b)/2 respectively. On the other hand, Theorem 6.2
implies that under distribution Qn, we have again convergence in probability of λ1(B) to α, but with high
probability, |λ2(B)| ≤

√
α+ o(1).

Thus the test Tn = 1 if and only if |λ2(B)| ≥ (1 + ϵ)
√
α succeeds whenever (1 + ϵ)

√
α < |a− b|/2.

To show the converse when τ < 1, we shall rely on Proposition 7.1, and establish that the likelihood ratio
Yn has bounded second moment under Qn. To ease notation, we drop indices n. Write

Yn = 2−n
∑

s∈{±}n

P(G|σ[n] = s)

Q(G)
= 2−n

∑
s∈{±}n

∏
(u,v)

Wuv(s), (7.1)
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where the product is over unordered pairs (u, v) of nodes in [n], and

Wuv(s) :=


2a
a+b if su = sv and (uv) ∈ E(G),
2b
a+b if su ̸= sv and (uv) ∈ E(G),

1−a/n
1−(a+b)/(2n) if su = sv and (uv) /∈ E(G),

1−b/n
1−(a+b)/(2n) if su ̸= sv and (uv) /∈ E(G).

For fixed s, t ∈ {±}n, we let Wuv =Wuv(s) and Vuv =Wuv(t). It can be checked directly that the following
identities hold:

EQWuv = 1, (7.2)

susvtutv = + ⇒ EQWuvVuv = 1 +
1

n

(a− b)2

2(a+ b)
+

(a− b)2

4n2
+O(n−3), (7.3)

susvtutv = − ⇒ EQWuvVuv = 1− 1

n

(a− b)2

2(a+ b)
− (a− b)2

4n2
+O(n−3), (7.4)

(7.5)

Let now ρ = ρ(s, t) := 1
n

∑
i∈[n] siti, and S± := |{(u, v) : susvtutv = ±}|. One then has:

ρ2 =
1

n
+

2

n2

∑
u̸=v

susvtutv =
1

n
+

2

n2
(S+ − S−).

Also, 2n−2(S+ + S−) = 1− n−1. Thes two equations give

S+ = (1 + ρ2)
n2

4
− n

2
, S− = (1− ρ2)

n2

4
. (7.6)

Put together, these relations will imply that, when τ < 1, one has

EQY
2
n = (1 + o(1))

e−τ/2−τ2/4

√
1− τ

, (7.7)

which will then imply contiguity of Pn with respect to Qn, and hence infeasibility of detection. We now
establish (7.7). Letting γ = τ

n + (a−b)2

4n2 , Write

EQY
2
n = 2−2n

∑
s,t∈{±}n

∏
(u,v) EQWuvVuv

= 2−2n
∑

s,t∈{±}n(1 + γ +O(n−3))S+(1− γ +O(n−3))S− ,

where we used the representation (7.1) of Yn together with (7.3) and (7.4). Using the relation (1+x/n)n
2

=

(1+o(1))enx−x2/2, valid for fixed x as n→ ∞, replacing in the last expression S+ and S− by their expressions
(7.6), we obtain

EQY
2
n = (1 + o(1))e−τ/2−τ2/42−2n

∑
s,t∈{±}n

exp

(
ρ2

2
[
(a− b)2

4
+ nτ ]

)
.

The summation together with its prefactor 2−2n can be interpreted as the expectation E exp(Z2
n/2[τ + (a−

b)2/(4n)]) where Zn = n−1/2
∑n

i=1 ξi, and the ξi are i.i.d. uniform on {±}.
By the central limit theorem, and continuity of the function z → exp(τz2/2), the random variable

exp(τZ2
n/2) converges in distribution as n→ ∞ to exp(τZ2/2), where Z ∼ N (0, 1). To conclude, it remains

to show that limn→∞ E exp(Z2
n/2[τ + (a − b)2/(4n)]) = (1 − τ)−1/2. This will follow form the fact that

E exp(τZ2/2) = (1 − τ)−1/2 (which is readily verified), and uniform integrability of the random variables
exp(τZ2

n/2). To establish this uniform integrability, write

P(eτZ
2
n/2 ≥M) = P(|Zn| ≥

√
2 ln(M)/τ) ≤ 2e−2 ln(M)/(2τ),

where the last inequality follows from Hoeffding’s inequality. This last term reads 2M−1/τ , and is integrable
in M for M larger than 1, which guarantees uniform integrability, and the announced convergence.
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Remark. The above proof is taken from Mossel, Neeman and Sly [34]. For the direct part of the proof, they
construct a test based on counts of short cycles in the graph rather than on the second largest eigenvalue of
the non-backtracking matrix B as we do here.

The authors of [34] further show, for τ < 1, contiguity of Qn with respect to Pn. This implies that
consistent estimation of model parameters a, b is impossible. Indeed assume that there is an estimator ân that
converges in probability under Pn to a. Then for arbitrary fixed ϵ > 0, let En = {|â− a| ≥ ϵ} , Pn(En) → 0.
However the Erdős-Rényi graph G(n, α) is also a binary symmetric block model with parameters identical to
α. The estimator â should thus converge in probability to α under Qn, a contradiction when a ̸= α.

7.2 Planted clique detection: informational threshold

We consider as a null model (hypothesis H0) the Erdős-Rényi graph G(n, 1/2), and for some integer k > 0,
as the alternative hypothesis H1, an ErdHos-Rényi graph distributed as under H0, to which we added all
the edges connecting nodes in a set K of siz k, chosen uniformly at random from k-subsets of [n]. We shall
denote by

(
[n]
k

)
the collection of such subsets.

We then have the following

Theorem 7.2. Let ϵ > 0 be fixed. Assume that k = (1−ϵ)2 log2(n). Then the variation distance |Qn−Pn|var
tends to zero as n→ ∞. The two sequences are thus contiguous, and detection is infeasible.

On the other hand, when k ≥ (1 + ϵ) log2(n), detection is feasible based on the following test: select H1

if and only if the observed graph contains a clique of size k0 = (1 + ϵ) log2(n).

Proof. For the first part, we shall rely on Lemma 7.2 and show that under Qn, the second moment of the
likelihood ratio Yn goes to 1 as n→ ∞. Notice first that

Yn(g) = 1

(nk)

∑
C∈([n]

k )
Pn(G=g|K=C)

Qn(g)

= 1

(nk)

∑
C∈([n]

k )
2(

k
2)1C clique of g.

Then

EQY
2
n =

(
1

(nk)

)2∑
C,C′∈([n]

k )
22(

k
2)Q(C,C ′ cliques of G)

= 1

(nk)

∑
C∈([n]

k )
22(

k
2)Q(C, [k] cliques of G)

= 1

(nk)

∑k
ℓ=0 2

2(k2)
(
k
ℓ

)(
n−k
k−ℓ

) (
1
2

)2(k2)−(ℓ2)
≤ 1

(nk)

∑k
ℓ=0

(
k
ℓ

)(
n−k
k−ℓ

)
2kℓ/2,

where we used symmetry with respect to the set C ′ to fix it to C ′ = [k], introduced the size ℓ of C ′ ∩C, and
finally bounded

(
ℓ
2

)
by kℓ/2. By replacing k by its upper bound (1− ϵ)2 log2(n), the last term in the above

display is upper-bounded by n(1−ϵ)ℓ. We thus have

EQY
2
n ≤ (1 + o(1)) k!

nk

∑k
ℓ=0

(
k
ℓ

)
nk−ℓ

(k−ℓ)!n
(1−ϵ)ℓ

≤
∑k

ℓ=0

(
k
ℓ

)
k!

(k−ℓ)!n
−ϵℓ.

Computing the ratio of consecutive terms in the above sum, it follows that these are decreasing with ℓ, so
that

EQY
2
n ≤ 1 + k

(
k

1

)
k!

(k − 1)!
n−ϵ = 1 + k3n−ϵ = 1 + o(1).

This concludes the first part of the proof.
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We now show that with high probability under Qn, G contains no clique of size k0 = (1 + ϵ) log2(n). To
that end we use the union bound:

Qn(G contains a clique of size k0) ≤
(
n
k0

)
Qn([k0] clique of G)

=
(
n
k0

)
2−(

k0
2 )

≤ nk0n−(1+ϵ)(k0−1)

≤ n−ϵk0+1+ϵ,

and for fixed ϵ > 0, this last term goes to zero as n → ∞. Thus the probability of deciding H1 under Qn

goes to zero as n→ ∞, while by design, the test always decides H1 when H1 holds.

7.3 Planted clique detection: computational threshold

In this section we shall establish that, provided the size parameter k verifies k = Ω(
√
n), detection and

reconstruction of a planted clique of size k are both feasible in polynomial time.
We shall consider spectral methods. Their analysis will rely on the following result, that follows from

Theorem 2.1.22 in [3]. It applies to so-called Wigner matrices, that is n × n symmetric matrices M with
i.i.d. entries Mii = Yi on the diagonal, i.i.d. entries Zij =Mij off diagonal, i ∈ [n], j ∈ [n], i < j, such that
E(Y1) = E(Z12) = 0, Var(Z12) = 1:

Theorem 7.3. Consider an n × n Wigner matrix M as above. Assume moreover that, for some fixed
constant c > 0, it holds that

∀k ≥ 1, rk := max(E(|Y1|k,E(|Z12|k)) ≤ kck. (7.8)

Then the largest eigenvalue λ1(M), multiplied by 1/
√
n, converges in probability to 2 as n→ ∞.

Moreover, for all fixed δ > 0 and c′ > 0, one has

P(λ1(M) ≥
√
n(2 + δ)) = o(n−c′). (7.9)

Remark. The second property is obtained by a careful application of Füredi and Komlos’ trace method, of
which we gave a crude illustration in the first chapters. This yields the upper bound

P(λ1(M) ≥
√
n(2 + δ)) ≤ n(1 + δ/2)−2k 1

1− kc/n
,

where c is the constant appearing in (7.8), and k is any integer such that kc < n. The result then follows by
choosing k = n1/2c.

Let G0 be a G(n, 1/2) Erdős-Rényi graph, and K a random subset of [n] of size k. To determine whether
we observe G0 or G1, that is G0 plus the added clique K, and in the latter case estimate set K, we proceed
as follows.

For some fixed ϵ > 0, first remove uniformly at random, and independently of the edges in the observed
graph G, ϵn nodes from [n], and consider the induced graph G′ on the remaining n′ := (1− ϵ)n nodes. Let
K ′ be the nodes of the planted clique, if any, retained in G′, and k′ := |K ′| its size.

Consider then the following n′×n′ matrices associated with G′
0 and G′

1, the induced graphs without and
with planted clique:

S0,1
ij =

{
+1 if (i, j) ∈ E(G′

0,1),
−1 otherwise.

Then S0 is a Wigner matrix, to which Theorem 7.3 applies, yielding for all fixed δ > 0, c′ > 0:

P(λ1(S0) ≥
√
n′(2 + δ)) = o(n−c′). (7.10)
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The difference ∆ := S1 − S0 is given by

∆ij =

{
|S0

ij | − S0
ij if i, j ∈ K ′,

0 otherwise.

Note ∆̄ := E(∆|K ′). This is a block matrix, with eigenvector (1/
√
k′)1K′ , associated with eigenvalue k′ − 1.

Moreover, matrix ∆− ∆̄ is, conditionally on K ′, a Wigner matrix on its K ′ ×K ′ block, and zero elsewhere.
Theorem 7.3 applies to give for all δ, c′ > 0:

P(λ1(∆− ∆̄) >
√
k′(2 + δ)|K ′) = o(k′−c′).

Write then
S1 = ∆̄ +W,

where W =W 0 + (∆− ∆̄).
We then have the following

Theorem 7.4. Assume that k = θ
√
n, where θ > 4 and ϵ > 0 is such that θ(1− ϵ) > 4. Fix r > 0 such that

θ(1− ϵ)− 2 > r > 2.
Let S be the signed matrix constructed from G′, that will coincide with Si under Hi, i ∈ {0, 1}. Then the

test that decides H1 if λ1(S) ≥ r
√
n′ and H0 otherwise succeeds with probability 1− o(n−c′) for all c′ > 0.

Proof. Under H0, then λ1(S) = λ1(S
0) ≤ (2 + δ)

√
n′ with probability 1 − o(n−c′) for all fixed δ > 0. The

announced guarantee holds because δ = r − 2 > 0 by assumption.
Under H1, using Weyl’s inequality,

λ1(S) ≥ λ1(∆̄)− ∥W 0∥op − ∥∆− ∆̄∥op.

Thus for all δ, c′ > 0 fixed, conditional on K ′, with probability 1 − o(n−c′), λ1(S) ≥ k′ − 1 − (2 + δ)
√
n′ −

(2 + δ)
√
k′. Since, for any ϵ′ > 0, with probability 1− o(n−c′) one has k′ ≥ (1− ϵ− ϵ′)k ≥ θ(1− ϵ− ϵ′)

√
n′,

the result follows by our choice of r.

Remark. The setting aside of a set J of ϵn nodes is in fact not necessary for detection, as can be seen from
the previous proof. Its use will appear in the estimation of the planted clique K.

We now turn to the estimation of K, assuming that we are under H1. Let x be a normed eigenvector of S1

associated with λ1(S1). Then, by the results on perturbations of eigenvectors, provided that 2∥W∥op < k′−1,
we have

|⟨x, 1/
√
k′1K′⟩| ≥

√
1−

∥W∥2op
[k′ − 1− ∥W∥op]2

,

and the right-hand side is β = Ω(1) with probability 1 − o(n−c′), provided θ(1 − ϵ) > 4. Thus we have for
some sign s:

s
∑
i∈K′

xi ≥ β
√
k′,

and a fortiori: ∑
i∈K′

|xi| ≥ β
√
k′.

Let
C = {i ∈ K ′ : |xi| > α/

√
k′}, D = {i /∈ K ′ : |xi| > α/

√
k′},

where α > 0 is a constant chosen strictly less than β. We then have:

β
√
k′ ≤

∑
i∈C

|xi|+ k′α/
√
k′.
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Also, by Cauchy-Schwartz inequality, ∑
i∈C

|xi| ≤
√

|C|.

Thus: √
|C| ≥ (β − α)

√
k′.

Also, we have
α2

k′
(|C|+ |D|) ≤

∑
C∪D

x2i ≤ 1.

Thus, among the nodes i ∈ C ∪D, at least a fraction (β − α)2α2 belongs to C.
We now use the set J of ϵn nodes initially set aside. For each j ∈ J , if it does not belong to K, it has

Bin(|C|+ |D|, 1/2) neighbors in C ∪D. If it does belong to K on the other hand, it has |C|+Bin(|D|, 1/2)
neighbors within C ∪D. Thus, selecting some suitable ϵ′ > 0, and letting

J∗ := {j ∈ J :
∑

i∈C∪D

1j∼i ≥ (|C|+ |D|)(1/2 + ϵ′)}

will, for each constant c′ > 0, with probability 1− o(n−c′), contain all nodes in J ∩K and no other.
The estimation procedure then consists in returning, as an estimate of K, those nodes in J∗ together

with the nodes i of G′ that are neighbors of all nodes j ∈ J∗. By the previous analysis, for k = θ
√
n with

θ(1 − ϵ) > 4, this method succeeds with high probability. Indeed, on the event that J∗ = J ∩K, all nodes
in K ′ are automatically included in the estimated set K̂, while each node of G′ not in K ′ is connected to all
nodes in J∗ with probability 2−|J∗|. Thus for all c′ > 0, with probability 1− o(n−c′), K̂ = K.

It now remains to address the case when k = θ
√
n with θ = Ω(1) and θ ≤ 4. In that situation, we can

rely on the following technique due to Alon et al. [1]. Let ℓ > 0 be an integer such that θ > 4
√
2−ℓ. Consider

detection first.
Pick sequentially all subsets of ℓ vertices. If they form a clique, consider the collection of other nodes

that are neighbors of each of them. Under H0, these remaining nodes are connected according to an Erdős-
Rényi graph, and thus the test based on the leading eigenvalue of the associated S matrix will fail, and this
with high probability for the polynomially many such collections of ℓ vertices, in view of our guarantee in
1− o(n−c′) on the success probability of each such test.

Under H1, for some collection of ℓ vertices all belonging to the planted clique K ′, the derived graph will
consist of K ′−ℓ nodes in the clique, plus n′′ = Bin(n′−K ′, 2−ℓ) vertices. Besides clique edges, the remaining
edges in the derived graph are present with probability 1/2. This is thus a graph with n′′ ≈ 2−ℓn′ nodes
and a planted clique of size θ

√
n. The ratio θ

√
n/

√
n′′ is thus strictly larger than 4 by our choice of ℓ.

By our previous analysis, the test must then succeed with high probability on such an induced graph.
Again by the previous analysis, with high probability, on such an induced graph we can apply our detection
procedure based on the set J of ϵn nodes initially set aside, and this will allow reconstruction of the planted
clique.

We have thus shown the following

Theorem 7.5. For k = θ
√
n, and θ = Ω(1), there exist polynomial time procedures which succeed with high

probability for (i) detecting whether a size-k clique has been planted in a G(n, 1/2) Erdős-Rényi graph, and
(ii) identifying all nodes in the planted clique.
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Chapter 8

Semi-definite programming approaches

A semi-definite program is an optimization program of the following form:

Minimize ⟨C,X⟩
Over X ∈ S+

n

Such that ⟨Ai, X⟩ = bi, i = 1, . . . ,m,

where S+
n is the cone of semi-definite positive symmetric n×n matrices, ⟨A,B⟩ = Tr(AB⊤) is the Frobenius

scalar product between matrices, C,A1, . . . , Am are symmetric n× n matrices, and b1, . . . , bn ∈ R.
The key property of such a program is that it is a convex minimization problem. Indeed, S+

n is a
convex cone, as can be readily verified from the definition of positive semi-definiteness. It can be solved in
polynomial time, e.g. using the ellipsoid method initially developed by Kamarkar to solve linear problems.
More precisely, a solution within an additive error of ϵ can be found in time polynomial in n, m and log(1/ϵ).

Several NP-complete combinatorial optimization problems admit convex relaxations into semi-definite
programs, whose solution (accessible in polynomial time) can be post-processed to yield an approximate
solution of the original combinatorial optimization problem with bounded sub-optimality.

This chapter will introduce the Goemans-Williamson approximate solution to the max-cut graph parti-
tioning algorithm. It will then establish the Grothendieck inequality, and how it can lead to approximation
of the cut-norm of matrices. Finally it will illustrate an approach to obtain non-trivial block reconstruction
in stochastic block model well above the Kesten-Stigum threshold, based on the solution of an adequate
semi-definite program.

8.1 Max-cut and the Goemans-Williamson algorithm

Given a graph G = (V,E), the max-cut problem amounts to finding a partition of V into two sets V−, V+
such that the number |E(V+, V−)| of edges across this partition is maximal. It is NP-complete, contrarily to
the min-cut problem which, thanks to the max-flow min-cut theorem, can be solved in polynomial time.

Letting A denote the adjacency matrix of G, the max-cut optimization problem can be written as

Maximize
∑

u,v∈[n]Auv[1− Yuv]

Over Y ∈ S+
n

Such that Yuv = σuσv, u, v ∈ [n]
where σu ∈ {+1,−1}, u ∈ [n].

We let MC(G) denote the optimal value of this problem. Equivalently, the last constraint requires that Y is
of rank 1, and has all its entries in {−1, 1}. If we suppress this last constraint, and only impose that Yuu = 1
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for all u ∈ [n], we obtain the following semi-definite relaxation:

Maximize
∑

u,v∈[n]Auv[1− Yuv]

Over Y ∈ S+
n

Such that Yuu = 1, u ∈ [n].

We let GW (G) denote the optimal value of this problem. By construction, GW (G) ≥MC(G).
Assume that we have obtained an optimal solution Y ∗. Taking a symmetric square root Z of matrix

Y ∗, and noting zu the u-th column of Z, one has Y ∗
uv = ⟨zu, zv⟩, and the constraint on the diagonal of Y ∗

guarantees that the vectors zu lie on the unit sphere Sn−1 of Rn.
The zu vectors can then be used in a randomized algorithm as follows.

1. Pick a uniform vector z on Sn−1. Construct the sign vector σ by letting σu = sign(⟨z, zu⟩). Let C(σ)
denote the corresponding cut-size.

2. Repeat N times.

3. Output the largest cut obtained over the N iterations.

One then has the following result:

Theorem 8.1. The expected value E(C(σ)) of the cut resulting from the above procedure is larger than
0.878MC(G).

Proof. For two indices u, v, one has

P(σu = +, σv = −) =
arccos⟨zu, zv⟩

2π
·

Therefore
EC(σ) =

∑
u,v∈[n]Auv2

arccos⟨zu,zv⟩
2π

= 1
π

∑
u,v∈[n]Auv arccos⟨zu, zv⟩.

It can be verified by calculus that for all x ∈ [−1, 1],

1

π
arccos(x) ≥ β

1

2
(1− x),

where β = 0.87856. This implies that EC(σ) ≥ βGW (G), and the result follows from GW (G) ≥MC(G).

Corollary 8.1. For ϵ > 0, the above randomized algorithm outputs a cut that is less than (1 − ϵ)βMC(G)
with probability at most [1 + ϵC̄/(n2/4− C̄)]−N , where C̄ := EC(σ).

The corollary thus shows that for large enough N , the randomized algorithm produces with high proba-
bility a cut that is within β(1−ϵ) of MC(G). It simply relies on the fact that, letting p = P(C(σ) ≤ (1−ϵ)C̄),
since C(σ) ∈ [0, n2/4], one has

p(1− ϵ)C̄ + (1− p)n2/4 ≥ C̄,

so that p ≤ [n2/4− C̄]/[n2/4− C̄ + ϵC̄].

Remark. A more detailed presentation can be found in Mohar [31], which describes in particular a deran-
domization scheme due to Goemans and Williamson, allowing to find a cut of size at least βMC(G) with
probability 1 in polynomial time.
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8.2 The Grothendieck inequality
For a rectangular matrix M ∈ Rn×m, consider the following norm:

∥M∥∞→1 := sup
xi,yj∈{−1,1}

∑
i∈[n],j∈[m]

Mijxiyj .

A semi-definite relaxation of the combinatorial optimization defining ∥M∥∞→1 is as follows:

Maximize
∑

i∈[n],j∈[m]Mij⟨ui, vj⟩
Over ui, vj ∈ Rn+m

Such that∥ui∥ = 1, ∥vj∥ = 1.
(8.1)

To see that this is indeed a semi-definite program, one may rewrite the objective function as ⟨M̂, Y ⟩ where
M̂ and Y are square symmetric matrices of size n+m, M̂ is given by

M̂ =
1

2

(
0 M⊤

M 0

)
·

The matrix Y is assumed semi-definite positive, with ones on the diagonal. Then considering a square
root of matrix Y , its first m columns as vectors vj , and its last n columns as vectors ui, it follows that
Ym+i,j = ⟨ui, vj⟩, and the maximization of ⟨M̂, Y ⟩ over semi-definite positive Y with ones on the diagonal
is indeed equivalent to the above optimization.

Let f(M) denote the value of the semi-definite program (8.1). Clearly, f(M) ≥ ∥M∥∞→1. The
Grothendieck inequality is the following

Theorem 8.2. For any n×m real matrix M , the optimal value f(M) of (8.1) satisfies

f(M) ≤ KG∥M∥∞→1, (8.2)

for some universal constant KG, with KG ≤ π
2 ln(1+

√
2)

.

Proof.

see Alon and Naor [2]). Our in

8.3 Application: semi-definite programming for block reconstruc-
tion in the SBM
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Part III

Spectral methods for the sparse SBM
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Chapter 9

Local convergence of sparse SBMs

We begin the systematic study of the sparse SBM by studying the local structure around an arbitrary vertex.
Throughout this chapter, G is a random graph generated according to SBM(n, π, P/n), with average degree
d.

Preliminaries
Labeled rooted graphs A labeled rooted graph is a triplet g∗ = (g, o, σ) consisting of a graph g = (V,E),
a root o ∈ V , and a labeling function σ : V → N. The set of such graphs with V ⊆ N will be denoted by G∗.
The notions of distance, induced subgraphs and neighbourhoods extend naturally to this setting.

For a graph g = (V,E), x ∈ V for t ≥ 0, we denote by (g, x)t the subgraph of G induced by the vertices
at distance at most t from x, rooted at x. If g has a label function σ, we can consider (g, x)t as an element
of G∗ as well. The boundary of this set, or equivalently the set of vertices at a distance exactly t from x, is
written as ∂(g, x)t.

When the root x is chosen uniformly at random in V , this turns g into a random element of G∗, denoted
U(g).

Notions of weak convergence For two rooted (possibly labeled) graphs (g, o), (g′, o′), define

k = sup{t ∈ N : (g, o)t ≃ (g′, o′)t},
where the isomorphism between (g, o)t and (g′, o′)t also preserves labels. Then, we can define the distance
between (g, o) and (g′, o′) as

d∗((g, o), (g
′, o′)) = 2−k, (9.1)

with the convention that 2−∞ = 0. This turns G∗ into a compact metric space and hence we can define a
weak convergence of measures:

µn
D−→ µ ⇐⇒ lim

n→∞
Eµn

f = Eµf (9.2)

for any function f : G∗ → R that is continuous with respect to the metric d∗. Since (G∗, d∗) is a totally
disconnected metric space, the following equivalence also holds: the sequence (µn)n∈N converges weakly to
µ if and only if for all finite rooted graphs γ and depth t ≥ 0,

lim
n→∞

Pµn((g, o)t ≃ γ) = Pµ((g, o)t ≃ γ). (9.3)

Any of those equivalent definitions corresponds to the so-called Benjamini-Schramm convergence, from the
seminal work [8].

In this chapter, we show in essence that the random graph U(G) converges in distribution to the Galton-
Watson tree (T, ρ) defined in [TODO]. We will consider both versions of the weak convergence, and show
slightly stronger results in both cases: we show (9.3) for a depth t that is logarithmic in n, and we provide
rigorous convergence speed bounds for specific functionals in (9.2).
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9.1 Neighbourhood growth rates
In expectation, the size of ∂(G, x)t (resp. ∂(T, ρ)t) grows at most like dt. We provide quantitative versions
of this bound.

Lemma 9.1. There exists absolute constants c0, c1 > 0 such that for any s > 0 and x ∈ V ,

P
(
∀t ≥ 0, |∂(G, x)t| ≤ sdt

)
≥ 1− c0e

−c1s, (9.4)

and the same holds for (T, ρ).

Proof. We begin by showing that this result holds for (T, ρ). For k ≥ 1, define

εt = d−t/2
√
t and ft =

t∏
t′=1

(1 + εt′).

Since the series
∑
εt is bounded, so is ft, and hence there exists a constant c1 so that for all t ≥ 1,

εt ≤ c1 and 1 ≤ ft ≤ c1. (9.5)

Let St = |∂(T, ρ)t|; we have S0 = 1, and for t ≥ 0

St+1 =

St∑
k=1

Yk,

where the Yk are i.i.d Poi(d) random variables. By a Chernoff bound, for any integer ℓ ≥ 1 and s ≤ 1,

P

(
ℓ∑

k=1

Yk ≥ ℓds

)
≤ e−ℓµ1γ(s), (9.6)

where we defined γ(s) = s log(s)− s+ 1. In particular, we have

P
(
St+1 ≥ sft+1d

t+1
∣∣ St ≥ sftd

t
)
≤ e−sdt+1ftγ(1+εt) ≤ e−θsdt+1ε2t+1 = e−θs(t+1),

using the existence of some θ > 0 such that γ(1 + x) ≥ θx2 for x ∈ [0, c1].
Finally, using the bounds in (9.5), for any s ≥ max(1/θ, 1/c1),

P(∃t : St ≥ sc1d
t+1) ≤

∞∑
t=1

e−θst =
e−θs

1− e−θs
,

from which the statement of Lemma 9.1 ensues for suitably redefined constants c0, c1.
Now, consider the random graph x; conditioned on (G, x)t, if y ∈ ∂(G, x)t has type i, the number of

undiscovered neighbors of y is upper bounded stochastically by

Vi =

r∑
j=1

Vij ,

where the Vij are independent random variables with Vij ∼ Bin(ni,Wij/n). Hence, for any θ ≥ 0, using that
1 + x ≤ ex we get that

E
[
eθVi

]
=

r∏
j=1

(
1− πiWij

ni
+
πiWij

ni
eθ
)ni

≤ exp

(eθ − 1)

r∑
j=1

πiWij


= e−d(eθ−1),

which is the charactersitic function of a Poi(d) random variable. Hence, the inequality (9.6) also holds for
G, and the same proof applies.
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This tail bound can then be turned into moment bounds via classical arguments

Lemma 9.2. There exists a universal constant c such that for every p ≥ 1:

E
[
max
t≥0

(
|∂(G, x)t|

dt

)p] 1
p

≤ cp and E
[
max
t≥0

max
x∈[n]

(
|∂(G, x)t|

dt

)p] 1
p

≤ c(ln(n) + p)

As a result, for any t ≥ 0, p ≥ 1, we have

E[|(G, x)t|p]
1
p ≤ c′pdt and E

[
max
x∈[n]

|(G, x)t|p
] 1

p

≤ c′(ln(n) + p)dt.

The same inequalities hold for (T, ρ) (resp. n independent copies of (T, ρ)).

Proof. For any p ≥ 0

E
[
max
t≥0

(
|∂(G, x)t|

dt

)p]
= p

∫ ∞

0

sp−1P
(
max
t≥0

|∂(G, x)t|
dt

≥ s

)
ds

≤ c0p

∫ ∞

0

sp−1e−c1sds

≤ cpp!

via the Gamma function expression for the factorial. This implies the first inequality; the second one is done
identically, using

P
(
max
t≥0

max
x∈[n]

|∂(G, x)t|
dt

≥ s

)
≤ max

1,
∑
x∈[n]

P
(
max
t≥0

|∂(G, x)t|
dt

≥ s

) .

Now, for any t ≥ 0,

|(G, x)t| =
t∑

t′=0

dt
′ |∂(G, x)t′ |

dt′
≤ c′dt max

t′≥0

|∂(G, x)t′ |
dt′

We can then take the p-th power and the expectation on both sides to get the desired result.

Taking p = ln(n), and using the Markov inequality, the following easy corollary ensues:

Corollary 9.1. There exists an absolute constant c > 0 such that with probability at least 1− 1/n, for any
x ∈ [n] and t ≥ 0,

|(G, x)t| ≤ c ln(n)dt

9.2 Weak convergence of sparse SBMs
We now consider the convergence of local subgraphs of G, by showing the existence of a coupling between G
and (T, ρ) up to logarithmic depth. The main ingredient of this section is the following exploration process
of the neighbourhood of x ∈ [n]:

Definition 9.1. Start with A0 = {x}, and at stage t ≥ 0, if At is not empty, take a vertex xt in At at
minimal distance from v, reveal its neighbourhood Nt in [n]\At, and update At+1 = (At∪Nt)\{xt}. Denote
Ft the filtration generated by (A0, . . . , At), and Dt =

⋃
0≤s≤tAs the set of discovered vertices at time t.

We first show that G is locally tree-like, i.e. it contains only a few cycles. We say that a graph g is
h-tangle-free is for any vertex x ∈ g, the h-neighbourhood of x contains at most one cycle.

Lemma 9.3. Let h ≤ κ logd(n) with 0 ≤ κ ≤ 1/2. Then:
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1. the random graph G is h-tangle-free with probability at least 1− cn2κ−1,

2. the probability that a fixed vertex x has a cycle in its h-neighbourhood is at most cnκ−1.

Proof. We first prove the second statement. Let τ be the first time at which every vertex in (G, x)h has
been revealed. It is clearly a stopping time for the filtration (Ft)t≥0; and by construction, given Fτ , the set
of discovered edges forms a spanning tree of (G, x)h. Hence, conditioned on Fτ , the number of undiscovered
edges in (G, x)h is stochastically upper bounded by Bin(m, a/n) where m = |(G, x)h| and a = maxi,j Wij .
Using Lemma 9.2, we immediately get

P((G, x)h is not a tree) ≤ aE[|(G, x)h|]
n

≤ cnκ−1.

We now turn to the first statement. If G is not h-tangle-free, it means that for x ∈ [n], there are two
undiscovered edges in the exploration process of (G, x)h. Using the fact that

P(Bin(m, q) ≥ 2) ≤ q2m(m− 1) ≤ q2m2,

we find

P(G is h-tangled) ≤
∑
x∈[n]

a2E
[
|(G, x)h|2

]
n2

≤ cd2h

n
≤ cn2κ−1,

as required.

Before proceeding to the main proof of this section, we recall a few facts about distance in measure
space. Recall that the total variation distance dTV between two measures P1,P2 on the same probability
space (Ω,F) is defined as

dTV(P1,P2) = sup
A∈F

|P1(A)− P2(A)|

It is also defined by the following characterization:

dTV(P1,P2) = inf
X1∼P1
X2∼P2

P(X1 ̸= X2)

where the supremum is over all couplings of P1,P2, i.e. probability measures P on (Ω2,F ⊗F) such that the
marginal distributions of P are P1 and P2.

Proposition 9.1. Let h ∼ κ logd(n) for κ < 1/2. Then, for any x ∈ [n], if the random tree (T, ρ) is started
from σ(ρ) = σ(x), there exists a universal constant c > 0 such that

dTV (L((G, x)h),L((T, ρ)h)) ≤ c ln(n)2n2κ−1 (9.7)

Proof. Consider again the exploration process of Definition 9.1, and let τ be the time at which all of (G, x)h
has been revealed. We perform the same exploration process, denoted (A′

t, N
′
t) in parallel on (T, ρ), which

corresponds to a breadth-first traversal of the tree. At each timestep t, denote by Yt = (Yt(1), . . . , Yt(r)) the
distribution of spins in Nt (resp. Y ′

t that of N ′
t). Let Pt be the law of Yt given Ft, and by Qt the law of Y ′

t

(no conditioning needed).
From Corollary 9.1 and Lemma 9.3, with probability at least 1 − cnκ−1, we have τ ≤ c ln(n)nκ and

(G, x)h is a tree. Hence, by recursion, it suffices to show that for each timestep t, if the coupling holds until
t, then

dTV(Pt,Qt) ≤ c ln(n)dκ−1. (9.8)

Assume that σ(xt) = i. Letting nt(j) be the number of vertices with spin j in [n] \Dt, then given Ft the
random variables (Yt(j))j∈[r] are independent and Yt(j) has distribution Bin(nt(j),Wij/n). The random
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variables (Y ′
t (j))j∈[r] are also independent, and Y ′

t (j) has distribution Poi(πiWij). We shall couple those
processes using the following classical bounds (see e.g. [6]):

dTV

(
Bin

(
m,

λ

m

)
,Poi(λ)

)
≤ λ

m
and dTV(Poi(λ),Poi(λ

′)) ≤ |λ− λ′|

Using the triangle inequality, we have

dTV(Pt,Qt) ≤ dTV

Pt,
⊗
j∈[r]

Poi

(
nt(j)Wij

n

)+ dTV

⊗
j∈[r]

Poi

(
nt(j)Wij

n

)
,Qt


≤
∑
j∈[r]

(
Wij

n
+Wij

∣∣∣∣nt(i)n
− πi

∣∣∣∣)

≤ c
|(G, x)h|

n
,

which proves (9.8).

9.3 Weak law of large numbers for graph functionals
We now leverage the results of the previous section to show concentration properties for local functionals.
We say that a function f : G∗ → R is h-local if f(g, o) is only a function of (g, o)h.

Lemma 9.4. Let f, ψ : G∗ → R be two t-local functions such that |f(g, o)| ≤ ψ(g, o) and ψ is non-decreasing
by the addition of edges. Then there exists c > 0 such that for all p ≥ 2,

E

∣∣∣∣∣∣
∑
o∈[n]

f(G, o)− E
∑
o∈[n]

f(G, o)

∣∣∣∣∣∣
p 1/p

≤ c
√
np3/2dtE

[
max
o∈[n]

ψ(G, o)2p
] 1

2p

Proof. For x ∈ [n], define Ex the set of edges of the form {x, y} with x ≤ y. Then (Ex)x∈[n] is an independent
vector, and since the union of Ex is the whole graph G we can write

Y :=
∑
x∈[n]

f(G, o) = F (E1, . . . , En)

for some measurable function F . Define Gx the graph with vertex set V and edge set E \ Ex, and

Yx =
∑
o∈[n]

f(Gx, o).

The random variable Yx is
⋃

y ̸=xEy-measurable, and hence we can use the Efron-Stein inequality (see [10],
Theorem 15.5): for any p ≥ 2,

E[|Y − E[Y ]|p] ≤ (c
√
p)pE


∑

x∈[n]

(Y − Yx)
2

p/2
. (9.9)

Since f is t-local, for a given x ∈ [n], the difference f(G, o) − f(Gx, o) is nonzero only if x ∈ (G, o)t.
Consequently,

|Y − Yx| ≤
∑

o∈(G,x)t

|f(G, o)− f(Gx, o)|

≤
∑

o∈(G,x)t

ψ(G, o) + ψ(Gx, o)

≤ 2|(G, x)t| ·max
o∈[n]

ψ(G, o).
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Using Hölder’s inequality, we find

E


∑

x∈[n]

(Y − Yx)
2

p/2
 ≤ np/2−12pE

∑
x∈[n]

(
|(G, x)t| ·max

o∈[n]
ψ(G, o)

)p


≤ np/2

√
E[|(G, x)t|2p]E

[
max
o∈[n]

ψ(G, o)2p
]

The desired bound then follows from (9.9) and Lemma 9.2.

The second bound relates the expectation of graph functionals with their equivalents on trees. It can be
viewed as a generalization of (9.2), with guarantees on the convergence speed.

Lemma 9.5. Let h ∼ κ logd(n) with 0 < κ < 1/2, and (T, ρ) be a Galton-Watson tree with random root spin
σ(ρ) ∼ π. There exists c > 0 such that for any h-local function f : G∗ → R,∣∣∣∣∣∣ 1n

∑
x∈[n]

Ef(G, x)− Ef(T, ρ)

∣∣∣∣∣∣ ≤ c ln(n)nκ−1/2
√

max
x∈[n]

E[f(G, x)2] ∨
√

max
i:σ(ρi)=i

E[f(T, ρi)2]

Proof. Notice that by definition of (T, ρ), we have

Ef(T, ρ) =
1

n

∑
x∈[n]

Ef(Tx, ρx),

where σ(ρx) = σ(x). Let Ex be the event “the coupling between (G, x)h and (Tx, ρx)h fails”; since f is h-local,
we have f(G, x) = f(Tx, ρx) on Ec

x. From the Cauchy-Schwarz inequality, for any x ∈ [n],

|Ef(G, x)− Ef(Tx, ρx)| ≤ E[|f(G, x)− f(Tx, ρx)|1IEx ]

≤
√

P(Ex)
√

E[(f(G, x)− f(Tx, x))2]

≤
√
c ln(n)2n2κ−1

(√
E[f(G, x)2] +

√
E[f(Tx, x)2]

)
,

where the last inequality follows from Proposition 9.1.

Combining the two previous results, we show a proposition that both encapsulates the weak local con-
vergence and the concentration properties of G:

Proposition 9.2. Let h ∼ κ logd(n) with 0 < κ < 1/2. Let f : G∗ → R be a h-local function such that
|f(g, o)| ≤ α|(g, o)h|β for some α, β > 0. Then, there exists a universal constant c > 0 such that for any
s ≥ 0, with probability at least 1− n−s,∣∣∣∣∣∣ 1n

∑
x∈[n]

f(G, x)− Ef(T, ρ)

∣∣∣∣∣∣ ≤ cα log(n)5/2+βnκ(1+β)−1/2

Proof. We use the following version of the Markov inequality: for a random variable X and p ≥ 1,

P
(
|X| > aE

[
X2p

] 1
2p

)
≤ a−2p. (9.10)

Let ψ(g, o) = α|(g, o)h|β ; it is easily checked that ψ satisfies the conditions of Lemma 9.4. Further, by
Lemma 9.2, we have

E
[
max
o∈[n]

ψ(G, o)2p
] 1

2p

≤ cα(log(n) ∨ p)βdβh.
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We apply (9.10) with a = e and 2p ≥ s ln(n): with probability at least n−s,∣∣∣∣∣∣ 1n
∑
x∈[n]

f(G, x)− E

 1

n

∑
x∈[n]

f(G, x)

∣∣∣∣∣∣ ≤ cα ln(n)5/2+βnκ(1+β)−1/2.

The exponent in n above is more than the one in Lemma 9.5, hence by the triangle inequality, upon adjusting
the constant c, ∣∣∣∣∣∣ 1n

∑
x∈[n]

f(G, x)− Ef(T, ρ)

∣∣∣∣∣∣ ≤ cα ln(n)5/2+βnκ(1+β)−1/2.
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Chapter 10

Tree functionals and pseudo-eigenvectors

We have shown in the previous chapter that all local functionals of G concentrate around their tree equiva-
lents. We will leverage this fact to build pseudo-eigenvectors for the non-backtracking matrix B, stemming
from local functionals.

10.1 Tree martingales
For a vector ξ ∈ Rr and t ≥ 0, we define the functional

fξ,t(g, o) =
∑

xt∈∂(g,o)t

ξσ(xt) (10.1)

When ξ is an eigenvector of M , these correspond to the classical tree processes defined by Kesten and Stigum
[23, 22]. Let (T, ρ) be a Galton-Watson tree, and define Ft the σ-algebra generated by (T, ρ)t. Throughout
this section, we denote by Et the conditional expectation E[ · | Ft].

We begin with a small lemma, that will prove very useful:

Lemma 10.1. Let xt ∈ ∂(T, ρ)t for some t ≥ 0, and ξ ∈ Rr any vector. Then

Et

 ∑
xt→xt+1

ξσ(xt+1)

 = [Mξ](σ(xt)),

where the sum ranges over all children xt+1 of xt in T .

Proof. Let σ(xt) = i. Conditioned on Ft, we have∑
xt→xt+1

ξσ(xt+1) =
∑
j∈[r]

Yjξj ,

where Yj ∼ Poi(Mij). Thus,
Et

∑
xt→xt+1

ξσ(xt+1) =
∑
j∈[r]

Mijξj = [Mξ](i).

Proposition 10.1. Let (µ, ϕ) be an eigenpair of M . Then the random process

Zt = µ−tfϕ,t(T, ρ) (10.2)

is a (Ft)t-martingale, with common expectation ϕσ(ρ).
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Proof. Let t ≥ 0 be fixed. We have

Zt+1 − Zt = µ−(t+1)
∑

xt∈∂(T,ρ)t

 ∑
xt→xt+1

ϕσ(t+1) − µϕσ(xt)

 .

By Lemma 10.1, we have for any xt ∈ ∂(T, ρ)t

Et

 ∑
xt→xt+1

ϕσ(xt+1)

 = [Mϕ](σ(xt)) = µϕσ(xt),

which concludes the proof.

Our tools also allow to compute the correlation of those two martingales, which reduces to the study of
their increments:

Lemma 10.2. Let (µ, ϕ) and (µ′, ϕ′) be two (not necessarily distinct) eigenpairs of M , and consider the
martingales Zt and Z ′

t as in (10.2). Then

E[(Zt+1 − Zt)(Z
′
t+1 − Z ′

t)] = [µµ′]−(t+1)[M t+1(ϕ ◦ ϕ′)](σ(ρ))

As a result, the martingale Zt converges almost surely and in L2 whenever µ2 > d, and for any 0 ≤ t ≤ t′,

E[ZtZ
′
t′ ] =

t∑
s=0

[Ms(ϕ ◦ ϕ′)](σ(ρ))
(µµ′)s

.

Proof. Denote by ∆t = Zt+1 − Zt (resp. ∆′
t = Z ′

t+1 − Z ′
t) the martingale increments. We first compute the

conditional expectation Et[∆t∆
′
t]:

Et[∆t∆
′
t] = [µµ′]−(t+1)

∑
xt,x′

t∈∂(T,ρ)t

E(xt, x
′
t),

with the correlation term E(xt, x
′
t) given by

E(xt, x
′
t) = Et

 ∑
xt→xt+1

ϕσ(xt+1) − µϕσ(xt)

 ∑
x′
t→x′

t+1

ϕ′σ(x′
t+1)

− µ′ϕ′σ(x′
t)


Since disjoint subsets of a Galton-Watson tree are independent, E(xt, x

′
t) is zero except when xt = x′t.

Letting σ(xt) = i, we have as before

E(xt, xt) = E

∑
j∈[r]

Yjϕj − µϕi

∑
j∈[r]

Yjϕ
′
j − µ′ϕ′i


= E

∑
j∈[r]

(Yj −Mij)ϕj

∑
j∈[r]

(Yj −Mij)ϕ
′
j


= E

∑
j∈[r]

Mijϕjϕ
′
j


= [M(ϕ ◦ ϕ′)](i),

where we used the fact that E[Yj ] = Var(Yj) =Mij .
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Now, we are in position to repeatedly apply Lemma 10.1:

E[∆t∆
′
t] = [µµ′]−(t+1)

∑
xt∈∂(T,ρ)t

[M(ϕ ◦ ϕ′)](σ(xt))

= [µµ′]−(t+1)[M t+1(ϕ ◦ ϕ′)](σ(ρ)),

which completes the first part of the proof. Now, for 0 ≤ t ≤ t′, since the increments are centered,

E[ZtZ
′
t′ ] = E[Z0Z

′
0] +

t−1∑
s=0

E[∆t∆
′
t]

= ϕσ(ρ)ϕ
′
σ(ρ) +

t−1∑
s=0

[µµ′]−(t+1)[M t+1(ϕ ◦ ϕ′)](σ(ρ)),

which corresponds to the second part of the proof. Finally, since the spectral radius of M is d, E[Z2
t ] is

bounded whenever µ2 > d. By the Doob martingale convergence theorem, this implies that Zt converges
both almost surely and in L2.

10.2 A top-down approach
Although the proofs in the previous section are necessary to obtain the martingale convergence properties,
they can seem unnecessarily complex. We present here another "top-down" point of view, that recovers
essentially the same results.

From [TODO], it is clear that the law of (T, ρ) only depends on the distribution of σ(ρ). Thus, for a
functional f : G∗ → R, we can define its Galton-Watson transform f ∈ Rr as

f(i) = Eσ(ρ)=if(T, ρ). (10.3)

Although this transformation obviously loses a lot of the strucure of f , Proposition 9.2 indicates that f
encapsulates all the necessary information about the action of f on G. In this framework, the results of the
previous section are reformulated as follows:

Proposition 10.2. Let (µ, ϕ) and (µ′, ϕ′) be two eigenpairs of M , and define fξ,t as in (10.1). Then

fϕ,t = µtϕ, (10.4)

fϕ,tfϕ′,t =
t∑

s=0

[µµ′]t−sMs(ϕ ◦ ϕ′), (10.5)

and if Fϕ,t = (fϕ,t+1 − µfϕ,t)
2, then

Fϕ,t =M t+1(ϕ ◦ ϕ′) (10.6)

The top-down transformation All tree functionals we have considered so far can be understood in terms
of the following transformation ∂, defined for any functional f : G∗ → R:

∂f(T, ρ) =
∑
ρ′∼ρ

f(T ′, ρ′), (10.7)

where T ′ is the subtree of T rooted at ρ′. An important property is that all subtrees (T ′, ρ′) are independent
with the same distribution (depending on the spin of ρ′). This representation makes the transformation ∂
very convenient; in particular, Lemma 10.1 implies that for any functional f : G∗ → R,

∂f =Mf. (10.8)
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It is also easy to check that the functional fξ,t defined in (10.1) satisfies the following recurrence relation:

fξ,t+1(g, o) = ∂fξ,t(g, o). (10.9)

This allows to recover virtually all results of the previous section, without the martingale property. The
correlations can be obtained through the formula (similarly easy to prove)

∂f1 ◦ ∂f2 =Mf1 ◦ f2 + ∂f1 ◦ ∂f2. (10.10)

10.3 Pseudo-eigenvectors of B

We now explain how those estimates on trees can be translated to eigenvector equations on B. For the
remainder of this section, we set

ℓ = ⌊κ logd(n)⌋ , (10.11)

for some constant κ that will be fixed later. For i ∈ [r0], define the pseudo-right (resp. left) eigenvectors
ui, vi as

ui =
Bℓχ̌i√
nµℓ+1

i

and vi =
(B∗)ℓχi√

nµℓ
i

. (10.12)

We also let U (resp. V ) be the m × r0 matrix whose columns are the ui (resp. vi). The matrix of pseudo-
eigenvalues is simply

Σ = diag(µ1, . . . , µr0). (10.13)

Finally, we introduce the quantities γ(t)i defined as

γ
(t)
i =

1− τ t+1
i

1− τi
= γi +O(τ ti ), (10.14)

where the limiting value γi is simply

γi =
1

1− τi
. (10.15)

We shall show the following proposition:

Proposition 10.3. There exists a universal constant c and a choice of κ in (10.11) such that with probability
at least 1− cn−1/4 the following holds:

∥U∗U − diag({τi γ(ℓ)i }i∈[r0])∥ ≤ cn−1/4 (10.16)

∥V ∗V − diag({dγ(ℓ)i }i∈[r0])∥ ≤ cn−1/4 (10.17)

∥U∗V − Ir0∥ ≤ cn−1/4 (10.18)

∥V ∗BℓU − Σℓ∥ ≤ cn−1/4 (10.19)

At first glance, it is not clear how those results relate to the eigenvalue decomposition of B (or Bℓ).
However, if we assume that U and V are orthogonal (i.e. that the RHS of (10.18) is zero), and define

S = U∗ΣℓV,

then:

• the eigenvalues of S are exactly the µℓ
i ,

• S satisfies exactly Equation (10.19).
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In fact, Proposition 10.3 already implies that the eigenvalues of Pim(U)B
ℓPim(V ) (where PH denotes the

orthogonal projection on a subspace H) are indeed close to the µℓ
i . Studying the eigenvalues of B on the

orthogonal of these subspaces requires completely different methods, and will be the focus of the next chapter.

We first give an overview of the arguments used. Let g be any graph, and e = (e1, e2) an oriented edge
in g. We define the graph functional

hϕ,t(g, e) =
∑

x0=e2,...,xt

ϕσ(xt), (10.20)

where the sum ranges over all paths γ = (x0, . . . , xt) such that (e1, γ) is non-backtracking. The following
facts are then immediate:

• by definition of B and χ̌i, for any e ∈ E⃗,

hφi,t(G, e) = [Btχ̌i](e) (10.21)

• if (g, e1)t+1 is tangle-free, then there is at most two non-backtracking paths from e to any vertex x,
hence

|hφi,t(g, e)| ≤ |(g, e1)t+1| (10.22)

• finally, consider a Galton-Watson tree (T, ρ) and e = (ρ, ρ′). Then

hϕ,t(T, e) = fϕ,t(T
′, ρ′), (10.23)

where T ′ is the subtree of T whose root is ρ′.

We therefore have an explicit link between the graph functionals studied before and quantities of the
form Btχ̌i, which we shall use to show Proposition 10.3. Since all matrices involved are of size r0 × r0, it is
enough to show that the inequalities hold element by element. We show slightly stronger statements, and
leave to the reader to check that these lemmas imply the desired inequalities.

Lemma 10.3. Let ℓ as in (10.11), with κ < 1/24. Then, with probability 1 − cn−1/4, for any 0 ≤ t ≤ 3ℓ
and i, j ∈ [r], ∣∣⟨χi, B

tχ̌j⟩ − nµt+1
j δij

∣∣ ≤ cn3/4

Proof. Consider the graph functional

f(g, o) = 1(g,o)t+1 is tangle-free φj(σ(o))
∑

e:e1=o

hφi,t(g, e).

On the one hand, assuming that G is 3ℓ-tangle-free (which happens with probability 1 − n−1/4 as soon
as κ < 1/8), we have ∑

x∈[n]

f(G, x) =
∑
e∈E⃗

φi(e1)[B
tχ̌j ](e) = ⟨χi, B

tχ̌j⟩.

On the other hand, we have

f(T, ρ) = φi(σ(ρ))
∑
ρ′∼ρ

fφj ,t(T
′, ρ′) = φi(σ(ρ))fφj ,t+1(T, ρ).

Hence, for any k ∈ [r],
f(k) = µt+1

j φi(k)φj(k).

Since f is obviously t + 1-local, the bound (10.22) allows us to use Proposition 9.2: with probability at
least 1− n−1/4, ∣∣∣∣∣∣

∑
x∈[n]

f(G, x)− n
∑
k∈[r]

πkf(k)

∣∣∣∣∣∣ ≤ c log(n)7/2n6κ+1/2.
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It then remains to notice that by Equation [TODO],∑
k∈[r]

πkφi(k)φj(k) = δij .

This lemma implies the bound (10.18) (resp. (10.19)) by taking t = 2ℓ (resp. t = 3ℓ). For the two other
bounds, the proof is slightly more complicated, but follows the same principle:

Lemma 10.4. Let ℓ as in (10.11), with κ < 1/12. Then, with probability 1− cn−1/4, for any 0 ≤ t ≤ ℓ and
i, j ∈ [r], ∣∣∣⟨Btχ̌i, B

tχ̌j⟩ − ndµ2t
i γ

(t)
i

∣∣∣ ≤ cn3/4.∣∣∣⟨(B∗)tχi, (B
∗)tχj⟩ − ndµ2t

i γ
(t)
i

∣∣∣ ≤ cn3/4.

Proof. We first show how the first inequality implies the second: since P 2 = I and P = P ∗, we have

⟨(B∗)tχi, (B
∗)tχj⟩ = ⟨P (B∗)tχi, P (B

∗)tχj⟩
= ⟨BtPχi, B

tPχj⟩
= ⟨Btχ̌i, B

tχ̌j⟩,

where we used the parity-time symmetry of P . Hence, it suffices to prove the first inequality. Define this
time the functional

f(g, o) = 1(g,o)t+1 is tangle-free

∑
e:e1=o

hφi,t(g, e)hφj ,t(g, e)

It is easy to check that both ∑
x∈[n]

f(G, x) = ⟨Btχ̌i, B
tχ̌j⟩

and
f(T, ρ) = ∂[fφi,tfφj ,t](T, ρ),

where ∂ is the operator defined in (10.7). From Lemma 10.8 and Proposition 10.2, we deduce

f =

t∑
s=0

[µiµj ]
t−sMs+1(φi ◦ φj).

In order to apply Proposition 9.2 (with β = 2), we need to compute ⟨π, f⟩. Since π is a left eigenvector of
M with eigenvalue d, we have

⟨π, f⟩ = ⟨π, φi ◦ φj⟩
t∑

s=0

[µiµj ]
t−sds+1.

The first term is equal to δij as above, and the second is a geometric sum, which when i = j is equal to
dµ2t

i γ
(t)
i . This completes the proof.
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Chapter 11

Tangle-free decomposition and the trace
method

The methods we have developed so far gave us a set of approximate right (resp. left) eigenvectors of Bℓ, the
ui (resp. vi) for i ∈ r0. It remains to bound all of the |E⃗|− r0 eigenvalues to apply perturbation bounds. We
will do so using the trace method already encountered in Chapter 2. This is an intuitive choice, since Bℓ

ef

already counts the number of non-backtracking paths between e and f . However, several problems arise:

• since B is of size m×m, which is random, finding a suitable centered version of B is non-trivial;

• we need to bound only the eigenvalues in im(U)⊥, which itself depends on Bℓ;

• the path counting estimates of Proposition 2.1 are too coarse for the bounds we need.

Hence, we need a preprocessing step on Bℓ before applying the trace method: this is known as the tangle-free
decomposition.

11.1 Tangle-free decomposition of Bℓ

Define the set of oriented edges of the complete graph E⃗(V ) as

E⃗(V ) = {(x, y) | x, y ∈ V, x ̸= y}.

We can consider B as a matrix in E⃗(V )-space by setting

Bef = AeAf1e→f .

This embedding preserves the spectral properties of B; by abuse of notation, we use the same notation for
B when viewed as a matrix in E⃗ and E⃗(V ). We can extend the vectors χi, χ̌i accordingly:

χi(e) = φi(σ(e1)) and χ̌i(e) = φi(σ(e2)).

For k ∈ N, e, f ∈ E⃗(V ), we let Fk
ef be the set of tangle-free paths of length k from e to f . Then, when

G is ℓ-tangle-free, for any k ≤ ℓ we have Bk = B(k), where

B
(k)
ef =

∑
x∈Fk+1

ef

k∏
t=0

Axtxt+1
(11.1)
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In order to get the zero-mean property needed for the trace method, we define the centered version of A:

Axy = Axy −
Wσ(x)σ(y)

n
,

from where we can define ∆(k) as

∆
(k)
ef =

∑
x∈Fk+1

ef

k∏
t=0

Axtxt+1
(11.2)

We link B(ℓ) and ∆(ℓ) using the following identity: for any a, b ∈ Rℓ,

ℓ∏
t=0

at =

ℓ∏
t=0

bt +

ℓ∑
k=0

k−1∏
t=0

bt (ak − bk)

ℓ∏
t=k+1

at,

with the convention that an empty product is equal to 1. Applying this identity to the products in (11.1)
and (11.2),

B
(ℓ)
ef = ∆

(ℓ)
ef +

ℓ∑
k=0

∑
x∈Fk+1

ef

k−1∏
t=0

Axtxt+1

(
Wσ(xk)σ(xk+1)

n

) ℓ∏
t=k+1

Axtxt+1 (11.3)

Define the matrix K(2) as
K

(2)
ef = 1

e
(2)→f

Wσ(e2)σ(f1),

where e
(2)→ f means that (e1, e2, f1, f2) is non-backtracking. Then, the middle sum of (11.3) is very similar to

∆(k−1)K(2)B(ℓ−k−1), with the following caveat: the concatenation of two tangle-free paths is not necessarily
tangle-free! To remediate this, we let Fℓ+1

k,ef be the set of non-backtracking paths (x0, . . . , xℓ+1) such that:

• (x0, . . . , xk) and (xk+1, . . . , xℓ+1) are both tangle-free

• (x0, . . . , xℓ+1) is not tangle-free.

Then, for 1 ≤ k ≤ ℓ− 1, we have

∑
x∈Fℓ+1

ef

k−1∏
t=0

Axtxt+1
Wσ(xk)σ(xk+1)

ℓ∏
s=tk+1

Axtxt+1
= [∆(k−1)K(2)B(ℓ−k−1)]ef − [R

(ℓ)
k ]ef ,

where R(ℓ)
k is simply

R
(ℓ)
k =

∑
x∈Fℓ+1

k,ef

k−1∏
t=0

Axtxt+1
Wσ(xk)σ(xk+1)

ℓ∏
t=k+1

Axtxt+1
.

Finally, to deal with the case k = 0 and k = ℓ, we introduce

Kef = 1e→fWσ(e1)σ(e2) and K ′
ef = 1e→fWσ(f1)σ(f2)

We can then write

B(ℓ) = ∆(ℓ) +
1

n
KB(ℓ−1) +

1

n

ℓ−1∑
k=1

∆(k−1)K(2)B(ℓ−k−1) +
1

n
∆(ℓ−1)K ′ − 1

n

ℓ−1∑
k=1

R
(ℓ)
k . (11.4)

The last step is to understand the matrix K(2). Let

W̄ =

r∑
i=1

µiχ̌iχ
∗
i and L = K(2) − W̄ ,
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then it is easy to check that
W̄ef =Wσ(e2)σ(f1),

and hence Lef is zero except if e1 = f1, e2 = f1 or e2 = f2. We thus define the (hopefully small) matrices

S
(ℓ)
k = ∆(k−1)LB(ℓ−k−1).

All of the discussion of this section can be summarized in the following proposition:

Proposition 11.1. Let ℓ ≥ 0, and assume that the graph G is ℓ-tangle-free. Then, for any x in RE⃗(V ) such
that ∥x∥ = 1, we have

∥∥Bℓx
∥∥ ≤

∥∥∥∆(ℓ)
∥∥∥+ 1

n

∥∥∥KB(ℓ−1)
∥∥∥+ d

n

ℓ−1∑
k=1

r∑
i=1

∥∥∥∆(k−1)χ̌i

∥∥∥ ∣∣⟨χi, B
ℓ−k−1x⟩

∣∣
+

1

n

ℓ−1∑
k=1

∥S(ℓ)
t ∥+ 1

n

∥∥∥∆(ℓ−1)K ′
∥∥∥+ 1

n

ℓ−1∑
k=1

∥∥∥R(ℓ)
t

∥∥∥. (11.5)

Before moving on, we expand on why we expect each term in (11.5) to be small:

1. ∥∆(k)∥, ∥∆(k)χi∥ and ∥R(ℓ)
k ∥ involve matrices with zero-mean random elements, so their norm is

bounded by the trace method;

2. since the matrices K and L are very sparse with bounded entries, the norms of S(ℓ)
k and KB(ℓ−1) are

also bounded;

3. finally, if x ∈ im(V )⊥, then
⟨(B∗)ℓχi, x⟩ = 0.

Since (B∗)ℓχi is an approximate eigenvector of B∗, ⟨(B∗)ℓ−t−1χi, x⟩ remains small enough.

Remark. We shall only prove Equation TODO in Proposition TODO, bounding BℓPim(V )⊥ . The bound for
im(U)⊥ is almost identical; reversing the role of A and A in (11.3) and multiplying par x on the left yields an
expression almost identical to (11.5), but depending on ⟨x,Bℓ−t−1χ̌i⟩ instead. The rest of the proof proceeds
identically.

11.2 Non-backtracking trace method

The goal of this section if to prove the following proposition:

Proposition 11.2. Let ℓ ∼ κ logd(n) with κ > 0. There exist constants c, s such that for n large enough,
with probability at least 1− n−s, the following bounds hold for 0 ≤ k ≤ ℓ and i ∈ [r]:∥∥∥∆(k)

∥∥∥ ≤ log(n)cdk/2 (11.6)
∥∥∥∆(k)χ̌i

∥∥∥ ≤ log(n)c
√
ndk/2 (11.7)

∥∥∥R(ℓ)
k

∥∥∥ ≤ log(n)cdℓ−k/2 (11.8) ∥S(ℓ)
k ∥ ≤

√
n log(n)cdℓ−k/2 (11.9)

∥∥∥B(k)
∥∥∥ ≤ log(n)cdk (11.10)

∥∥∥KB(k)
∥∥∥ ≤ log(n)c

√
ndk (11.11)
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We shall only prove two of these bounds, namely (11.6) and (11.10). These will give some good examples
of a more involved trace method for both zero-mean and nonzero-mean matrices. Note that the bounds
(11.7) and (11.11) are significant improvements on the naive bounds of the form∥∥∥∆(k)χ̌i

∥∥∥ ≤ ∥∆(k)∥∥χ̌i∥ and
∥∥∥KB(k)

∥∥∥ ≤ ∥K∥∥B(k)∥

which give a linear dependence in n in both cases.

11.2.1 Basics of the trace method
We start with ∆(k). Since this matrix is not symmetric, the corresponding version of (2.1) is the following:
for any m ≥ 0,

∥∆(k)∥2m ≤ Tr
[(

∆(k)∆(k)∗
)m]

(11.12)

We can now expand the right-hand side, using the convention e2m+1 = e1 and the symmetry condition(
∆(k)

)
ef

=
(
∆(k)

)
f−1e−1 :

∥∆(k)∥2m ≤
∑

e1,...,e2m

m∏
i=1

(
∆(k)

)
e2i−1,e2i

(
∆(k)

)
e2i+1,e2i

=
∑

e1,...,e2m

m∏
i=1

(
∆(k)

)
e2i−1,e2i

(
∆(k)

)
e−1
2i ,e−1

2i+1

=
∑

γ∈Wk,m

2m∏
i=1

k∏
t=1

Aγi,t−1γi,t
, (11.13)

where Wk,m is the set of sequences of paths γ = (γ1, . . . , γ2m) such that, for all i ∈ [2m], γi = (γi,0, . . . , γi,k) ∈
[n]k+1 is non-backtracking tangle-free, and we have

(γi,k−1, γi,k) = (γi+1,1, γi+1,0), (11.14)

again with the convention that γ2m+1 = γ1. Note that the same inequality also holds for Bk, becoming

∥Bk∥2m ≤
∑

γ∈Wk,m

2m∏
i=1

k∏
t=1

Aγi,t−1γi,t
(11.15)

To any path sequence γ ∈Wk,m, we associate the undirected graph Gγ = (Vγ , Eγ) with

Vγ = {γi,t | 1 ≤ i ≤ 2m, 0 ≤ t ≤ k} and Eγ = {{γi,t−1, γi,t} | 1 ≤ i ≤ 2m, 1 ≤ t ≤ k}

We now group the sequences in Wk,m according to their topological properties. We say that two sequences
γ and γ′ are equivalent, and write γ ∼ γ′, if there exists a permutation s ∈ Sn such that γ′ = s ◦ γ, where

(s ◦ γ)i,t = s(γi,t).

It is straightforward to check that ∼ is an equivalence relation, which partitions Wk,m in disjoint classes, and
that |Vγ | and |Eγ | are constant on each class. For s, a ≥ 0, we thus define Wk,m(s, a) the set of equivalence
classes [γ] ∈ Wk,m/ ∼ such that |Vγ | = s and |Eγ | = a. The graphs Gγ are necessarily connected by the
boundary condition (11.14), hence Wk,m(s, a) is nonempty only if a− s+ 1 ≥ 0. In order to bound the sum
in (11.13), we therefore need the following steps:

• bound the size of Wk,m(s, a),

• bound the contribution of a single equivalence class [γ] ∈ Wk,m(s, a).
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11.2.2 Bounding |Wk,m(s, a)|
We show the following proposition:

Proposition 11.3. Let s, a ≥ 0 with a− s+ 1 ≥ 0. Then

|Wk,m(s, a)| ≤ (2km)6m(a−s+1)+2m.

Since the proof of this result is quite involved, we break it into several steps.

Preliminaries Throughout this section, we will consider a path sequence γ as a single continuous path
indexed T = {(i, t) | 1 ≤ i ≤ 2m, 0 ≤ t ≤ k} with the lexicographic ordering. We define the canonical
representative of a class [γ′] ∈ Wk,m(s, a) as the only path γ ∈ [γ′] such that Vγ = {1, . . . , s} and the vertices
of Vγ are visited in order. We leave to the reader to check that each class indeed contains exactly one such
path.Therefore, bounding |Wk,m(s, a)| is equivalent to bounding the number of canonical paths. In turn,
such an upper bound is equivalent to finding an injective encoding of the set of canonical paths.

For (i, t) ∈ T , we let ei,t = γi,t, γi,t+1. If γi,t+1 is visited for the first time, we say that ei,t is a tree edge.
It is easy to check that the set of tree edges indeed forms a tree T ; any edge not belonging to T is an excess
edge. The number of such edges is g = a− s+ 1.

A first encoding Each path γi can be subdivided into sections with the following structure:

1. a (possibly empty) sequence of tree times, where ei,t is an already discovered edge of T ,

2. a (possibly empty) sequence of first times, where γi,t+1 is an undiscovered vertex at time (i, t),

3. and finally a cycling time, where ei,t is an excess edge.

We encode each of this section with the following information: the first and last vertices (x0, x1) of the
sequence of tree times, and the cycling time τ (if the last section does not have an excess edge, we let τ = k).
This information allows us to recover the entire section, for the following reasons:

• there is a unique non-backtracking path between vertices x0 and x1 on T , so the sequence of tree times
is uniquely determined,

• the number of first times is τ − (τ ′ + 1 + dT (x0, x1)), where τ ′ is the previous cycling time, and the
vertices are visited in order,

• and finally the excess edge is (x2, x
′
0), where x2 is the end of the sequence of first times and x′0 is the

first mark of the next cycling time.

This yields a first encoding of canonical paths, using s2k possibilities for each cycling time.

Refining the encoding The issue with this first encoding is that the number of cycling times is potentially
very high. However, we haven’t used the fact that each path γi is tangle-free. First consider the case where
γi contains no cycles; then each excess edge is used at most once si doing otherwise would create a cycle;
hence the number of cycling times is at most g.

Otherwise, let t1 be the first time t where γi,t ∈ {γi,0, . . . γi,t−1}, and t0 ≤ t1 such that γi,t1 = γi,t0 . Then
the cycle (γi,t0 , . . . , γi,t1) is the only cycle formed by γi, call it C. We add the exit mark t2 to γi, which is
the first time t ≥ t1 such that ei,t is not an edge of C. The cycling times t with 0 ≤ t ≤ t1 or t2 ≤ t ≤ k are
called important imes; other times are called superfluous times. Then:

• no two important times can share an edge, since otherwise it would create a second cycle in γi,

• we do not need to mark the superfluous times, since the path γi is simply cycling around C between t1
and t2.
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As a result, the number of marks is at most g per path, with s2k choices for them, plus a possible additional
cycling mark with s choices. This yields the bound

|Wk,m(s, a)| ≤ s2m(s2k)2mg, (11.16)

which is much lower than the one in Proposition 11.3.

11.2.3 Bounding the contribution of a path class
We now fix a path class [γ] ∈ Wk,m(s, a), and define its contribution c[γ] as

c[γ] =
1

ns

∑
s

E

[
2m∏
i=1

k∏
t=1

A s(γi,s−1)s(γi,s)

]
,

where s : [s] → [n] ranges over all possible injections from Vγ to [n]. The goal is to show the following:

Proposition 11.4. For any [γ] ∈ Wk,m(s, a), we have

c[γ] ≤
(
d

n

)s−1 (pmax

n

)a−s+1

, (11.17)

where pmax is an upper bound on the entries of P .

Proof. We first rewrite this sum as

c[γ] =
1

ns

∑
s

E

 ∏
e∈Eγ

Ame

s(e1)s(e2)

,
where me is the multiplicity of an edge e in Gγ . In particular, note that c[γ] is zero except when me > 1 for
all edges in Eγ . Using the inequality

E
[
Am

xy

]
≤
Pσ(x)σ(y)

n
(11.18)

for all x, y and the independence of the entries of A, we have

c[γ] =
1

ns

∑
s

∏
e∈Eγ

Pσ◦s(e1),σ◦s(e2)

n
.

Now, fix a spanning tree T of Gγ . For e /∈ T , we simply use the bound Pij ≤ pmax. Let x be a leaf of T ,
and y the only vertex connected to x. For any injection s, define s−x the restriction of s to [k] \x. Then, we
can decompose∑

s

∏
e∈Eγ

Pσ◦s(e1),σ◦s(e2)

n
=
∑
s−x

∏
e∈T \{x,y}

Pσ◦s−x(e1),σ◦s−x(e2)

n
·
∑
s(x)

Pσ◦s−x(y),σ◦s(x)

n
, (11.19)

where the second sum ranges over s(x) /∈ im(s−x). Letting i = σ ◦ s−x(y),∑
s(x)

Pσ◦s−x(y),σ◦s(x)

n
≤

∑
s(x)∈[n]

Pσ◦s−x(y),σ◦s(x)

n
≤
∑
j∈[r]

Pijnj
n

= d.

Note that the sum ∑
s−x

∏
e∈T \{x,y}

Pσ◦s−x(e1),σ◦s−x(e2)

n
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is the exact equivalent of the LHS of (11.19) for the tree T \ x. As a result, an immediate recursion yields∑
s(x)

Pσ◦s−x(y),σ◦s(x)

n
≤ nds−1, (11.20)

where the factor of n corresponds to the image of the tree root. Proposition 11.4 then ensues from dividing
by ns on both sides.

Remark. Since Eq. (11.18) also holds for the matrix A, the contribution for a path class [γ] to the bound
on ∥Bk∥2m also satisfies Proposition 11.4.

11.2.4 Wrapping up the trace method
Now that we have both of the needed ingredients, we are ready to bound E[∥∆(k)∥2m]. We write

E[∥∆(k)∥2m] ≤
∑

γ∈Wk,m

E

[
2m∏
i=1

k∏
t=1

Aγi,t−1γi,t

]
≤
∑
s,a

∑
[γ]∈Wk,m(s,a)

nsc[γ]

≤
∑
s,a

(2km)6m(a−s+1)+2m

(
d

n

)s−1 (pmax

n

)s−a+1

ns (11.21)

We just need to determine the bounds on s, a. The crucial remark is that since each edge of Gγ has to be
visited twice for cγ to be nonzero, we have s− 1 ≤ a ≤ km, and hence 0 ≤ a− s+ 1 ≤ km. This gives

E[∥∆(k)∥2m] ≤ n(2km)2m
km+1∑
s=2

ds−1
km∑
g=0

(
(2km)6m

n

)g

≤ n(2km)2mkmdkm
∞∑
g=0

(
(2km)6m

n

)g

We now choose
m =

c log(n)

log(log(n))
;

for a sufficiently small choice of c, it is easy to check that

n1/(2m) ≤ log(n)1/(2c), 2km ≤ log(n)2 and (2km)6m = o(n).

In particular, the above geometric series converges, and (11.6) ensues via a Markov bound.

Remark. The bound on B is almost identical: Eq. (11.21) still holds, but for different bounds on s, a.
Indeed, each edge does not need to be visited twice, so the weaker s − 1 ≤ a ≤ 2km holds instead. One can
then easily check that this bound on s implies (11.10).

11.3 An approximate eigenvector equation
The goal of this section is to deal with the term ⟨χi, B

ℓ−k−1x⟩ in Proposition 11.1. In view of what has
already been proven, the following bound will be sufficient:

Proposition 11.5. Let ℓ as in (10.11), with κ < 1/12. With probability 1−n−ε, we have for any 0 ≤ t ≤ ℓ,
i ∈ [r] and x ∈ im(V )⊥:

⟨χi, B
tx⟩ ≤ c log(n)c

√
ndt/2 (11.22)
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The case i > r0 is immediate, and can be treated directly: by Lemma 10.4 and the triangular inequality,

⟨χi, B
tx⟩ ≤ ∥(B∗)tχi∥

≤
√
nµ

2(t)
i γ

(t)
i + cn3/4

≤ c
√
ndt/2,

having used the fact that µ2t
i γ

(t)
i ≤ dt whenever µi <

√
d.

For i ∈ [r0], the situation is different since µ2t
i ≫ dt. However, we can write the telescopic sum

µ−t
i ⟨χi, B

tx⟩ = µ−t
i ⟨χi, B

tx⟩ − µ−ℓ
i ⟨χi, B

ℓx⟩

=

ℓ−1∑
s=t

µ−s
i ⟨χi, B

sx⟩ − µ
−(s+1)
i ⟨χi, B

s+1x⟩

≤
ℓ−1∑
s=t

|µi|−(s+1) · ∥Bs+1χ̌i − µiB
sχ̌i∥,

where in the first line we used that ⟨χi, B
ℓx⟩ = 0. Our aim is thus to show an appxroximate eigenvector

equation on ξ̌. Specifically, we show the following bound:

Lemma 11.1. Let ℓ as in (10.11), with κ < 1/12.With probability at least 1 − n−ϵ, for any i ∈ [r0] and
0 ≤ t ≤ ℓ, ∥∥Bs+1χ̌i − µiB

sχ̌i

∥∥ ≤ TODO

Proof. Define the functional

f(g, o) =
∑

e:e1=o

(hϕi,t+1(g, e)− µihϕi,t(g, e))
2
, (11.23)

where we recall that hϕi,t is defined in (10.20).
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