Doodle pour choix des articles à présenter: https://doodle.com/poll/uis8bxkassgye7y9?utm_source=pollutm_medium=link

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-backtracking matrix

B: $2m \times 2m$ matrix where *m*: number of edges of *G*, defined as $B_{i \to j,k \to \ell} = \mathbb{I}_{j=k} \mathbb{I}_{i \neq \ell}$.

Allows counting of non-backtracking paths in $G: (B^t)_{i \to j, k \to \ell} = \cdots$ $\cdots |\{NB \text{ paths with } t + 1 \text{ edges, started at } i \to j, \text{ ending at } k \to \ell\}|.$

Spectrum of *B*: $\lambda_1(B) \ge |\lambda_2(B)| \ge \cdots \ge |\lambda_{2m}(B)|$.

Spectrum of NBM *B* for sparse SBM $G \sim \mathcal{G}(n, P, \alpha)$

Mean progeny matrix $M = \alpha P$, spectrum: $\lambda_1(M) = \alpha \ge |\lambda_2(M)| = \alpha |\lambda_2(P)| \ge \cdots \ge |\lambda_q(M)| = \alpha |\lambda_q(P)|.$

Let $x_i \in \mathbb{R}^q$: eigenvector of M associated with $\lambda_i(M)$. For $e = u \rightarrow v \in \vec{E}$, define $y_i(e) = x_i(\sigma_u)$. For $\ell = c \ln(n)$, c > 0 fixed constant, let $z_i = B^{\ell} B^{\top \ell} y_i$.

Theorem

Let $r_0 = \sup\{i \in [q] : \lambda_i(M)^2 > \lambda_1(M)\}.$ (Note: $r_0 \ge 2 \Leftrightarrow \alpha \lambda_2(P)^2 > 1$, i.e. above Kesten-Stigum threshold). Then $\forall i \in [r_0]$, eigenpair $(\lambda_i(B), \xi_i)$ of B verifies: $\lambda_i(B) \xrightarrow[n \to \infty]{\rightarrow} \lambda_i(M).$ $\exists x_i \in \mathbb{R}^q$: eigenvector of $M \leftrightarrow \lambda_i(M)$ such that for associated $z_i \in \mathbb{R}^{2m}$, $\lim_{n \to \infty} \frac{\langle z_i, \xi_i \rangle}{\|z_i\|, \|\xi_i\|} = 1.$ For $i > r_0$, $|\lambda_i(B)| \le \sqrt{\lambda_1(M)} + o(1).$

▲ □ ► < □ ►</p>

Spectrum of NBM fo q = 2, above Kesten-Stigum threshold

Intuition for form of eigenvectors:

For large ℓ ,

$$z_{i} := B^{\top \ell} y_{i}(u \to v) = \sum_{\substack{(u',v') \\ (u',v')}} x_{i}(\sigma_{v'}) B^{\top \ell}(u \to v, u' \to v')$$

$$\approx \sum_{\substack{(u',v') \\ \approx [\alpha\lambda_{i}(P)]^{\ell} Z_{i}(u),} (u \to v) = (u \to v) + (u \to v)$$

where $Z_i(u)$: martingale limit as in analysis of Census reconstruction for tree model.

Then by construction $B^{\top}z_i \approx \alpha \lambda_i(P)z_i$, i.e. z_i : approximate eigenvector.

Relation to Ramanujan graphs

Definition (Lubotzky, Phillips and Sarnak, 1995)

Ramanujan graphs = *d*-regular graphs with adjacency matrix *A* such that $\sup_{\lambda \in \text{Sp}(A), |\lambda| \neq d} |\lambda| \leq 2\sqrt{d-1}.$

Recall Alon-Boppana's inequality, $\lambda_2(A) \ge 2\sqrt{d-1}(1 - O(\Delta^{-2}))$ where Δ : graph diameter. Hence Ramanujan graphs: regular graphs with optimal spectral gap.

Theorem (Ihara-Bass formula; see lecture notes)

For graph with *n* vertices, *m* edges, adjacency matrix $A \in \{0, 1\}^{n \times n}$, non-backtracking matrix $B \in \{0, 1\}^{2m \times 2m}$, matrix $Q = Diag(\{d_i - 1\}) \in \mathbb{R}^{n \times n}$, where d_i : degree of node *i*, then $\forall u \in \mathbb{C}, (1 - u^2)^{n-m} Det(I - uB) = Det(I - uA + u^2Q)$.

Relation to Ramanujan graphs

Corollary

A *d*-regular graph, $d \ge 2$ is Ramanujan iff its non-backtracking matrix *B* is such that all eigenvalues λ of *B* satisfy either $|\lambda| = d - 1 = \rho(B)$, or $|\lambda| \le \sqrt{\rho(B)}$.

Definition (extended)

Ramanujan graphs: not necessarily regular graphs with NBM *B* such that for $\lambda \in Sp(B)$, either $|\lambda| = \rho(B)$, or $|\lambda| \le \sqrt{\rho(B)}$.

Theorem's result implies: for $G \sim \mathcal{G}(n, \alpha/n)$ Erdős-Rényi graph, its NBM has w.h.p. spectrum: $\rho(B) = \alpha + o(1)$, and all other eigenvalues $|\lambda| \leq \sqrt{\alpha} + o(1)$. Hence up to o(1) error, Ramanujan according to extended definition.

Result is a (non-regular) counterpart of [Friedman 2008]: for $d \ge 3$, random d-regular graphs such that w.h.p.,

 $\sup_{\lambda \in Sp(A), |\lambda| \neq d} |\lambda| \leq 2\sqrt{d-1} + o(1).$

ヘロト 人間 トイヨト 人見トー 油

Existence of hard phase [Banks et al. 2016]

For symmetric Potts model with q blocks, parametrized by $\alpha P_{ii} = c_{in}$, $\alpha P_{ij} = c_{out}, j \neq i \in [q],$ average degree $\alpha = \frac{c_{in} + (q-1)c_{out}}{q} = \lambda_1(M), \ \lambda_2(M) = \frac{c_{in} - c_{out}}{q}.$

Definition

Partition of [n] is **good** if it splits [n] into q equal-size groups, such that the number m_{in} (resp. m_{out}) of edges intra-groups (resp. inter-groups) verifies $|m_{in} - \bar{m}_{in}| \le n^{2/3}$, $|m_{out} - \bar{m}_{out}| \le n^{2/3}$, where $\bar{m}_{in} = \frac{nc_{in}}{2q}$, $\bar{m}_{out} = \frac{n(q-1)c_{out}}{2q}$.

Then: for $q \ge 4$, can find parameters c_{in} , c_{out} such that: $\lambda_2^2 < \lambda_1$, i.e. below Kesten-Stigum threshold, and for some $\epsilon > 0$, $\lim_{n\to\infty} \mathbb{E}|\{\text{ good partitions with overlap } \le \epsilon\}| = 0$. Since there exists a good partition w.h.p. (partition [q] according to true spin values σ), this implies that partial reconstruction is feasible below K-S threshold.

イロト 不得下 イヨト イヨト 二日

Remark

Partial reconstruction of communities in model $\mathcal{G}(n, \alpha, P)$ is polynomial-time feasible above KS threshold, and believed to be infeasible in poly-time below KS threshold. Hence existence of two or three phases: reconstruction

- Infeasible
- feasible (information-theoretically) but computationally hard
- poly-time feasible (above KS threshold)

> < 同 > < 回 > < 回 >

Hypothesis testing problems

Example: for graph *G*, decide whether $H_0: G \sim \mathbb{P}_n: \mathcal{G}(n, \alpha/n)$ (Erdős-Rényi graph), or $H_1: G \sim \mathbb{Q}_n: \mathcal{G}(n, \alpha, P)$ (sparse SBM). Let Likelihood ratio $Y_n := \frac{d\mathbb{Q}_n}{d\mathbb{P}_n}$. By Neyman-Pearson's lemma, for all $\epsilon > 0, \exists \text{ test } T \in \{0, 1\}$ maximizing $\mathbb{Q}_n(T = 1)$ among tests such that $\mathbb{P}_n(T = 1) \le \epsilon$ given by T = 1 if $Y_n > t$, T = 1(0) with prob. p(1 - p) if $Y_n = t$, T = 0 if $Y_n < t$.

Definition

Detection between H_0 , H_1 (i.e. \mathbb{P}_n , \mathbb{Q}_n) is feasible if \exists tests $\{T_n\}_{n>0}$ such that $\mathbb{P}_n(T_n = 1) \xrightarrow{n \to \infty} 0$ and $\mathbb{Q}_n(T_n = 0) \xrightarrow{n \to \infty} 0$.

Definition (Contiguity)

Sequence $\{\mathbb{P}_n\}_{n>0}$ contiguous with respect to sequence $\{\mathbb{Q}_n\}_{n>0}$ iff for all sequence of events $\{E_n\}_{n>0}$, $\lim_{n\to\infty} \mathbb{Q}_n(E_n) = 0 \Rightarrow \lim_{n\to\infty} \mathbb{P}_n(E_n) = 0$

Lemma

If for some c > 0, $\sup_{n>0} \mathbb{E}_{\mathbb{Q}_n} Y_n^2 \leq c$, then $\{\mathbb{P}_n\}_{n>0}$ contiguous with respect to $\{\mathbb{Q}_n\}_{n>0}$.

Proof: $\mathbb{P}_n(E_n) = \mathbb{E}_{\mathbb{Q}_n}[Y_n \mathbb{I}_{E_n}] \le \sqrt{\mathbb{Q}_n(E_n)\mathbb{E}_{\mathbb{Q}_n}Y_n^2} \le \sqrt{c}\sqrt{\mathbb{Q}_n(E_n)}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Property: If contiguity (of $\{\mathbb{P}_n\}_{n>0}$ w.r.t. $\{\mathbb{Q}_n\}_{n>0}$, or of $\{\mathbb{Q}_n\}_{n>0}$ w.r.t. $\{\mathbb{P}_n\}_{n>0}$) then detection is infeasible.

Indeed, let $E_n = \{T_n = 0\}$, where $\{T_n\}_{n>0}$: tests supposed to achieve detection. Thus $\mathbb{Q}_n(E_n) \to 0$, hence by contiguity, $\mathbb{P}_n(E_n) \to 0$. Thus impossible to have $\mathbb{P}_n(E_n) \to 1$ as required by detectability.

Lemma

For
$$Y = \frac{d\mathbb{P}}{d\mathbb{Q}}$$
, $d_{var}(\mathbb{P}, \mathbb{Q}) \le 2\sqrt{\mathbb{E}_{\mathbb{Q}}Y^2 - 1}$, hence $\lim_{n \to \infty} \mathbb{E}_{\mathbb{Q}_n} Y_n^2 = 1 \Rightarrow \lim_{n \to \infty} d_{var}(\mathbb{P}_n, \mathbb{Q}_n) = 0$.

Proof:

$$d_{var}(\mathbb{P},\mathbb{Q}) = 2\sup_{A} |\mathbb{P}(A) - \mathbb{Q}(A)| = 2\sup_{A} |\mathbb{E}_{\mathbb{Q}}(\mathbb{I}_{A}(Y-1))| \\ \leq 2\sup_{A} \sqrt{\mathbb{Q}(A)\mathbb{E}_{\mathbb{Q}}(Y-1)^{2}} \leq 2\sqrt{\mathbb{E}_{\mathbb{Q}}Y^{2}-1}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Detection between $\mathcal{G}(n, \alpha/n)$ and binary symmetric SBM

 $\sigma_i \text{ i.i.d. uniform on } \{-,+\}; \mathbb{P}((u,v) \in E | \sigma_{[n]}) = \begin{cases} \frac{a}{p} & \text{if } \sigma_u \sigma_v = +, \\ \frac{b}{p} & \text{if } \sigma_u \sigma_v = -, \end{cases}$ Spectrum of mean progeny matrix $M = \frac{1}{2} \begin{pmatrix} a & b \\ b & a \end{pmatrix}$: $\alpha = \frac{a+b}{2}, \ \beta = \frac{a-b}{2}.$ Kesten-Stigum condition: $\tau := \frac{\beta^2}{\alpha} = \frac{(a-b)^2}{2(a+b)} > 1.$

Theorem (Mossel-Neyman-Sly 2015)

Distinction between \mathbb{P}_n : $\mathcal{G}(n, \alpha/n)$ and \mathbb{Q}_n : symmetric binary SBM is feasible if $\tau > 1$, infeasible if $\tau < 1$.

Case $\tau > 1$: By previous theorem (spectrum of NBM *B* for SBM), eigenvalue of second largest modulus of $\lambda_2(B)$ verifies w.h.p. under \mathbb{Q}_n : $|\lambda_2(B)| = |\beta| + o(1)$; under \mathbb{P}_n , $|\lambda_2(B)| \le \sqrt{\alpha} + o(1)$. Hence test $T_n = \mathbb{I}_{|\lambda_2(B)|^2 \ge |\beta| \sqrt{\alpha}}$ successful at detection.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Lemma

For $Y_n = \frac{d\mathbb{Q}_n}{d\mathbb{P}_n}$, and $\tau < 1$, one has $\mathbb{E}_{\mathbb{P}_n} Y_n^2 = (1 + o(1)) \frac{e^{-\tau/2 - \tau^2/4}}{\sqrt{1 - \tau}}$. Thus $\sup_{n>0} \mathbb{E}_{\mathbb{P}_n} Y_n^2 < +\infty$, hence infeasibility of detection.

$$Y_n(g) = \sum_{s \in \{\pm\}^n} \frac{\mathbb{Q}_n(G = g; \sigma_{[n]} = s)}{\mathbb{P}_n(G = g)} = 2^{-n} \sum_{s \in \{\pm\}^n} \prod_{(uv)} W_{uv}(s), \text{ where }$$

$$W_{uv}(s) = \begin{cases} \frac{2a}{a+b} & \text{if } s_u s_v = +, \ (uv) \in E(g), \\ \frac{2b}{a+b} & \text{if } s_u s_v = -, \ (uv) \in E(g), \\ \frac{1-a/n}{1-(a+b)/2n} & \text{if } s_u s_v = +, \ (uv) \notin E(g), \\ \frac{1-b/n}{1-(a+b)/2n} & \text{if } s_u s_v = -, \ (uv) \notin E(g). \end{cases}$$

Fix $s, t \in \{\pm\}^n$. Note $W_{uv} = W_{uv}(s)$, $V_{uv} = W_{uv}(t)$, and $\epsilon = s_u s_v t_u t_v \in \{-,+\}$.

Then: $\mathbb{E}_{\mathbb{P}_n} W_{uv} V_{uv} = 1 + \epsilon \frac{(a-b)^2}{2n(a+b)} + \epsilon \frac{(a-b)^2}{4n^2} + O(n^{-3}).$

Let
$$\gamma := \frac{\tau}{n} + \frac{(a-b)^2}{4n^2}$$
, $S_{\pm} = |\{(uv) : s_u svt_u t_v = \pm\}|$. Then:

$$\mathbb{E}_{\mathbb{P}_n} Y_n^2 = 2^{-2n} \sum_{s,t} \prod_{(uv)} \mathbb{E}_{\mathbb{P}_n} W_{uv} V_{uv} = 2^{-2n} \sum_{s,t} (1 + \gamma + O(n^{-3}))^{S_+} (1 - \gamma + O(n^{-3}))^{S_-}.$$

Let $\rho = \rho(s, t) := \frac{1}{n} \sum_{i \in [n]} s_i t_i$. Then: $\rho^2 = \frac{1}{n} + \frac{2}{n^2} \sum_{u \neq v} s_u s_v t_u t_v = \frac{1}{n} + \frac{2}{n^2} (S_+ - S_-)$ Also: $\frac{2}{n^2} (S_+ + S_-) = \frac{2}{n^2} {n \choose 2} = 1 - \frac{1}{n}$. Hence: $S_+ = (1 + \rho^2) \frac{n^2}{4} - \frac{n}{2}, S_- = (1 - \rho^2) \frac{n^2}{4}$. For fixed $x \in \mathbb{R}$, one has: $(1 + x/n)^{n^2} = (1 + o(1))e^{nx - x^2/2}$.

Thus: $(1 + \gamma + O(n^{-3}))^{S_+} \sim e^{-\tau/2} (1 + \gamma)^{n^2(1+\rho^2)/4}$ $\sim e^{-\tau/2} [e^{n\tau + (a-b)^2/4 - n^2\gamma^2/2}]^{(1+\rho^2)/4}$

Similarly,

$$(1 - \gamma + O(n^{-3}))^{S_{-}} \sim [e^{-n\tau - (a-b)^2/4 - n^2\gamma^2/2}]^{(1-\rho^2)/4}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathbb{E}_{\mathbb{P}_n} Y_n^2 \sim 2^{-2n} e^{-\tau/2 - \tau^2/4} \sum_{s,t} e^{(\rho^2/2)(n\tau + (a-b)^2/4)} \\ \sim e^{-\tau/2 - \tau^2/4} \mathbb{E}_e^{(Z_n^2/2)(\tau + (a-b)^2/(4n))},$$

where $Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \sigma_i$, with σ_i i.i.d. uniform random signs. By CLT, $Z_n \xrightarrow{\mathcal{W}} \mathcal{N}(0,1)$ so that $e^{Z_n^2/2(\tau + (a-b)^2/(4n))} \xrightarrow{\mathcal{W}} e^{Z^2\tau/2}$, with $Z \sim \mathcal{N}(0,1)$.

Uniform integrability of r.v. $e^{\tau Z_n^2/2}$: $\mathbb{P}(e^{\tau Z_n^2/2} \ge M) = \mathbb{P}(|Z_n| \ge \sqrt{2 \ln(M)/\tau}) \le 2e^{-2 \ln(M)/(2\tau)} = 2M^{-1/\tau}$, by Hoeffding's inequality.

$$\mathbb{E}e^{\tau Z_n^2/2}\mathbb{I}_{e^{\tau Z_n^2/2} \ge M} = M\mathbb{P}(e^{\tau Z_n^2/2} \ge M) + \int_M^\infty \mathbb{P}(e^{\tau Z_n^2/2} \ge x)dx$$

$$\leq 2M^{1-1/\tau} + 2\int_M^\infty x^{-1/\tau}dx$$

$$\to 0 \text{ as } M \to \infty \text{ for } \tau < 1.$$

By uniform integrability, $\mathbb{E}_{\mathbb{P}_n} Y_n^2 \to \mathbb{E} e^{Z^2 \tau/2} = \frac{1}{\sqrt{1-\tau}}$.

Thuc

The planted clique detection problem

Under $H_0(\mathbb{P}_n)$, Erdős-Rényi graph $G \sim \mathcal{G}(n, 1/2)$; Under $H_1(\mathbb{Q}_n)$, $G : \mathcal{G}(n, 1/2) \cup$ clique of size K, on subset \mathcal{K} uniformly chosen in $\binom{[n]}{K}$.

Theorem (Informational threshold) For any $\epsilon > 0$, if $K \le (1 - \epsilon)2\log_2(n)$ then $d_{var}(\mathbb{P}_n, \mathbb{Q}_n) \to 0$, hence detection infeasible. If $K \ge K_0 := (1 + \epsilon)2\log_2(n)$, detection feasible, based on test $T = \mathbb{I}_G$ contains clique of size κ_0 .

Proof (infeasibility): $Y_{n}(g) = \frac{\mathbb{Q}_{n}(G=g)}{\mathbb{P}_{n}(G=g)} = \frac{1}{\binom{n}{K}} \sum_{C \in \binom{[n]}{K}} \frac{\mathbb{Q}_{n}(G=g|\mathcal{K}=C)}{\mathbb{P}_{n}(G=g)}$ $= \frac{1}{\binom{n}{K}} \sum_{C \in \binom{[n]}{K}} 2^{\binom{C}{2}} \mathbb{I}_{C} \text{ clique of } g$

$$\begin{split} \mathbb{E}_{\mathbb{P}_{n}}Y_{n}^{2} &= \frac{1}{\binom{n}{\kappa}^{2}}\sum_{C,C'\in\binom{[n]}{\kappa}}2^{2\binom{K}{2}}\mathbb{P}_{n}(C,C' \text{ cliques of } G) \\ &= \frac{1}{\binom{n}{\kappa}}\sum_{C\in\binom{[n]}{\kappa}}2^{2\binom{K}{2}}\mathbb{P}_{n}(C,[K] \text{ cliques of } G) \\ &= \frac{1}{\binom{n}{\kappa}}\sum_{k=0}^{K}2^{2\binom{K}{2}}\binom{K}{k}\binom{n-K}{K-k}\left(\frac{1}{2}\right)^{2\binom{K}{2}-\binom{k}{2}} \\ &\leq \frac{1}{\binom{n}{\kappa}}\sum_{k=0}^{K}\binom{K}{k}\binom{n-K}{K-k}2^{kK/2} \\ \\ \text{Since } K \leq (1-\epsilon)2\log_{2}(n), 2^{kK/2} \leq n^{(1-\epsilon)k}, \text{ so that} \\ &\mathbb{E}_{\mathbb{P}_{n}}Y_{n}^{2} \leq (1+o(1))\frac{K!}{K}\sum_{k=0}^{K}\binom{K}{k}\frac{n^{K-k}}{(K-k)!}n^{(1-\epsilon)k} \\ &\qquad (1+o(1))\sum_{k=0}^{K}\binom{K}{k}\frac{K!}{(K-k)!}n^{-\epsilon k} \\ \\ \text{Let } f(k) = \binom{K}{k}\frac{K!}{(K-k)!}n^{-\epsilon k}. \text{ Then } \frac{f(k+1)}{f(k)} = \frac{(K-k)^{2}}{k+1}n^{-\epsilon} < 1 \text{ for large} \\ \\ &\text{enough } n. \end{split}$$

Hence:

$$\begin{split} \mathbb{E}_{\mathbb{P}_n} Y_n^2 &\leq (1+o(1))[1+Kf(1)] \\ &= (1+o(1))[1+K^3n^{-\epsilon}] \\ &= 1+o(1). \end{split}$$

・ロト ・四ト ・ヨト ・ヨト 三日

Proof (feasibility): For $K \ge k_0 := (1 + \epsilon)2\log_2(n)$, and $T_n = \mathbb{I}_G$ contains a k_0 -clique, obviously $\mathbb{Q}_n(T_n = 1) = 1$. Write $\mathbb{P}_n(T_n = 1) \le \binom{n}{k_0}2^{-\binom{k_0}{2}} \le n^{k_0}2^{-k_0(k_0-1)/2} \le n^{k_0}n^{-(1+\epsilon)(k_0-1)} \le n^{-\epsilon k_0+1+\epsilon} \to 0$ as $n \to \infty$.

Remark

No known polynomial-time implementation of this test: finding a maximum size-clique in a graph is NP-hard (it is even NP-hard to find an approximation of the size of the largest clique up to an approximation factor $n^{1-\epsilon}$ for any $\epsilon \in (0, 1)$, [Hastad, 1999]).

Planted clique detection, computational threshold

Theorem (Alon-Krivelevitch-Sudakov, 1998)

For constant c > 0, detection of planted cliques of size $K = c\sqrt{n}$ can be done in polynomial time, using a spectral method.

To graph *G* with adjacency matrix *A*, associate matrix $W_{uv} = 2A_{uv} - 1$. Let $G^0 \sim \mathcal{G}(n, 1/2)$, with adjacency matrix A^0 and for $u \neq v \in [n]$ let $W_{uv}^0 = 2A_{uv}^0 - 1$. For set $\mathcal{K} \subset [n]$, $|\mathcal{K}| = \mathcal{K} = c\sqrt{n}$, let $\Delta_{uv} = \begin{cases} 0 & \text{if } u \text{ or } v \notin \mathcal{K}, \\ 1 - W_{uv}^0 & \text{if both } u, v \in \mathcal{K}. \end{cases}$ Then for $G^1 = G^0 \cup$ clique on $\mathcal{K}, W^1 = W^0 + \Delta$. Note also: $\overline{\Delta}_{uv} = \mathbb{I}_{u,v \in \mathcal{K}}$.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Theorem (Anderson-Guionnet-Zeitouni, proof of Theorem 2.1.22) For $(Y_i)_{i \in [n]}$ i.i.d., $(Z_{ij})_{i < j \in [n]}$ i.i.d., $\mathbb{E}Y_1 = \mathbb{E}Z_{12} = 0$, $\mathbb{E}Z_{12}^2 = 1$, let Wigner matrix $W^{(n)}$: $W_{ii}^{(n)} = n^{-1/2}Y_i$, $W_{ij}^{(n)} = W_{ji}^{(n)} = n^{-1/2}Z_{ij}$, $i < j \in [n]$. Assume $r_k := \max(\mathbb{E}|Z_{12}|^k, \mathbb{E}|Y_1|^k) \le k^{ak}$ for some constant a > 0. Then for all $\delta > 0$: $\mathbb{P}(\rho(W^{(n)}) \le 2 - \delta) \xrightarrow{n \to \infty} 0$, and for any constant b > 0, $\mathbb{P}(\rho(W^{(n)}) \ge 2 + \delta) = o(n^{-b})$.

Thus w.h.p., $\rho(W^0) = (1 + o(1))2\sqrt{n}$ (W^0 : Wigner matrix of size *n*), and $\rho(\Delta - \overline{\Delta}) = (1 + o(1))2\sqrt{K}$ (conditionally on \mathcal{K} , $\Delta - \overline{\Delta}$: Wigner block of size *K*) $\overline{\Delta}$: rank 1 matrix with spectral radius *K*, and associated eigenvector $\mathbf{x} = (\mathbf{I} - \mathbf{r})$.

 $x = (\mathbb{I}_{u \in \mathcal{K}})_{u \in [n]}.$

Write $W^1 = W^0 + (\Delta - \overline{\Delta}) + \overline{\Delta} = \tilde{W} + \overline{\Delta}$, where $\tilde{W} = W^0 + (\Delta - \overline{\Delta})$. Thus w.h.p., $\rho(\tilde{W}) \leq (1 + o(1))2[\sqrt{n} + \sqrt{K}] = (1 + o(1))2\sqrt{n}$ Assume $K = c\sqrt{n}$, c > 4. Then: Under \mathbb{P}_n , $\rho(W^0) = (1 + o(1))2\sqrt{n}$, and by Weyl's inequalities, under \mathbb{Q}_n , $\rho(W^1) \geq K - (1 + o(1))2\sqrt{n} \geq (c - 2)(1 + o(1))\sqrt{n}$. Hence test $T_n = \mathbb{I}_{\rho(W) > (1 + \epsilon)2\sqrt{n}}$ detects w.h.p. between H_0 and H_1 .

For c > 0 not necessarily > 4: For each set of size ℓ of nodes $\{i_1, \ldots, i_\ell\} \in [n]$, consider subgraph $G^{i_1^\ell}$ of G among nodes *i* neighbours of all i_1, \ldots, i_{ℓ} . Then under H_0 , for each choice i_1, \ldots, i_{ℓ} , with probability $1 - o(n^{-\ell})$, $\rho(W^{i_1^{\ell}}) < (1+o(1))2\sqrt{2^{-\ell}n}$ Thus (union bound) w.h.p., for all $i_1^{\ell} \in [n], \rho(W^{i_1^{\ell}}) \leq (1 + o(1))2\sqrt{2^{-\ell}n}$. Under H_1 , for choice $G_1^{i_1}$: $\sim 2^{-\ell}n$ vertices, planted clique of size $c\sqrt{n}$. Hence $\rho(W_1^{i_1^{\ell}}) \geq [c - 2(1 + o(1))2^{-\ell/2}]\sqrt{n}$. Thus for $\ell : c > 4\sqrt{2^{-\ell}}$, test $T_n = \mathbb{I}_{\exists i_1^{\ell} \in [n]: \rho(W^{i_1^{\ell}}) \ge (1+\epsilon)2\sqrt{2^{-\ell}n}}$ detects between H_0 and H_1 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Remark

No polynomial-time algorithm known for detection of planted clique of size $K = o(\sqrt{n})$. Conjecture: no polynomial-time algorithm exists in that case. Hence three phases: detection is

- infeasible for $K \leq (1 \epsilon) 2 \log_2(n)$,
- feasible (in an information-theoretic sense), but computationally hard for $(1 + \epsilon)2\log_2(n) \le K \le o(\sqrt{n})$,

• poly-time feasible for $K = \Omega(\sqrt{n})$.

< □ > < □ > < □ > < □ > < □ > < □ >

Clique reconstruction under H_1 and $K = c\sqrt{n}$, c > 4 $\rho(\bar{\Delta}) = c\sqrt{n}$, and $\rho(\bar{\Delta})$ separated from other eigenvalue 0 by $c\sqrt{n}$. $\rho(\tilde{W}) \le 2(1 + o(1))\sqrt{n}$.

By results on perturbation of eigenvectors, $\exists x \leftrightarrow \rho(W^1)$ such that

 $\langle x, \bar{x} \rangle \geq \sqrt{1 - \frac{\rho(\tilde{W})^2}{(c\sqrt{n} - \rho(\tilde{W}))^2}} = \Omega(1), \text{ where } \bar{x}_u = \frac{1}{\sqrt{K}} \mathbb{I}_{u \in \mathcal{K}}$ Hence $\sum_u x_u^2 = 1, \ \frac{1}{\sqrt{K}} \sum_{u \in \mathcal{K}} x_u \geq \beta = \sqrt{1 - [2/(c-2)]^2} + o(1) = \Omega(1).$

Let for constant $a \in (0, \beta)$: $C = \{u \in \mathcal{K} : x_u \ge \frac{a}{\sqrt{K}}\}$. Thus: $\sqrt{K}\beta \le \sum_{u \in \mathcal{K}} x_u \le (K - |C|)\frac{a}{\sqrt{K}} + \sum_{u \in C} x_u \le K\frac{a}{\sqrt{K}} + \sqrt{|C|}$

Hence $\sqrt{K}(\beta - a) \leq \sqrt{|C|}$, i.e. $|C| \geq K(\beta - a)^2$.

Let $D = \{u \in \overline{\mathcal{K}} : x_u \ge \frac{a}{\sqrt{K}}\}$. Necessarily, $|C| + |D| \le \frac{K}{a^2}$. Thus among nodes in $E = \{u : x_u \ge a/\sqrt{K}\} = C \cup D$, fraction at least $a^2(\beta - a)^2 = \Omega(1)$ belongs to \mathcal{K} . Set aside set \tilde{V} of ϵn vertices chosen at random, $\epsilon > 0$. Remaining graph G': $n(1 - \epsilon)$ vertices, and planted clique of size $c\sqrt{n}(1 - \epsilon - o(1))$ whp.

Previous analysis applies to G' for ϵ such that $c\sqrt{1-\epsilon} > 4$: set E' of size $m = \Theta(K)$ contains fraction $\alpha = \Omega(1)$ of clique vertices in G'.

For
$$u \in \tilde{V} \cap \mathcal{K}$$
, $X_u := \sum_{v \in E'} \mathbb{I}_{u \sim v} \ge \alpha m + \operatorname{Bin}((1 - \alpha)m, 1/2);$
For $u \in \tilde{V} \setminus \mathcal{K}$, $X_u := \sum_{v \in E'} \mathbb{I}_{u \sim v} = \operatorname{Bin}(m, 1/2);$
Let $\hat{\mathcal{K}} := \{u \in \tilde{V} : X_u \ge (1 - \alpha)\frac{m}{2} + \frac{2}{3}\alpha m\}.$

Then Chernoff bounds for binomial random variables imply: whp, $\hat{\mathcal{K}} = \tilde{\mathcal{V}} \cap \mathcal{K}$.

 \rightarrow whp, exact reconstruction of \mathcal{K} on $\widetilde{\mathcal{V}}$.

Reconstruction of \mathcal{K} on $V' = [n] \setminus \tilde{V}$: whp, nodes in V' neighbours of all nodes in $\hat{\mathcal{K}}$ are exactly nodes in $V' \cap \mathcal{K}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark

Reconstruction in polynomial time also feasible for $K = c\sqrt{n}$, c < 4: identify subgraph $G^{i_1^{\ell}}$ with $2^{-\ell}n$ vertices and planted clique of size $c\sqrt{n}$, where $c > 4.2^{-\ell/2}$. Use previous reconstruction algorithm of $\hat{\mathcal{K}}$ on this graph, giving whp subset of size $\Theta(\sqrt{n})$ of \mathcal{K} . Add to it all nodes that are neighbours of everyone in $\hat{\mathcal{K}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >