Semi-definite programming approaches

Definition
A semi-definite program is an optimization program of the form
Minimize (C, X)
Over X eS8t
Such that (A, X)=b;, i=1,...,m,
where S;7: cone of semi-definite positive symmetric n x n matrices,
(A, B) = Tr(ABT): Frobenius scalar product between matrices,
C,A1,...,An: symmetric n X n matrices, and by, ..., b, € R.

Key properties:
@ it is a convex minimization problem, since S,T iS a convex cone.

@ It can be solved in polynomial time (e.g. with the ellipsoid method
initially developed by Kamarkar to solve linear problems): a solution
within additive error of € can be found in time polynomial in
n, m, log(1/e).
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Approach:

NP-hard combinatorial optimization problem C — relaxation into (convex)
SDP RC — solution of RC + post-processing — approximate solution of
C with bounded sub-optimality

Example: Max-cut

Given graph G = (V, E), max-cut problem: find partition of V into V_,
Vi maximizing number |E(V,, V_)| of edges across partition.

Max-cut is NP-complete. In contrast, Min-cut is in P (thanks to the
max-flow min-cut theorem).

Let A: adjacency matrix of G. Size MC(G) of Max-cut: solution of
Maximize %vae[n] Awll = Yu/]

Over Y eS8t

Such that Yy, =o,0y, u,v € [n]

where oy € {+1,-1}, u € [n].
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Equivalent formulation:

Maximize 337, Lcpn Auwll — Vi

Over Y eSSt

Such that Y, € {—1,+1}, rank(Y) = 1.

Goemans-Williamson algorithm: consider SDP relaxation
Maximize %Zu,ve[n] Awll = Yu/]

Over YeSS
Such that Yy, =1, u € [n].

Corresponding value: GW(G). By construction, GW(G) > MC(G).

Let Y*: optimal solution of SDP, and Z = (z; - - - z,): a symmetric square
root of Y*. Hence Y, = (z,, z,).

Constraint Yy, = 1 guarantees that ||z,|| = 1, i.e. z, € S"~!, unit sphere
of R".
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Goemans-Williamson algorithm (continued)

Randomized algorithm:

@ Pick vector z uniformly at random on S"~1. Construct the sign
vector o := {sign((z, zu)) }ueln € {—1,1}". Let C(o) denote the
corresponding cut-size.

© Repeat N times.

© Output the largest cut obtained over the N iterations.

Theorem

The expected value E(C(c)) of the cut resulting from one random sign
vector o as above is larger than 0.878MC(G).

L T



Proof.
For u# v e [n], P(o, =+,0,=—) = %ﬁf“m Thus:

EC(o) = %vae[n] Auv2w = % uveln] Ay arccos(z,, z,).
It can be verified by calculus that
Vx € [-1,1], L arccos(x) > B3(1 — x), where 3 = 0.87856.

This implies that EC(0) > SGW(G). The result then follows from
GW(G) > MC(G).
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Corollary

For e > 0, the above randomized algorithm outputs a cut that is less than
(1 — €)BMC(G) with probability at most [1 + eC/(n?/4 — C)]~N, where
C :=REC(0). Thus for large enough N, it produces w.h.p. a cut achieving
a fraction at least (1 — €) of the optimum MC(G).

Proof: let p = P(C(c) < (1 — €)C). Since C(o) € [0, n?/4], one has
p(1 —¢)C+(1—p)n?/4 > C, so that
p < [n?/4—C]/[n?/4 — C +€C], e >1+

n2/4 c

Remark

See [Mohar 97, 'Some applications of Laplace eigenvalues of graphs'] for
more details, e.g. a derandomization scheme due to Goemans and
Williamson allowing to find a cut of size at least BMC(G) with probability
1 in polynomial time.
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Grothendieck inequality
For rectangular matrix M € R"*™, define its norm || M||
[Mlloo—1 = supy; e (-1,1) 2oiefn] je[m] MiiXiY;-

0ol a5

Semi-definite relaxation of combinatorial optimization defining || M||oo_1:
Maximize Zie[n],je[m] Mij{ui, vj)
Over uj,vj € R™M
Such that |[uil| =1, [|vj]| = 1.

It is indeed an SDP, in view of equivalent formulation:
Maximize (M, Y)
Over YeEeSH,

Such that Y,, =1, u€[n+ m|,

~ 0o MT
_ 1 .
wherel\/l—2<M 0).

Considering a square root of matrix Y/, its first m columns as vectors v;,
its last n columns as vectors u;, then Yp,;; = (uj, v;), hence equivalence
of the two optimization problems.
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Grothendieck inequality

Denote by f(M) value of previous SDP. Clearly, f(M) > |M||so—1. One
then has:
Theorem (Grothendieck inequality)

For any n x m real matrix M, the optimal value (M) satisfies
for some universal constant K¢, with Kg < TV 1.783---.

Denote M = {((ui, vj))ieln jeim € R™™, |lui|| = [|vj]| = 1}, so that
f(M) = supyem(M,Y).

Denote M :={Y € S, : Diag(Y) < I,}.

Then for n = m, M™ C M and —M™* C M, yielding
Corollary

For M € R™", supycp+ [(M, Y)| < Kg||M|| J

co—1-
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Proof of Grothendieck's inequality

Lemma

Let u,v € 8", normed vectors of R", and z: uniformly distributed over
8™ 1. Then K [Sign({u, z))Sign({v, z))] = arcsin({u, v)).

Lemma

Let u;, i € [n], vj, j € [m] be normed vectors of some Hilbert space H
(wlog, H=R"™M). Let ¢ := sinh *(1) = In(1 + v/2).

Then there exist normed vectors u;, i € [n], v, j € [n] of some Hilbert
space H' such that for z uniformly distributed on the unit sphere of H',

Vi € [nl, j € [m], ZE [S/gn(<u;,z>)5/gn(<v;,z))] = c(u, vj).
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Proof of second lemma

H H c2k+1
Write sin(c(u, v)) = Zkzo(—l)k(zki;)!@, v)2kH,

ForweH,jeN, wittw® =w®---Qw.

Use fact (u®/, v®) = (u, v)J to obtain
sin(c(u, v)) = Zﬁo(—l)k%w@zk“, vEZKELY (),

Let H' := @52 H®2k 1,

Define functions S, T : H — H’' by
{ T(u) = {T(u)k}kso where T(u)x = (—1)k\/ St y®2k+1,

(2k+1)!

S(v) = {S(V)k}k>0 where S(v), = (5;:*11)! E2k+1

Hence by (*): (T (u),S(v)) = sin(c(u,v)).
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Note || T(u)|I* = Yyz0 ey 452442 ||* = sinh(clul®).
Similarly, |S(v)||? = sinh(c|v|?).

Hence for normed u;, v; and ¢ = sinh™*(1), vectors v/ := T(u;),
vl := S(v;) are normed, and such that

Vi€ [n], j € [m], arcsin((u}, v)) = c(ui, vj).

Together with first lemma, this concludes proof of second lemma.

Proof of Grothendieck’s inequality: For matrix M € R"™™ normed
vectors uj, v; such that f(M) =3~ - Mj(u;, vj), construct vectors uj, v; as
per second lemma. Then for random vector z uniform on unit sphere of H,
F(M) =325 Mij(uj, vi) = 5cE >, MiSign({u;, 2))Sign((v}, z)).

Thus there must exist some signs s;, t; € {—1,1} such that

3¢ 2ij Misity = f(M).

Remark

Proof provides a probabilistic algorithm for obtaining an approximate value
of ||M|| o1 = sups, ;,—+ Mjjsit;: solve SDP for vectors uj, vj, construct (in
R™M) vectors uj, v; such that arcsin((u}, v[)) = c(uj, v;), then sample z

uniformly on S"*™~! and let s; = Sign((u}, z)), t; = Sign((v/, z)).
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SDP for SBM reconstruction

Consider symmetric two-block, sparse SBM with parameters a, b, for which
reconstruction feasible iff o < ,82, where o = %b, b= ‘gg—b.

For simplicity assume 3 > 0, and n even.

Minimum bisection approach to recover clustering o* € {—, +}": letting
J=eel, e=(1,---,1)":

Maximize (A, Y)
Over YESH: Y =00",0€{—+}"
such that Vu € [n], Yy =1and (J,Y) =0 (i.e. > ;07 =0)

Since Min-bisection is NP-hard, consider SDP relaxation

Maximize (A,Y)
Over Y eSt
such that Vu e [n], Yyu=1and (J,Y) =0.
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Theorem (Guédon-Vershynin 2014)

Let Y: solution of SDP, and y: eigenvector of Y associated with
eigenvalue p(Y).

Assume that o > 81n(2), %2 > 271n(2).

Then for some 6 > 0, 9 sign ¢ = + such that w.h.p.,

I Ha;*:aSign(y,») > 3+ 6, i.e. partition based on Sign(y;) achieves
non-vanishing overlap.

Proof: Let Y* = o*0*". W.h.p., ‘Zie[n] of| < +/nln(n), hence 35:
S lor =i = O0(y/nIn(n)) and Y := 55" such that <\N/,J> = 0.
Since Y _; |0} — ;| = O(y/nIn(n)), <A — Y*>: at most O(nlIn(n))

I
pairs u, v with (Y — Y*),, # 0, and corresponding entry A,, < Ber(a/n).
= w.h.p, < AY — > O(In(n)).
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Note A = E(Alo*) = @J + By+ _ atfy

Write <A, Y — Y*> — §<Y*, Y — Y*> — o)y < §<Y*, y— Y*>.
By SDP optimality of Y,

0< <A, - Y/> - <A, »“/> — (A, Y*) + O(In(n)), so that

0< </_L Yy — Y*> + <A ~AY - Y*> + O(In(n)), hence
8{y*, v = V) < (A,Y = ¥*) + OIn(n)), where A = A~ A,
O AL
<2(n? — <v*, Y/>)
— 2<Y*, y* — \7>
~ |12 ~
Hence 2£H ye - YHF < ‘<A, v>‘ (A, Y| + O(In(n))
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Let 2 := >icjVar(Ajlo™) = na(1/2 + o(1)). By Bernstein’s inequality,
P(| Y YiAyl > V2s?t + 5t [ 0*) <2e".
Thus for t = In(n), w.h.p., ‘Zi<j YU*AU) = O(y/anlIn(n)).

Upper bounding ‘<A, \A/>‘

’<A= \A/>’ < SUPy s, Diag(v)<i (B Y)]
< Kel|Allsos1s
by Corollary to Grothendieck’s inequality. Write then:
||A”oo—>1 = SUPx ye{+,—}" XTA}’
= SUPx ye{+,—-}" Zi<j Aji(xiyj + xyi)-
By Bernstein’s inequality,
P(3" o Ajj(xiyj + xy1) = V852t + 5t | o%) < et
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Let t = 2(1 + €)nIn(2), so that e~t = 2= 2(1+e)n,

Then (union bound) w.h.p.,
IA[l, ;< VB2t + 3t <n [3(1 +6)In(2) + /81 + )1 + o(1)) |n(2)]

By assumption 8In(2) < o, this gives [|Al|_,; < $ny/8a(1 + €)In(2),

< 5 Key/Ba(l+¢)In(2) =: 6

hence w.h.p.: % Y* — \A/
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Let y: eigenvector of Y associated with o( \A/) normalized so that
llyll = v/n. By Davis-Kahane, for some ¢ = +1,

~ 112
Y*— . 8l|Y*—Y
Tilly —eo®| < 2\f” — ”F ie. Ly —eo*|® < w < 86.

Since %Ziﬂgi*;éeSign(y,-) <|ly —eo*||* < 86,

to conclude it suffices to ensure 86 < 1/2, i.e.
16 5Ke\/8ain(2) < 1.

2
Thus £ > 8In(2) (%{KG) suffices.
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Other application of Grothendieck's inequality

Definition
Cut norm of matrix B € R™™: || B||_,; := max;c{n],sc[m] ‘Ziel,jeJ ). J
Basic inequalities: ||B|| ., < ||Blloo1 < 4Bl it

Indeed for s, t € {—,+}", letting I+ = {i :s5; = %}, Jy ={j : tj = £},

Zs,th,J_ > Bi+ >, Bi— > Bj— Y By

i€ly,jedy iel_jed_ i€ly,jed_ iel_ jedy

hence | B]| < 4| B

oco—1 cut*

Also for I C [n], J C [m], let x; = 2Ijc; — 1, yj = 2Lje; — 1. Then
1+x514+x 1
Z B,‘j = ZBU72 ! S — ZZ[BUXi)/j + B,'J'X,' + B,Jyj + B,’j].

ieljed iy 2 i
hence || B|| .yt < |IBllo_s1- Approximation of |-||_,, can be done based on
probabilistic algorithm for approximating ||-||,_,; (see Alon-Naor 2004])
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