
Semi-definite programming approaches

Definition

A semi-definite program is an optimization program of the form
Minimize 〈C ,X 〉
Over X ∈ S+

n

Such that 〈Ai ,X 〉 = bi , i = 1, . . . ,m,

where S+
n : cone of semi-definite positive symmetric n × n matrices,

〈A,B〉 = Tr(AB>): Frobenius scalar product between matrices,
C ,A1, . . . ,Am: symmetric n × n matrices, and b1, . . . , bm ∈ R.

Key properties:

it is a convex minimization problem, since S+
n is a convex cone.

It can be solved in polynomial time (e.g. with the ellipsoid method
initially developed by Kamarkar to solve linear problems): a solution
within additive error of ε can be found in time polynomial in
n, m, log(1/ε).
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Approach:

NP-hard combinatorial optimization problem C → relaxation into (convex)
SDP RC → solution of RC + post-processing → approximate solution of
C with bounded sub-optimality

Example: Max-cut
Given graph G = (V ,E ), max-cut problem: find partition of V into V−,
V+ maximizing number |E (V+,V−)| of edges across partition.
Max-cut is NP-complete. In contrast, Min-cut is in P (thanks to the
max-flow min-cut theorem).

Let A: adjacency matrix of G . Size MC (G ) of Max-cut: solution of
Maximize 1

4

∑
u,v∈[n] Auv [1− Yuv ]

Over Y ∈ S+
n

Such that Yuv = σuσv , u, v ∈ [n]
where σu ∈ {+1,−1}, u ∈ [n].
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Equivalent formulation:
Maximize 1

4

∑
u,v∈[n] Auv [1− Yuv ]

Over Y ∈ S+
n

Such that Yuv ∈ {−1,+1}, rank(Y ) = 1.

Goemans-Williamson algorithm: consider SDP relaxation

Maximize 1
4

∑
u,v∈[n] Auv [1− Yuv ]

Over Y ∈ S+
n

Such that Yuu = 1, u ∈ [n].

Corresponding value: GW (G ). By construction, GW (G ) ≥ MC (G ).

Let Y ∗: optimal solution of SDP, and Z = (z1 · · · zn): a symmetric square
root of Y ∗. Hence Y ∗uv = 〈zu, zv 〉.

Constraint Yuu = 1 guarantees that ‖zu‖ = 1, i.e. zu ∈ Sn−1, unit sphere
of Rn.
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Goemans-Williamson algorithm (continued)

Randomized algorithm:

1 Pick vector z uniformly at random on Sn−1. Construct the sign
vector σ := {sign(〈z , zu〉)}u∈[n] ∈ {−1, 1}n. Let C (σ) denote the
corresponding cut-size.

2 Repeat N times.

3 Output the largest cut obtained over the N iterations.

Theorem

The expected value E(C (σ)) of the cut resulting from one random sign
vector σ as above is larger than 0.878MC (G ).
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Proof.

For u 6= v ∈ [n], P(σu = +, σv = −) = arccos〈zu ,zv 〉
2π · Thus:

EC (σ) = 1
2

∑
u,v∈[n] Auv2 arccos〈zu ,zv 〉

2π = 1
2π

∑
u,v∈[n] Auv arccos〈zu, zv 〉.

It can be verified by calculus that

∀x ∈ [−1, 1], 1
π arccos(x) ≥ β 1

2 (1− x), where β = 0.87856.

This implies that EC (σ) ≥ βGW (G ). The result then follows from
GW (G ) ≥ MC (G ).
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Corollary

For ε > 0, the above randomized algorithm outputs a cut that is less than
(1− ε)βMC (G ) with probability at most [1 + εC̄/(n2/4− C̄ )]−N , where
C̄ := EC (σ). Thus for large enough N, it produces w.h.p. a cut achieving
a fraction at least β(1− ε) of the optimum MC (G ).

Proof: let p = P(C (σ) ≤ (1− ε)C̄ ). Since C (σ) ∈ [0, n2/4], one has
p(1− ε)C̄ + (1− p)n2/4 ≥ C̄ , so that

p ≤ [n2/4− C̄ ]/[n2/4− C̄ + εC̄ ], i.e. 1
p ≥ 1 + εC̄

n2/4−C̄ ·

Remark

See [Mohar 97, ’Some applications of Laplace eigenvalues of graphs’] for
more details, e.g. a derandomization scheme due to Goemans and
Williamson allowing to find a cut of size at least βMC (G ) with probability
1 in polynomial time.
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Grothendieck inequality
For rectangular matrix M ∈ Rn×m, define its norm ‖M‖∞→1 as
‖M‖∞→1 := supxi ,yj∈{−1,1}

∑
i∈[n],j∈[m] Mijxiyj .

Semi-definite relaxation of combinatorial optimization defining ‖M‖∞→1:
Maximize

∑
i∈[n],j∈[m] Mij〈ui , vj〉

Over ui , vj ∈ Rn+m

Such that ‖ui‖ = 1, ‖vj‖ = 1.

It is indeed an SDP, in view of equivalent formulation:
Maximize 〈M̂,Y 〉
Over Y ∈ S+

n+m

Such that Yuu = 1, u ∈ [n + m],

where M̂ = 1
2

(
0 M>

M 0

)
:

Considering a square root of matrix Y , its first m columns as vectors vj ,
its last n columns as vectors ui , then Ym+i ,j = 〈ui , vj〉, hence equivalence
of the two optimization problems.
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Grothendieck inequality

Denote by f (M) value of previous SDP. Clearly, f (M) ≥ ‖M‖∞→1. One
then has:

Theorem (Grothendieck inequality)

For any n ×m real matrix M, the optimal value f (M) satisfies
f (M) ≤ KG‖M‖∞→1

for some universal constant KG , with KG ≤ π
2 ln(1+

√
2)

= 1.783 · · ·.

Denote M = {(〈ui , vj〉)i∈[n],j∈[m] ∈ Rn×m, ‖ui‖ ≡ ‖vj‖ ≡ 1}, so that
f (M) = supY∈M〈M,Y 〉.

Denote M+ := {Y ∈ S+
n : Diag(Y ) � In}.

Then for n = m, M+ ⊂M and −M+ ⊂M, yielding

Corollary

For M ∈ Rn×n, supY∈M+ |〈M,Y 〉| ≤ KG‖M‖∞→1.
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Proof of Grothendieck’s inequality

Lemma

Let u, v ∈ Sn−1, normed vectors of Rn, and z: uniformly distributed over
Sn−1. Then π

2E [Sign(〈u, z〉)Sign(〈v , z〉)] = arcsin(〈u, v〉).

Lemma

Let ui , i ∈ [n], vj , j ∈ [m] be normed vectors of some Hilbert space H
(wlog, H = Rn+m). Let c := sinh−1(1) = ln(1 +

√
2).

Then there exist normed vectors u′i , i ∈ [n], v ′j , j ∈ [n] of some Hilbert
space H ′ such that for z uniformly distributed on the unit sphere of H ′,

∀i ∈ [n], j ∈ [m], π
2E
[
Sign(〈u′i , z〉)Sign(〈v ′j , z〉)

]
= c〈ui , vj〉.
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Proof of second lemma

Write sin(c〈u, v〉) =
∑

k≥0(−1)k c2k+1

(2k+1)!〈u, v〉
2k+1.

For w ∈ H, j ∈ N, write w⊗j = w ⊗ · · · ⊗ w .

Use fact 〈u⊗j , v⊗j〉 = 〈u, v〉j to obtain

sin(c〈u, v〉) =
∑∞

k=0(−1)k c2k+1

(2k+1)!〈u
⊗2k+1, v⊗2k+1〉 (∗).

Let H ′ := ⊕∞k=0H
⊗2k+1.

Define functions S ,T : H → H ′ by T (u) = {T (u)k}k≥0 where T (u)k = (−1)k
√

c2k+1

(2k+1)!u
⊗2k+1,

S(v) = {S(v)k}k≥0 where S(v)k =
√

c2k+1

(2k+1)!v
⊗2k+1.

Hence by (∗): 〈T (u), S(v)〉 = sin(c〈u, v〉).
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Note ‖T (u)‖2 =
∑

k≥0
c2k+1

(2k+1)!

∥∥u⊗2k+1
∥∥2

= sinh(c‖u‖2).

Similarly, ‖S(v)‖2 = sinh(c‖v‖2).
Hence for normed ui , vj and c = sinh−1(1), vectors u′i := T (ui ),
v ′j := S(vj) are normed, and such that
∀i ∈ [n], j ∈ [m], arcsin(〈u′i , v ′j 〉) = c〈ui , vj〉.
Together with first lemma, this concludes proof of second lemma.

Proof of Grothendieck’s inequality: For matrix M ∈ Rn+m, normed
vectors ui , vj such that f (M) =

∑
i ,j Mij〈ui , vj〉, construct vectors u′i , v

′
j as

per second lemma. Then for random vector z uniform on unit sphere of H ′,
f (M) =

∑
i ,j Mij〈ui , vj〉 = π

2cE
∑

i ,j MijSign(〈u′i , z〉)Sign(〈v ′j , z〉).
Thus there must exist some signs si , tj ∈ {−1, 1} such that
π
2c

∑
ij Mijsi tj ≥ f (M).

Remark

Proof provides a probabilistic algorithm for obtaining an approximate value
of ‖M‖∞→1 = supsi ,tj=±Mijsi tj : solve SDP for vectors ui , vj , construct (in

Rn+m) vectors u′i , v
′
j such that arcsin(〈u′i , v ′j 〉) = c〈ui , vj〉, then sample z

uniformly on Sn+m−1 and let si = Sign(〈u′i , z〉), tj = Sign(〈v ′j , z〉).
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SDP for SBM reconstruction

Consider symmetric two-block, sparse SBM with parameters a, b, for which
reconstruction feasible iff α < β2, where α = a+b

2 , β = a−b
2 .

For simplicity assume β > 0, and n even.

Minimum bisection approach to recover clustering σ∗ ∈ {−,+}n: letting
J = ee>, e = (1, · · · , 1)>:

Maximize 〈A,Y 〉
Over Y ∈ S+

n : Y = σσ>, σ ∈ {−,+}n
such that ∀u ∈ [n], Yuu = 1 and 〈J,Y 〉 = 0 (i.e.

∑
i σi = 0)

Since Min-bisection is NP-hard, consider SDP relaxation

Maximize 〈A,Y 〉
Over Y ∈ S+

n

such that ∀u ∈ [n], Yuu = 1 and 〈J,Y 〉 = 0.
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Theorem (Guédon-Vershynin 2014)

Let Ŷ : solution of SDP, and y: eigenvector of Ŷ associated with
eigenvalue ρ(Ŷ ).

Assume that α > 8 ln(2), β2

α > 217 ln(2).
Then for some δ > 0, ∃ sign ε = ± such that w.h.p.,
1
n

∑n
i=1 Iσ∗

i =εSign(yi )
≥ 1

2 + δ, i.e. partition based on Sign(yi ) achieves

non-vanishing overlap.

Proof: Let Y ∗ = σ∗σ∗>. W.h.p.,
∣∣∣∑i∈[n] σ

∗
i

∣∣∣ ≤√n ln(n), hence ∃σ̃:∑
i |σ∗i − σ̃i | = O(

√
n ln(n)) and Ỹ := σ̃σ̃> such that

〈
Ỹ , J

〉
= 0.

Since
∑

i |σ∗i − σ̃i | = O(
√
n ln(n)),

〈
A, Ỹ − Y ∗

〉
: at most O(n ln(n))

pairs u, v with (Ỹ − Y ∗)uv 6= 0, and corresponding entry Auv ≤ Ber(a/n).

⇒ w.h.p.,
〈
A, Ỹ − Y ∗

〉
= O(ln(n)).
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Note Ā = E(A|σ∗) = α
n J + β

nY
∗ − α+β

n I .

Write
〈
Ā, Ŷ − Y ∗

〉
= β

n

〈
Y ∗, Ŷ − Y ∗

〉
− α

n 〈J,Y
∗〉 ≤ β

n

〈
Y ∗, Ŷ − Y ∗

〉
.

By SDP optimality of Ŷ ,

0 ≤
〈
A, Ŷ − Ỹ

〉
=
〈
A, Ŷ

〉
− 〈A,Y ∗〉+ O(ln(n)), so that

0 ≤
〈
Ā, Ŷ − Y ∗

〉
+
〈
A− Ā, Ŷ − Y ∗

〉
+ O(ln(n)), hence

β
n

〈
Y ∗,Y ∗ − Ŷ

〉
≤
〈

∆, Ŷ − Y ∗
〉

+ O(ln(n)), where ∆ = A− Ā.∥∥∥Y ∗ − Ŷ
∥∥∥2

F
= ‖Y ∗‖2

F +
∥∥∥Ŷ ∥∥∥2

F
− 2
〈
Y ∗, Ŷ

〉
≤ 2(n2 −

〈
Y ∗, Ŷ

〉
)

= 2
〈
Y ∗,Y ∗ − Ŷ

〉
Hence β

2n

∥∥∥Y ∗ − Ŷ
∥∥∥2

F
≤
∣∣∣〈∆, Ŷ

〉∣∣∣+ |〈∆,Y ∗〉|+ O(ln(n))

February 27, 2021 14 / 19



Let s2 :=
∑

i<j Var(∆ij |σ∗) = nα(1/2 + o(1)). By Bernstein’s inequality,

P(|
∑

i<j Y
∗
ij ∆ij | ≥

√
2s2t + 2

3 t | σ
∗) ≤ 2e−t .

Thus for t = ln(n), w.h.p.,
∣∣∣∑i<j Y

∗
ij ∆ij

∣∣∣ = O(
√
αn ln(n)).

Upper bounding
∣∣∣〈∆, Ŷ

〉∣∣∣:∣∣∣〈∆, Ŷ
〉∣∣∣ ≤ supY∈S+

n , Diag(Y )�I |〈∆,Y 〉|
≤ KG‖∆‖∞→1,

by Corollary to Grothendieck’s inequality. Write then:
‖∆‖∞→1 = supx ,y∈{+,−}n x

>∆y

= supx ,y∈{+,−}n
∑

i<j ∆ij(xiyj + xjyi ).

By Bernstein’s inequality,
P(
∑

i<j ∆ij(xiyj + xjyi ) ≥
√

8s2t + 4
3 t | σ

∗) ≤ e−t .
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Let t = 2(1 + ε)n ln(2), so that e−t = 2−2(1+ε)n.

Then (union bound) w.h.p.,

‖∆‖∞→1 ≤
√

8s2t + 4
3 t ≤ n

[
8
3 (1 + ε) ln(2) +

√
8(1 + ε)α(1 + o(1)) ln(2)

]
.

By assumption 8 ln(2) < α, this gives ‖∆‖∞→1 ≤
4
3n
√

8α(1 + ε) ln(2),

hence w.h.p.: 1
n2

∥∥∥Y ∗ − Ŷ
∥∥∥2

F
≤ 8

3βKG

√
8α(1 + ε) ln(2) =: θ
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Let y : eigenvector of Ŷ associated with ρ(Ŷ ) normalized so that
‖y‖ =

√
n. By Davis-Kahane, for some ε = ±1,

1√
n
‖y − εσ∗‖ ≤ 2

√
2
‖Y ∗−Ŷ‖

F
λmax (Y ∗) , i.e. 1

n‖y − εσ
∗‖2 ≤ 8‖Y ∗−Ŷ‖2

F
n2 ≤ 8θ.

Since 1
n

∑
i Iσ∗

i 6=εSign(yi )
≤ ‖y − εσ∗‖2 ≤ 8θ,

to conclude it suffices to ensure 8θ < 1/2, i.e.
16 8

3βKG

√
8α ln(2) < 1.

Thus β2

α > 8 ln(2)
(

27

3 KG

)2
suffices.
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Other application of Grothendieck’s inequality

Definition

Cut norm of matrix B ∈ Rn×m: ‖B‖cut := maxI⊆[n],J⊆[m]

∣∣∣∑i∈I ,j∈J Bij

∣∣∣.
Basic inequalities: ‖B‖cut ≤ ‖B‖∞→1 ≤ 4‖B‖cut

Indeed for s, t ∈ {−,+}n, letting I± = {i : si = ±}, J± = {j : tj = ±},∑
i ,j

si tjBij =
∑

i∈I+,j∈J+

Bij +
∑

i∈I−,j∈J−

Bij −
∑

i∈I+,j∈J−

Bij −
∑

i∈I−,j∈J+

Bij ,

hence ‖B‖∞→1 ≤ 4‖B‖cut .

Also for I ⊆ [n], J ⊆ [m], let xi = 2Ii∈I − 1, yj = 2Ij∈J − 1. Then∑
i∈I ,j∈J

Bij =
∑
i ,j

Bij
1 + xi

2

1 + xj
2

=
1

4

∑
i ,j

[Bijxiyj + Bijxi + Bijyj + Bij ],

hence ‖B‖cut ≤ ‖B‖∞→1. Approximation of ‖·‖cut can be done based on
probabilistic algorithm for approximating ‖·‖∞→1 (see Alon-Naor 2004])
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