Pairwise graphical models and Markov random fields

Definition

For undirected graph G := (V, ), finite alphabet X, functions

Y X >Ry, i€V, we'XxX—HRJr, eeé’ the probability

distribution 1 on X'V defined by p(x Hw, ;) H Vi i (i, ;)
/ev e=(ij)e€

is a pairwise graphical model with underlying graph G

The normalization constant Z = Z H¢;(x, H Q,ZJ,J x,,xJ ) is

xeXxViey e=(ij)e€
known as its partition function.

Example

Ising model: X' = {—1,1}, 1;(x) = e, ;(x;, x;) = elixX.
X;i: spin at site /; h;: external field at i; J,J coupling coefficient between
sites / and j

v
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Definition

For undirected graph G := (V, ), finite alphabet X', probability measure
on XY, (G, u): Markov field if there exist functions 1, : XK — Ry
indexed by cliques K of G and Z such that

u(x) = 3 [k ¥k(xx),x € XY,
where xx 1= (Xi)iek-

v

Easy property: For any pairwise graphical model p with underlying graph
G, (1, G) is a Markov random field.
Definition
For subsets A, B, C C V, C separates A and B in G if any path in G from
C
A to B traverses C. We denote this A —— B.
g
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Hammersley-Clifford Theorem

Theorem

C
For Markov field (11,G), and A, B, C such that A o B, then under i, Xa

and Xg are independent conditionally on Xc.

Conversely, for any probability measure ;v on XV such that

c
Vx € XY, u(x) > 0 and for all A, B, C such that A o B, under i, Xa

and Xg are independent conditionally on Xc, then (i, G) is a Markov field.
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Markov random field distributions: i(x) = 2¢(x), x € &Y.
For ¢ > 0, u(x) = 1 e~E()/T  Boltzmann distribution with energy E(x)
and temperature T

Definition

Gibbs free energy functional

G : M(XY) = probability measures on XV — R
G(v) := —H(v) — E, Iny(x), where

H(v) := %", v(x)In(1/v(x)): Shannon entropy of v

Proposition

G strictly convex on M(XY), minimal at v = y, the Boltzmann-Gibbs
distribution, and G(u) = —In(Z).

Remark
Recall Kullback-Leibler divergence between distributions on discrete X :

D(pllq) i= Xrex P(X) I (283). Then G(v) = —In(2) + D(v|1).
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Tree Markov fields and belief propagation

(G, 1): G tree graph, u(x) = 5 [Tjey vi(x0) [(yee Y6 %), x € XY

For edge (ij) of G with orientation i — j, Ti,j = (Vij, £i—j): subtree of
G = connected component of i after removal of edge (if)

Let pij(xv_;) = i [ev,, Y0 T koyee,,; Yre(xic, xe):

Pairwise graphical model induced on 7;_,;

Let:

bi—j(xi)= marginal of X; under 1,
w(x;)= marginal of X; under p,

pij(xi, x;)= marginal of (X;, X;) under
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Recursive computations on trees

For leaf node i with incident edge (ij) in G,
bij(xi) = ijzb,-(x,-), Zisj =2 ex Yi(xi).

Induction for non-leaf node /:

bij(x) = Z H Vi (xk) H Vie(Xks Xe)

I xkeVin\{i} K€V, (kO)EEi)

1/}1 XI H Z¢k: Xk Xi Zk%lbkﬁl(xk)

ki k] Xk

Zij = Z H Pi(xk) H Yice(Xic» Xe)

Xk, k€Vij kEVij (k€)€5;_>j

:Zzﬂ;(x,-) H Zwk,‘(Xk,Xi)Zkaibkai(Xk)-

X €X ki kj Xk

i—j

I‘)_[
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Formulas for marginals

1
pilxi) = Zilxi) TTD_ vkiCxs x0) Ziesibrsi(x),
k~i Xk
1
pij (X ) = Zii(xi, %) Zisjbisj(x1) Zjibji(x5),
Z= Z pi(xi) H ZQ,Z)ki(Xk,Xi)Zk—nbk—n(Xk)-
XiEX keoi Xk

Computational cost for obtaining Z and all marginals, with recursive
approach: O(|X|?) cost per oriented edge, hence O(|V| - |X|?) operations
in total.

Compare to brute force computation of Z: sum of |X]|V| terms...
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Belief Propagation (a.k.a. Product-Sum) Algorithm

Iteratively update beliefs, or messages b;_,; by letting
bl—>j(XI X 'QZJI X: H Zwkl Xk Xi bk—)l(Xk)
ki k#j Xk
@ Can be run synchronously or asynchronously
o Converges after each vector b;_,; updated finite number of times

@ Limit values allow to determine marginals and normalization constants
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Tree Markov fields, further properties

H/"LI Xl H MU(X“XJ

ety o 1 (x) 1 (%)
= ]j]:ﬁh X;) 1 d ]jI Hij )07)9
i€y (e

Proof.
Induction on |V|: for leaf node i/, and incident edge (ij), write
p(x) = “LEEP, (X = xv)

m
Note that IP)J(XV i = -): tree Markov field on 7;_,;...
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Belief propagation in general (non-tree) Markov fields

Recall Gibbs free energy G(v) = —H(v) — E, In1(x) minimized by
Boltzmann-Gibbs distribution p(x) o< 1(x).

For 1(x) = [[;ey ¥i(xi) [ (j)ee ¥ij(xi, X), “energy” term:

E, In(¢ E g vi(xi) In(vi(x;)) E E vij(xi, x;) In(ij(xi, x;)),
i€V x;eX (if)€E xi,x;€X
where v;, vj;: marginals of v.

If G = tree, and (G, v) = tree Markov field, entropy term:

(i) €€ xi5E€X

+> 03 (1= di)vi(x) In (V;(lx,-)>

i€V x;eX
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Bethe free energy

Using expression for tree-field entropy, free energy becomes
GRethe ({¥itiev: {Vit(ipee) ==

30 vl [ (W (6)) + (L~ ) ()]

i€V x;,eX

+ > vilag) [ In(@y(xi, %)) + In(vi(xi, %7)]

()€ xixex
ZXeXU;(X;) = 1 I € V
Natural constraints: ... X €X VU(XHXJ) =1, (j) €€,
vi(xi) = Xgex vilxi, X)), i €V, xpe X, (ij) € €.

Remark

1) Number of variables |X|V| in Gibbs free energy — |V| - |X| + |£| - |X|?
in Bethe free energy

2) For marginal distributions v;, vj; satisfying constraints, existence of v on
XY with these marginals is not guaranteed
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Bethe Free Energy minimization and belief propagation
Lagrangian for BFE minimization:

L((vi,vij), (i, Bij, Ai—j)) = GRethe ({¥i}, {¥i})

+ ey @il er vilxi) — 1) (1)
+ Z(ij)eg 5ij(zx,-,xjex vij(xi, ) — 1)

2 (i) 2oxer N (Xi)[vi(xi) = 2o e vii(Xis 5]

Stationarity conditions: OL/dc; = OL/0Bj; = OL/ONij(x;) = 0, and

—In9ii(x, x;) + 1+ Inv(x, x;) — Aisj () — Aj—i(x) + B = 0,
—In 1/),'(X,‘) + (1 — d,')(l + In I/,'(X,')) +a; + ZjN' )\,'ﬁj(x,') =0.

Theorem

Assume that 1;(x;) and ¥j;(x;, x;) > 0 for all (i,j) € € and x;,x; € X.
There is then a one-to-one correspondence between stationary points of
Lagrangian (1) associated with BFE minimization and fixed points
bi—j(x;) of BP, obtained via relationships b;_,;(x;) = exp(Ai—;(x;)).
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The tree reconstruction problem

Tree T Root node r, Spin: o,

LG 1 1 '

6d06 6 b6bo0 0

Leaf nodes £ at depth d

[N

Tree T, root r. L4: nodes in generation d (at distance d from r).
Tree of nodes of generations 0,...,d: Ty = (Vy, Eq).

€ [q]: “trait” of individual i. p(i): parent of /.

Probabilistic. transmission: IP’(agd = sc.d\T, U_vd,}) = _Hi€£q Pqp(i)sl'_ where
P: stochastic matrix, assumed irreducible, with invariant distribution v on

[q]
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The tree reconstruction problem

Assume root spin o, ~ v. Then P(oy, = sy,|T) = vs, H

Pss

— A tree Markov field.

Special case: Prr = p, Prs = };’f, s # 7: symmetric Potts model (q = 2:
Ising model).

Question: can one estimate o, from 74,0, non-trivially as d — 0o?

Assumptions on T either deterministic, or Galton-Watson branching tree.
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Information theory background

Shannon entropy
H(v) = > . vsIn(1/vs) — also denote H(X) for rv. X

Conditional entropy
HIXIY) = Sy pxy () In (5 )
= H({X,Y}) = H(Y)
=2, Py(Y)H(L(X]Y = y)).
Mutual information
I(X;Y) =H(X)+H(Y)-H{X,Y})
= Sy Py (x,y) In (2ot )
= D(px,v|px @ py).

Non-negativity of KL divergence = /(X;Y) > 0.
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Information theory background
Conditional mutual information
I(X;Y|Z) = H(X|Z)+ H(Y|Z) = H{X, Y}|Z)
= >, pz(2)D(pix vy z=zllPx|z=2 ® Py|z=2)
= I(X;Y|Z) >0.

Chain rule: I(X;{Y,Z})=1(X;2)+ I(X;Y|Z).

Lemma

Data processing inequality: Let X, Y, Z such that X,Y independent
conditional on Z. Then I(X;Y) < I(X; Z2).

Proof.

I(X;(Y,2))=1(X;Z)+ I(X; Y|Z) = I(X; Z) (conditional independence)
I(X (Y 2))=1(X;Y)+1(X;Z|Y) > I(X;Y) (non-negativity of mutual
information) O

v
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Non-trivial tree reconstruction

Let Fy = 0'(7:/,O'Vd), Gy = 0'(7:],0'[;(1), Iﬁs’d = P(O’r = S|gd), s e [q]
Then
I(or;Ga) = H(or) — H(o/|Ga)
=K Zse[q] ﬁs,d In(z?ad/ys)
- IE"D({ﬁs,d}se[q]uy)'
For 7 deterministic or Galton-Watson, conditionally on G4, o, and Gg11
are independent.
= (data processing inequality) /(o,; Gg) > (or; Gd+1)-
= Jlimye0 /(Ur; gd)

tree reconstruction is feasible if and only if limy_ /(0,; Gg) > 0.

Definition J
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Proposition
Non-reconstructibility, i.e. limg_o (0,1 G4) = 0 is equivalent to

Vs € [q], Usd d_—>>oo Vs in probability.

Proof: By irreducibility, infsc(q)vs > 0.

Map f : M([q]) — Ry, f(u) := D(p||v) is thus continuous, null only for
p=v.

Recall that /(o,; G4) = Ef({£.4}). Thus if /(o,:Gg) =570, then for all

d—oo

€>0 P({0.q4} € {pe M([q]): f(rr) >€}) = 0. Hence {D. 4} = v in
probability.

Conversely if {0. 4} — v in probability, by continuity of f and compactness
of M([q]), I(or;G4) — f(v) =0.
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lllustration of non-reconstructibility

Estimate 6, = ¢(G4) maximizing P(6, = o,), i.e. maximizing
E(H&r:("r) =E Zse[q] l,)svd]Ia'rZS’

achieved by 6, € argmax{7s q}sc[q), Yielding

]P’(&, = O‘r) =E maxse[q] ﬁs,d-

For v: uniform on [q],
. . prob. ;
non-reconstructibility < maxsciq Vs d — o
7 d—oo 9
- . ~ d
Hence non-reconstructibility equivalent to P(6, = o) =90 %,
performance that can be achieved trivially

(take fixed or random o, independent of G4)

< E MaXse(q] Ds,d —
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Census reconstructibility

Define generation d's census: Xy = { X, d}se[q Where
Xsd = Zieﬁd Isi=s.

Definition

Census reconstructibility holds if limy_,o /(o,; X4) > 0.

Remark

Data processing inequality ensures limy_,o I(o,; X4) exists for
Galton-Watson tree T .

It also ensures I(c,; Gq) > I(o,; Xy). Hence census reconstructibility
implies (tree) reconstructibility.

Assume 7 Galton-Watson, with r.v. Z: number of children verifying

EZ =a>1and EZ2 < cc.

For transition matrix Ps; := P(0; = 7-|<7p(,-) =), let A2(P): eigenvalue of
P with second largest modulus (A1(P) = 1).
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Census reconstructibility and Kesten-Stigum threshold

Theorem
If a|X\2(P)[? > 1, census reconstructibility holds. J

Proof: Let {xs}sc[q: eigenvector of P for A\2(P). Necessarily, x
non-constant, since constant vector: eigenvector for A\;(P) = 1.

Let Zg = ¢(Xq) = X sefq XsXsa(aha) 9.

We shall show that liminf /(o,; Zy) > 0, using

Lemma
{Z4}: uniformly integrable F4-martingale, where ¥4 = (T4, 0v,). J
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Background on martingales
Definition
Family of random variables { My }4>¢ is a martingale for filtration {Gg4}q4>0

iff Vd > 0, E(My41|Ga) = My.
It is uniformly integrable iff lima_, ;o supy E(|Ma|Ljps,~a) = O.

Theorem

For uniformly integrable {G4}-martingale {My}, there exists
Goo-measurable random variable My, such that:
Mg = E(Ms|Ga), d > 0;

My “=8° M. almost surely and in LY.

Theorem

Let {H4}: decreasing sequence of o-fields (Hy+1 C Hg). For integrable
r.v. X, then Xy :=E(X|Hy) verifies

Xy 725 E(X|Hoo) almost surely and in L}

v
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Lemma’s proof

R(ZolFa1) = (3) B [Siec, , Sy %ol Fat

= (O‘/\2)7d Zieﬁd,l o Ese[q] Po,sXs

=241
VarZy, = Var(E(Zd\}"d,l)) + E(Var(Zd\Fd,l))
= Var(Zg-1) + |ada| *UE[Var(X e, %o Fa—1)]
= Var(Zg-1) + |aXo| PIE[ e, Var(X; ()= Xor| Fa-1)]
< Var(Zy 1) + lada|29E(|Lq 1)) sup, |xs PE(22)

< Var(Zd,l) + C(Oz|)\2|2)7d.

Hence supyq Var(Zy) < 04%{2_1 < +o0.
Uniform integrability follows: supy E(|Zy4|I|z,>4) < supy LE|Z4|? < %/.
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. a.s., Lt
By martingale convergence theorem, Zy d—)
— 00

Zeo.

Necessarily E[Z-|Fo] = 20 = Xo, -

Assume that for Lebesgue almost all t € R, Iz _<; independent of o,, and
thus Vs € [q], P(Zsx < tlo, =5) = P(Zy < t).

Then E(Zx|o, = s) independent of s € [g], a contradiction.

Thus there exists a set of positive Lebesgue measure of t € R such that
Zso, 0, non-independent.

Choose such t that is also a continuity point of P(Z,, < t|o, = s) for all

s € [q]

For such t, a.s. limg_oo P(0, = 5|2y < t) =P(0, = 5|2 < t)
= |imdﬁoo I(O—r;HZdSt) = /(O’,«;]Izoogt) >0

= limg_o0 I(0r; Zyg) > 0, i.e. census reconstructibility
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