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Non-backtracking matrix

B: 2m x 2m matrix where m: number of edges of G, defined as
Bijk—e = Tj=kTjzp.

o—0 0

Allows counting of non-backtracking paths in G: (BY)j_j k¢ ="
-+ |[{NB paths with t 4+ 1 edges, started at i — j, ending at kK — (}|.

Spectrum of B: A\1(B) > [X2(B)| > -+ > |Xam(B)].
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Spectrum of NBM B for sparse SBM G ~ G(n, P, )

Mean progeny matrix M = aP, spectrum:
M(M) = a = [Ma(M)| = alda(P)] = - = [Ag(M)] = alAq(P)].

Let x; € R9: eigenvector of M associated with \;(M).
For e = u — v € E, define yi(e) = xi(oy).
For ¢ = cln(n), c > 0 fixed constant, let z; = B‘BT'y;

Theorem
Let ro = sup{i € [g] : \i(M)? > A1 (M)}.

(Note: ry > 2 < aly(P)? > 1, i.e. above Kesten-Stigum threshold).
Then Vi € [r], eigenpair (A\i(B),&;) of B verifies:

proba

Ai(B) )\,(M).
dx; € Rq elgenvector of M <+ \;(M) such that for associated z; € R?™,
( 7£I> 1

lim
n=oo iz [NI&N —

Xi(B)] < v/ A1(M) + o(1).

For i > ry,

v
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Spectrum of NBM fo g = 2, above Kesten-Stigum
threshold

N
M (B) = A (M)
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Intuition for form of eigenvectors:

For large ¢,

zi =BT y(u—v) = Z xi(oy )BT (u— v, u' = V')
(u',v')
~ Z Xi(av/)]lﬂ length (Z—|— 1)-NBP (v —=v")—(u—v)
(u',v')
~ [aXi(P)) Zi(u),
where Z;(u): martingale limit as in analysis of Census reconstruction for
tree model.
Then by construction BT z; =~ a);(P)z;, i.e. zj: approximate eigenvector.
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Relation to Ramanujan graphs

Definition (Lubotzky, Phillips and Sarnak, 1995)

Ramanujan graphs = d-regular graphs with adjacency matrix A such that

sup A <2vd - 1.

AESP(A),|A#d

Recall Alon-Boppana's inequality, A2(A) > 2v/d — 1(1 — O(A~2)) where
A: graph diameter. Hence Ramanujan graphs: regular graphs with
optimal spectral gap.

Theorem (lhara-Bass formula; see lecture notes)

For graph with n vertices, m edges, adjacency matrix A € {0,1}"*",

non-backtracking matrix B € {0, 1}2™*2™ matrix
Q = Diag({d; — 1}) € R™", where d; : degree of node i, then
YueC, (1— u?)""Det(l — uB) = Det(l — uA + u?Q).
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Relation to Ramanujan graphs

Corollary

A d-regular graph, d > 2 is Ramanujan iff its non-backtracking matrix B
is such that all eigenvalues \ of B satisfy either |[\| = d —1 = p(B), or

Al < v/p(B).

Definition (extended)

Ramanujan graphs: not necessarily regular graphs with NBM B such that
for A € Sp(B), either |\| = p(B), or |A| < \/p(B).

Theorem's result implies: for G ~ G(n, «/n) Erd8s-Rényi graph, its NBM

has w.h.p. spectrum: p(B) = a + o(1), and all other eigenvalues

|A| < +/a+ o(1). Hence up to o(1) error, Ramanujan according to

extended definition.

Result is a (non-regular) counterpart of [Friedman 2008]: for d > 3,

random d-regular graphs such that w.h.p.,

SUPAeSp(A),Ad [Al < 2vd =1+ o(1).
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Existence of hard phase [Banks et al. 2016]

For symmetric Potts model with g blocks, parametrized by aP;; = ¢y,
aPjj = cout, j # i €1q],

average degree a = M = )\1(/\/]), )\2(/\/]) — Cfnchouf_

Definition

Partition of [n] is good if it splits [n] into g equal-size groups, such that
the number mj, (resp. my,:) of edges intra-groups (resp. inter-groups)
verifies ‘min - min‘ < ”2/37 ’mout - mout| < n2/37

n(qf]-)cout

- ng; =
where m;, = S Mout = 3

Then: for g > 4, can find parameters c;j,, Cour such that: )\g < A1, e
below Kesten-Stigum threshold, and for some ¢ > 0,

lim,_ 00 E|{ good partitions with overlap < e}| = 0. Since there exists a
good partition w.h.p. (partition [g] according to true spin values o), this
implies that partial reconstruction is feasible below K-S threshold.
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Remark
Partial reconstruction of communities in model G(n, c, P) is

polynomial-time feasible above KS threshold, and believed to be infeasible

in poly-time below KS threshold.
Hence existence of two or three phases: reconstruction

@ Infeasible
e feasible (information-theoretically) but computationally hard

e poly-time feasible (above KS threshold)

7

Reconstruction “easy” ’

7 e @ \
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Hypothesis testing problems

Example: for graph G, decide whether

Ho: G ~P,: G(n,a/n) (ErdBs-Rényi graph), or

Hi: G~Q,: G(n,a,P) (sparse SBM).

Let Likelihood ratio Y, := Z%:. By Neyman-Pearson's lemma, for all

e >0, dtest T € {0,1} maximizing Q,(T = 1) among tests such that
P,(T =1) < e given by

T=1 if Y, > t,

T = 1(0) with prob. p(1 —p) if Y, =t,

T=0 ifY, <t.
Definition

Detection between Hp, H; (i.e. P,,Q,) is feasible if 3 tests { T} =0 such
that P,(T, = 1) "=° 0 and Q,(T, = 0) "= 0.
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Definition (Contiguity)

Sequence {P,},~0 contiguous with respect to sequence {Q,},~ iff for all
sequence of events {Ep}n>0,
Iimn_>oo Qn(En) = 0 = ||mn_>oo IP)H(EH) = 0

Lemma

If for some ¢ > 0, sup,-oEq,Y? < c, then {P,},~0 contiguous with
respect to {Qn}n>0-

Proof: Pn(E,) = Eqg,[YalEg,] < /Qn(En)Eq, Y2 < v/e/Qn(Ey).

L February 22,2021 11/26



Property: If contiguity (of {Py}ns0 w.r.t. {Qp}n>0, or of {Qp}ns0 w.r.t.
{P,}n>0) then detection is infeasible.

Indeed, let E, = {T, = 0}, where {T,,},>0: tests supposed to achieve
detection. Thus Q,(E,) — 0, hence by contiguity, P,(E,) — 0. Thus
impossible to have P,(E,) — 1 as required by detectability.

Lemma

For Y = d@ dvar(P, Q) < 24/EqY? — 1, hence

lim, 0 EQ,, Y2 =1=lim,e var(]PnaQn) =0.

Proof:
dvar(P,Q) = 2supy [P(A) — Q(A)| = 2sup, [Eg(Ta(Y — 1))
< 2supy /Q(A)Eg(Y —1)2 <2{/EqgY2 1.
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Detection between G(n, a/n) and binary symmetric SBM

a _
o; i.i.d. uniform on {—,+}; P((u,v) € E|a[,,]) _ { 7 !f ouoy = +,
n |f Ou0y = —,
Spectrum of mean progeny matrix M = % (Z S); o = agib' 8= a%b_

Kesten-Stigum condition: 7 := %2 = E?sz)f) > 1.

Theorem (Mossel-Neyman-Sly 2015)

Distinction between P, : G(n,«/n) and Q,: symmetric binary SBM is
feasible if T > 1, infeasible if 7 < 1.

Case 7 > 1: By previous theorem (spectrum of NBM B for SBM),
eigenvalue of second largest modulus of \»(B) verifies w.h.p.
under Qn: [A2(B)| = |B| + o(1);

under Py, [A2(B)| < /a+ o(1).

Hence test T, = I, (g)]2>|3/a Successful at detection.
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Lemma

T _T2
For Y, =932, and 7 < 1, one has Bp, Y2 = (1 + O(l))*\/?“

Thus sup,-o Ep, Y2 < +00, hence lnfeasibility of detection.

Yolg)= 3 Ol = g'a[”] ) _pn 5™ T Wals), where

se{+}n Pn(G =g) se{£}" (uv)
2, f sus, =+, (v) € E(g),
Wi(s) = a2+b11) if sus, = —, (uv) € E(g),
uv - 1(2_{2)”/2” if sys, = +, (UV) ¢ E(g),
1-b/n
oo i susy =, (uv) ¢ E(g).

Fix s, t € {+}". Note W, = W, (s), Vi = W, (t), and
€ =susytyty € {—,+}.

Then: Ep, Wy Viy = 1+ 2285 + G2 4 0(n73).
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(a—b)?
4n2

Let v:= 7 +

Ep, YnZ =272 Zs,t H(uv) Ep, Wiy Vi
=2 %, (147 + O(n )% (1 + O(n )5
Let p = p(s, t) := %Zl-e[n] siti.
Then: p? = 1+ 53, suSvtuty = 7 + 2(Sy — S)
S

Sy = |{(uv) : sysvt,t, = £}|. Then:

n

Also: 5(S; +5-)=3(5) =1— 1. Hence:

2 2
Se=0+p)% -5 S-=1-r)% 2
For fixed x € R, one has: (1 + x/n)" = (1 + o(1))e™ /2.

Thus: , ,
(147 + 0(n3))%  ~ e T/2(1 4 ) (+r7)/4
~ e T/2[nTHa= b 4= /2](1+7) /4

Similarly,
(1 =74 0(n3))5- ~ [e—n—(a=b)*/4=n"7?/2)(1=p%)/4
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E]P’n Yn2 ~ D—2n 77'/2 72/42 e(p /2)(nT+(a—b)?/4)
~ e—T/2 72/4Ee(22/2)(7+(a b)?/(4n))
where Z, = W S oi, with o; i.id. umform random signs.

By CLT, Z, X N(0,1) so that eZr/2(+(a=b/(4m) XX oZ27/2 it
Z ~ N(0,1).

Uniform integrability of r.v. e723/2,

P(e7%/2 > M) = P(|Z,] > \/2In(M)/7) < 2e~2"(M)/(27) = o2pp=1/7,

by Hoeffding's inequality.

Thus
<OMYT 42 [ X
—0as M — oo for 7 < 1.
By uniform integrability, Ep, Y? — EeZ’t/2 — _1

T

K
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The planted clique detection problem

Under Hy (P,), Erdés-Rényi graph G ~ G(n,1/2);
Under H; (Qn), G : G(n,1/2) U clique of size K, on subset C uniformly
chosen in ([,'2])

Theorem (Informational threshold)
For any e > 0, if K < (1 — €)2logy,(n) then dyar(Pr, Qn) — 0, hence
detection infeasible.

If K> Ko := (1 + €)2logy(n), detection feasible, based on test
T=1I

G contains clique of size Ky

Proof (infeasibility):
_ Qn(G=g) _ Qn(G=g|KL=C)
Yn(g) — P.(G=g) — (2) ZCE([’Z]) P.(G=¢g)
K
(Tl;) ZCe([[;]) 2(2)I[C clique of g
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Ep,Y? = P )2 ZC Cre ([n]) 22(2)p P,(C, C’ cliques of G)
- (;) ZCG([;]) 22(5 )}P’n(C, [K] cliques of G)
=y SO0 ) (30

< LTI, (9 (e
Since K < (1 —¢)2 Iogz( ), 2kK/2 < n(1=9)k 5o that
Ep, Y2 < (1+0(1)5% S, (§) rmn@ =9k

(1+0(1)) Zk 0 ( ) (KKIk)I n=ek
Let F(k) = () n=ek. Then [l — (K=K mc 1 for Jarge

k) (K=k)! (k) k+1
enough n
Hence:
Ep, Yy < (14 o(1)[1+ KF(1)]
= (1+o(1))[1+ K>n]
=1+ o(1).
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Proof (feasibility):
For K > ko := (1+€)2log,(n), and T, =1
obviously Q,(T, =1) = 1.

G contains a kp-clique’

Write .
Py(Ty=1) < &)2—(8)
< pkop—ko(ko—1)/2
< nko p—(1+€)(ko—1)
S n—eko—l—].—l—e
—0asn— o0
Remark

No known polynomial-time implementation of this test: finding a
maximum size-clique in a graph is NP-hard (it is even NP-hard to find an
approximation of the size of the largest clique up to an approximation
factor n*=¢ for any ¢ € (0,1), [Hastad, 1999]).
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Planted clique detection, computational threshold

Theorem (Alon-Krivelevitch-Sudakov, 1998)

For constant ¢ > 0, detection of planted cliques of size K = c\/n can be

done in polynomial time, using a spectral method.

To graph G with adjacency matrix A, associate matrix W,, = 2A,, — 1.

Let G° ~ G(n,1/2), with adjacency matrix A® and for u # v € [n] let
WO, =240 —1.
For set K C [n], K| = K = ¢\/n,
0 if uorvéelk,
— W0 if both u,v € K.
Then for G! = G°U clique on K, W1 = W% + A.
Note also: A,, = Iy vex.

let A, = {

L Ty
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Theorem (Anderson-Guionnet-Zeitouni, proof of Theorem 2.1.22)
For (Y)ie[n i-i-d., (Zj)i<jen i-i.d., EY1 =EZ1p =0, EZ%, =1,

let Wigner matrix W : WI.S") n1/2y;, W(") W(") _1/22,-1-,
i<jeln].

Assume r == max(E|Zi2|¥, E| Y1|¥) < k for some constant a > 0. Then
for all 6 > 0:

P(p(W(M) <2 —4§) =70,

and for any constant b > 0,

P(p(W() > 2+ §) = o(n~?P).

v

Thus w.h.p., p(W0) = (1 + o(1))2/n (W°: Wigner matrix of size n), and
p(A — A) = (1 + o(1))2VK (conditionally on K, A — A: Wigner block of
size K)

A: rank 1 matrix with spectral radius K, and associated eigenvector

X = (]IUEIC)UE[n]-
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Write W = WO + (A — A)+ A=W + A, where W = WO + (A — A).
Thus w.h.p., p(W) < (14 0(1))2[v/n+ VK] = (1 + o(1))2y/n

Assume K = c+/n, ¢ > 4. Then:

Under P,, p(W°) = (1 + o(1))2+/n, and by Weyl's inequalities, under Q,,
p(W1) > K — (1 + 0(1))2/n > (c — 2)(1 + o(1))/n.

Hence test Th = I, (y)> (146)2,/n detects w.h.p. between Ho and Hi.

For ¢ > 0 not necessarily > 4:

For each set of size ¢ of nodes {i1,...,is} € [n], consider subgraph Gl of
G among nodes i neighbours of all iy,..., .

Then under Hy, for each choice i1, ..., i, with probability 1 — o(n™),
p(Wi) < (1+ o(1))2v2~n

Thus (union bound) w.h.p., for all if € [n],p(WT) < (1 + o(1))2v2~n.
Under Hy, for choice Gt ~ 27!n vertices, planted clique of size c\/n.
Hence p(Wi1) > [c — 2(1 + o(1))2¢/2]/n.

Thus for ¢ : ¢ > 4\/2?, test T,=1

between Hy and H;.

Silee[nlip(W'—f)Z(l+€)2\/277n detects
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Remark
No polynomial-time algorithm known for detection of planted clique of size
K = o(y/n). Conjecture: no polynomial-time algorithm exists in that case.
Hence three phases: detection is

e infeasible for K < (1 — ¢)2logy(n),

e feasible (in an information-theoretic sense), but computationally hard

for (1 + €)2log,(n) < K < o(v/n),
e poly-time feasible for K = Q(+/n).
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Clique reconstruction under H; and K = ¢c+/n, ¢ > 4
p(é) = cy/n, and p(A) separated from other eigenvalue 0 by c\/n.
p(W) < 2(1 + o(1))y/n.

By results on perturbation of eigenvectors, 3x <+ p(W?) such that

(x, %) > \/1 /(00— Q(1), where x, =

(cv/n—p(W))? ilver
Hence >, x2 = 1, \/1? SveXu = B=1/1=1[2/(c = 2)]2+ o(1) = Q(1).
Let for constant a € (0,3): C={ve K :x, > %} Thus:
VKB < e % < (K = |C1) 2+ Yuee Xa < K22 +1/IC]

Hence VK(3 — a) < +/|C], i.e. |C| > K(B — a)%.

Let D={ueK:x,> ﬁ} Necessarily, |C| + |D| < a—KQ

Thus among nodes in E = {u: x, > a/v/K} = C U D, fraction at least
a%(3 — a)? = Q(1) belongs to K.
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Set aside set V/ of en vertices chosen at random, ¢ > 0. Remaining graph
G’: n(1 — €) vertices, and planted clique of size cy/n(1 — € — o(1)) whp.

Previous analysis applies to G’ for € such that cy/1 — ¢ > 4: set E’ of size
m = ©(K) contains fraction o = Q(1) of clique vertices in G'.

Forue VNK, X, := Y vee Luny > am +Bin((1 — a)m,1/2);
Forue V\K, Xy =3, cp Luww = Bin(m, 1/2);

Let K == {u e \N/:XUZ(l—a)%—i—%am}.

Then Chernoff bounds for binomial random variables imply:
whp, L =V NK.

— whp, exact reconstruction of K on V.

Reconstruction of X on V/ = [n]\ V: whp, nodes in V/ neighbours of all
nodes in K are exactly nodes in V' N K.
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Remark

Reconstruction in polynomial time also feasible for K = c\/n, ¢ < 4:
identify subgraph G i with 2='n vertices and planted clique of size c+\/n,
where ¢ > 4.27Y/2. Use previous reconstruction algorithm of K. on this
graph, giving whp subset of size ©(y/n) of K. Add to it all nodes that are
neighbours of everyone in K.

v
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