The tree reconstruction problem

Tree T Root node r, Spin: o,
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Leaf nodes £ at depth d

[N

Tree T, root r. L4: nodes in generation d (at distance d from r).
Tree of nodes of generations 0,...,d: Ty = (Vy, Eq).

€ [q]: “trait” of individual i. p(i): parent of /.

Probabilistic. transmission: IP’(agd = sc.d\T, U_vd,}) = _Hi€£q Pqp(i)sl'_ where
P: stochastic matrix, assumed irreducible, with invariant distribution v on

[q]
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The tree reconstruction problem

Assume root spin o, ~ v. Then P(oy, = sy,|T) = vs, H Pss;
— A tree Markov field.

Special case: Py, = p, Prs = =2, s 2 7 symmetric Potts model (g = 2:

q
Ising model).

Let Fy = 0'(7:1,0'Vd)y Gg = 0'(7:170'6‘1): ﬁs,d - P(Ur = 5|gd)r s€ [q]

Definition J

tree reconstruction is feasible if and only if limy_ /(o,; G4) > 0.
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Census reconstructibility and Kesten-Stigum threshold

Define generation d's census: Xy = { X, d}sec[q Where

Xsd = Z,'Egd Iy=s.

Definition

Census reconstructibility holds if limy_. /(o,; Xg) > 0. J

Assume 7 Galton-Watson, with r.v. Z: number of children verifying

EZ =a>1and EZ? < cc.

For transition matrix P, := P(0; = T|opj) = s), let \2(P): eigenvalue of
P with second largest modulus (A1(P) = 1).

Theorem J

If a|X\2(P)[? > 1, census reconstructibility holds.
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Census reconstructibility and Kesten-Stigum threshold

Theorem

Reciprocally, for Z ~ Poi(a) with o > 1 such that a|\2(P)|?> < 1, then
limg_oo I(0r; Xg) =0, i.e. census reconstruction fails.

Remark

Result still true for more general branching processes. It holds for instance

with Z = o € N*.
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Proof Elements

Theorem (Kesten-Stigum, “Additional limit theorems for
indecomposable multidimensional G-W processes”, 1966)
Below threshold, i.e. when a|\;|?> < 1, conditional on o, = 7 € [q],

{a_d/2(Xs,d — O‘d’/s)}se[q] di (m, %), where m,~ do not depend on
—00
T € [q].

Corollary (Kesten-Stigum, Coupling)

7')

For all d € N, 7,7’ € [q] there exists coupling of census vectors XO(,T), Xc(l
corresponding to o, = 7,7’ respectively such that

Ve > 0, limg oo P (| X§7 = X{)| 2 ea?/?) = 0.
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For t € {7, 7'}, E(Xf,:_l | X(t )= ®s€[q]Poi(l\/I5(t)), where
MY = o 2 selq] X5(/7)d’Ds s

Let My = 3 (M) + M)y and e = S M) — M vt 2,
By [Kesten-Stigum, Coupling] Corollary, Jay 928° 0 such that

d—o0

Vs € [q], P(es < ag) — 1.

Lemma
Variation distance d,a (1, v) := 2supy |(A) — v(A)| also equals
2 inf P(X £ Y).
(X,Y) coupling of (u.v)
Corollary
Var(®s€[q],u( ) ®s€[q]y Z dvar(,u (S)

s€[q]
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Hence dva,(X‘x_)l,X‘Si% | X(T),X‘Y’)) <.

Split sums As according to whether |Mg — k| < wgv/Ms or not, where
wg =1/ \/agq, i.e. A =As <+ As~. Write

AS7> < P(’POiMS(T) — M5’ > Wy Ms) =+ P(|POiM§T/) — Ms‘ > Wy Ms)
Note that M{™) = M. + e../M; so that on event {es < ag},

w.h.p. |PoiMS(T) — M| < wgv/'Ms.

Thus: limg_o E(As~) = 0.
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Mk € €
< Z M s | —esV/M5 (4 S Yk _ gsVMs(p S5k
As< < T ( +\/Ms) e \/ﬁs)
k:lk—Ms|<wgv/Ms

On the event {es < ag}, for k : |k — Ms| < wyv/Ms, one has:

oM (1 5 )k = gery/ M (Fes VI HO(E/M) — gOlesws

— 14 0(y/ay).
Thus Ac < < [1+ 0(y/ag) — 1 - O(y/aa)| = O(yaa).

By Jensen's inequality
dvar(X((j:_)p Xc({:.j)L) < E[dvar(X‘S:_)l, XS—;—% | XcsT)7 Xc(fT ))]

T bl d—00
Thus dyar(XS71, XST1) < D eerq E(As> + As<) “5° 0.
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Theorem then follows from

Lemma

Mutual information I(o,; X4) is upper-bounded by
q X SUpPs c[q] dvar(P(Xa € “|or = 5),P(Xy € o, = T)).

Lemma’s proof: define fs(x) = P(Xy = x|o, = s)/P(Xyg = x), x € N9.

It verifies: > - ¢ v-fr(x)
Write:

07 Xa) = Lepqiuens VsP(Xa = Xlo = s)In (2gxlon=s))
= 2 xena P(Xd = X) (g VsTs(x) In(£s(x))
< D ene P(Xa = X) 3 g g vsfs(X)[fs(x) — 1]
= 2 refq) Vr 2axene P(Xa = X) 2o geqq vsfs(X)[fs(x) — £(x)]
< Zs,TE[q] Vr ZXENC’ IP)()<d = X)|f5(X) - fT(X)|
=2 s.refq) Vrvar(P(Xq € -|or = 5), P(Xg € -[or = T))

1.
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Tree reconstruction threshold for symmetric case with
q=2

For g = 2, take o; = £. Symmetry: P, =P__ =1 —¢,

P_+ = P+_ — €.

Notation: let 6 = X\2(P) = 1 — 2¢, so that E(aj|op(j)) = 0oy,
E(O’,‘O'p(,')) =0.

Theorem (Evans et al., Broadcasting on trees and the Ising model,
2000)

For symmetric g = 2 propagation on deterministic tree T such that
limsup % In(|£q4]) < In(a), tree reconstruction fails when a(X2)? < 1.

Corollary

For symmetric g = 2 propagation on Galton-Watson tree T,
Kesten-Stigum threshold provides necessary and sufficient condition for
tree reconstruction (ignoring equality case a(A\3)? = 1).

v
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Lemma (Evans et al.’00)

Consider trees T, T' above, where node variables are binary spins, each
uniformly distributed with values +1, edge weights € [0, 1] represent
transmission probability, e.g. E(o,m1) = 0.

Then there exists a probability transition matrix

MO {—1,1}% — {—1,1}? such that

P(oy = sp,01 = 81,00 = 55) = Zul,uz:i P(o, = s;,01 = 1,00 = up) X

0
o M(U17U2)7(51,52)

v
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Lemma (channel between trees)

For two random vectors U € {£1}?, V € {£1}?, mutually independent
and independent of the spins of the two trees on previous Figure, let
X=01U, Y =032V, X' =0pU, Y =0xV. Then there is a probability
transition matrix M on {#+1}2*? such that

Plo; =5, (X, Y) = (X,y')) = Zx,y Plor =s,(X,Y) = (Xv)/))M(x,y);(x’,y;

Proof: for vectors (x,y) € ()P, define
Mxy). .y = Z ]IX,:tlslx’yl:tQSleM?t17t2):(51752)
t1,t2,51,52==%
Verify that M satisfies condition by writing
P(o, =5, (X, Y)=(x,y)) = Y PU=sx,V=shy)x:-
s|,sp==%
--P(o, = 5,0 = 1,05 =sb)
= Z P(U = six',V =spy') x -+
51,52,5],55
e MFSI@)’(S{’%)P(G, =5,01=75,00= %)
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Lemma (sub-additivity of mutual information)

Assume that Yi,..., Ym are independent conditionally on X. Then
106 Y{") < 3070, 10X V).

Proof: By conditional independence,

1(X: Y{™) = H(Y{") = S H(YiX).

By sub-additivity of entropy (which follows from non-negativity of entropy
and of mutual information), H(Y{™) < > ", H(Y;), hence the result.

Corollary

For symmetric binary tree transmission, with arbitrary transmission
parameters 0,;),i) € [=1,1] for all edges (p(i), i),
(ori0c,) <3 jer, I(0r o))

Proof: by induction on number of edges in tree. If root degree > 1, use
[sub-additivity] lemma. If root degree = 1, and degree of root's child
equals 1, concatenate top-two edges. If root degree = 1, and degree of
root's child > 1, use: i) “channel-between-trees” lemma, ii) Data
Processing Inequality , then iii) sub-additivity lemma.
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End of proof

For each i € L4, channel between o, and o;: binary symmetric channel,

with E(o,0;) = 09 = \{.
. 1479
Equivalently, P(o; = 0,) = —52. Thus
d
I(or;0i) = Zs,t::t %1+52t)\2 In(1+ stA)
1+stAd
< Zs,t:i % ; 2 St}‘g
yer)
By previous lemma, /(o/;0z,) < [L4|239.

Under hypotheses |£q4| < e?lM(@)+o(M] and a(X2)? < 1,

Horioe,) < el ol 4242 ¢

February 7, 2021
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Tree reconstruction threshold, general case

Ds.q = P(0, = s|Gy) determines I(o,; Ga).

Notations: For i € Vy, L; 4: vertices in L4 that admit / as ancestor.

gi,d = 0(7’(1’0-5,',‘1)' Véyd = P(Ui = S|gi,d)'
For node i, C; = {j : p(j) = i} children of j.

Belief Propagation:

Initialize for i € L4 by phd = Is—o,;

Propagate towards r, for i € V;_1 by Equation
; vl
id 1 s

vs" = ziavs ljec(y Lserq v Pssi

— BP Equations admit {vs} as trivial fixed point.

L T
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Belief Propagation as an analysis tool

Let py := P(Z = k) (e.g. e=®a*/k! for Poi, offspring)
M([q]): probability distributions on [q]

M([g])* — M([q]) (
(1, me) = {Z s HJ 1 Z:SJE[QI nJVsJ % }SE[CI]

Let Qrq4: law on M([q]) of {P(0, = s|Gy)}se[q conditionally on o, = 7.

Density Evolution Equation (conditional version): for ¢ : M([q]) — R

/M([q1>¢( Qrasald) Zpk/ (la)) k S(Fi(my -y i)) -+

k>0

H Z PTS@QSg,d(an)

(=1 s,€[q]
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Let Qq: unconditional law on M([q]) of {P(c, = s|Ga)}selq)-

Density Evolution Equation (unconditional version): for ¢ : M([q]) — R,

/M([q])qﬁ(n)édﬂ(dn = ZVTZPk/ O(Fr(my - ymk)) - -

relal k20
S
H 3 Pw”f“ Qa(dne)
=1 sy€[q] Vet

— Formally, ©d+1 = W(@d).
Trivial fixed point for V: Dirac mass 6{Vs}se[q].

Theorem (see lecture notes)

Tree reconstruction problem is feasible if and only if V admits at least two
fixed points (i.e., admits a non-trivial fixed point).

Proof by Mézard-Montanari’06 for case vs = (1,
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Remark

For b-ary trees, g > 4, and symmetric Potts model, reconstruction is
feasible strictly below Kesten-Stigum threshold, i.e. for parameters such
that b x (\2)? < 1.

Hence census reconstructibility does not in general coincide with
reconstructibility.

Remark

Density Evolution Equation an important tool in:

- Statistical Physics for several other problems (underlies so-called cavity
method);

- Theory of Error Correcting Codes.
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Community Detection for Sparse Stochastic Block Models

Sparse SBM G(n, P, a):
Let P: stochastic matrix on [g], assumed irreducible and reversible for
stationary measure v, i.e. VsPs = 14 Pys.

Model: n vertices, spins o;: i.i.d., ~ v.
Ro.o; Py,
. . oo gioi 1 L Ps .
P((i,j) € E | o) = —t = O‘Tjjﬁ where Ry := a7t symmetric, by
reversibility.

Average degrees:
Ro',-s
ED jerm Ligyeeloml = 2serq T, 2 jzicin) Loj=s
~ Zse[q] a%ysn
~ a,

same irrespective of spin o;.

Mean progeny matrix: M, = average number of spin t-neighbors of spin
s-node. Then Mg ~ aPs.
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Definition
For estimates &; of spins o; from observation of graph G, overlap:
overlap(6) = maxres, %Zie[n] Lr(0)=6; — SUPsc[q] Vs-

Definition
Partial reconstruction is feasible (respectively, polynomial-time feasible) if
3{6;} = f(G) (respectively, = f(G) for polynomial-time computable

n—oo

function f) such that for some ¢ > 0, P(overlap(5) >¢€) — 1.

Remark

Zero overlap can always be achieved by 5; = 1. In case v ~ U([q]), zero
overlap also achieved by taking 6;: i.i.d. uniform on [q]|, independent of G.

v
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Definition
Weak partial reconstruction feasible if 3{5;} = f(G) such that with high

probability, liminf 3, (g Pa(s. t)In (%S(?)) > ¢ > 0, where

Pn(s,t) = %Zie[n] Loi=s6/=t: n(t) = X se[q Pn(s, 1)-

Remark

When v = U([q]), weak partial reconstructibility is equivalent to partial
reconstructibility ([Bordenave-Lelarge-Massoulié'18]).
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Links between tree and community reconstruction

Let Bg(i, d) denote the set of nodes in G at graph distance at most d
from i. By abuse of notation, also denote by B¢(/, d) the sub-graph of G
induced by B¢ (i, d).

Lemma (Local structure of G(n, P, &))

For G ~ G(n,P,«), d < cln(n), where ¢ > 0 is fixed sufficiently small,
then for randomly chosen vertex i € [n],

dvar ({BG(’a d)7 UB(;(/,CI)}7 {7:17 UVd}) n—_>>00 0,

where Ty = (Vy, Eq4): Galton-Watson branching tree with offspring Poiy,
and spin propagation mechanism driven by P.

Proof: coupling construction, using total variation bounds
dvar(Poiy, Bin(n, A\/n)) < 2X/n, dyar(Poiy, Poi,) < 2|\ — pl.
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Lemma (Mossel-Neeman-Sly'15)

For i chosen uniformly at random in [n], d < cIn(n), U = Bg(i,d),
V={jen:de(i,j)=d+1}, W=[n]\ (UU V), then for all
s€[q], e >0,

|imn_>ooP(’P(O',' =S | OVvVuw, G) - P(O’,‘ =S | oy, G|UUV)’ > E) =0.

Together with local structure Lemma, implies

Corollary

If Tree reconstruction problem is not feasible, then weak partial
community reconstruction is not feasible.

Proof: Tree reconstruction infeasible
= ]P)(U,' = S|U\/Uw, G) ~ ]P)(U, = S"Td,agd) X Us.
Thus for uniform independent selection of /,J € [n],
P(o) =5|G,05 =t) = vs. Then for ¢;(G) = I5,—,
El(pn(s. t) = vsan(£))2] = E[(} 201 (Toims — v5)9i(6))’]
= E[(]Ialzs - V5)¢I(G)(HUJ:S - Vs)GbJ(G)]
— 0 as n — oo.
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Then w.h.p., pa(s, t) = vsqa(t) + o(1)

Remark

One does not expect this sufficient condition for impossibility of weak
community reconstruction to be sharp. Distinct threshold for impossibility

of weak community reconstruction conjectured by statistical physicists, see
notes.
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Failure of classical spectral methods for community
reconstruction in sparse SBM

For Erdés-Rényi graph G(n,«/n), D = c%,
Zi =1

i: center of isolated star with D branches:

let

Then E(Z;) = (”51) (%)D (1 _ %)(DH)(nflfD)Jr(?) — e—cIn(n)(1+o(1)).

and E(Z;Z;) = [E(Z;)]*(1 + o(1)), so that for ¢ < 1, w.h.p. (by second
moment method), there are isolated stars with D branches in G(n, o/n).

= Sparse E-R graphs have adjacency matrix with eigenvalues of order

VD> 1.

Corresponding eigenvectors supported by D + 1 vertices of corresponding
star, hence localized, and not reflecting global structure of graph.

Same holds for sparse SBM G(n, P, «).
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Spectral Redemption

BP equations for estimating node spins in SBM:
s 0 Vs [miters Lsecla) Vo Resec

Conjecture (Decelle et al.’11): if A2(P)?a > 1, i.e. above Kesten-Stigum
threshold, BP initialized with random weights converges to limits ¢ "/
such that positive overlap achieved by

&; = argmax 1], where ¥l o vs [, 2 seldl Y5 Res,.
Still open: analysis of BP on sparse graphs very challenging.

Linearization of BP equations around trivial fixed point 1/1;-_”' = Vs:
For ¢s 7 = vg(1+ €5 /), gives

i Y ecld &P, or equivalently for

€= {ﬁé—ﬁ}(i—y)eé,selq]’ E : edges of G with orientation,

¢ < (BT ® P)e where B: non-backtracking matrix of G
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Non-backtracking matrix

B: 2m x 2m matrix where m: number of edges of G, defined as
Bijk—e = Tj=kTjzp.

o—0 0

Allows counting of non-backtracking paths in G: (BY)j_j k¢ ="
-+ |[{NB paths with t 4+ 1 edges, started at i — j, ending at kK — (}|.

Spectrum of B: A\1(B) > [X2(B)| > -+ > |Xam(B)].
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Spectrum of NBM B for sparse SBM G ~ G(n, P, )

Mean progeny matrix M = aP, spectrum:
M(M) = a = [Ma(M)| = alda(P)] = - = [Ag(M)] = alAq(P)].

Let x; € R9: eigenvector of M associated with \;(M).
For e = u — v € E, define yi(e) = xi(oy).
For ¢ = cln(n), c > 0 fixed constant, let z; = B‘BT'y;

Theorem
Let ro = sup{i € [g] : \i(M)? > A1 (M)}.

(Note: ry > 2 < aly(P)? > 1, i.e. above Kesten-Stigum threshold).
Then Vi € [r], eigenpair (A\i(B),&;) of B verifies:

proba

Ai(B) )\,(M).
dx; € Rq elgenvector of M <+ \;(M) such that for associated z; € R?™,
( 7£I> 1

lim
n=oo iz [NI&N —

Xi(B)] < v/ A1(M) + o(1).

For i > ry,

v
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Spectrum of NBM fo g = 2, above Kesten-Stigum
threshold

N
M (B) = A (M)
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Corollary

When above Kesten-Stigum threshold, from eigenvector & of B, compute
$eR": ¢p(u) =3 ,.,5(v— u), normalized so that ||¢| = /n.

Then in case where vs = %, positive overlap achieved by partitioning nodes
u € [n] at random into I, 1~ by setting

P(v € IT|¢) = 5 + 2 d(V)jg(v) <k

where K: a constant chosen sufficiently large.

Thus, partial reconstruction is polynomial-time feasible when above
Kesten-Stigum threshold.
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References:

[Krzakala et al."13] conjecture “spectral redemption”, i.e. possibility to
achieve positive overlap based on NBM matrix above KS threshold

[Bordenave-Lelarge-M."16,18]: proofs of NBM spectral properties.
Extensions in [Stephan-M."19].

For g > 4, instances of G(n, P, a) below KS threshold, such that
non-polynomial time methods can achieve positive overlap have been

identified.

Common belief: for sparse SBM G(n, P, a), KS threshold is the
boundary for polynomial-time community reconstruction.
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