Pairwise graphical models and Markov random fields

Definition

For undirected graph $\mathcal{G}:=(\mathcal{V},\mathcal{E})$, finite alphabet \mathcal{X} , functions $\psi_i:\mathcal{X}\to\mathbb{R}_+$, $i\in\mathcal{V}$, $\psi_e:\mathcal{X}\times\mathcal{X}\to\mathbb{R}_+$, $e\in\mathcal{E}$, the probability distribution μ on $\mathcal{X}^\mathcal{V}$ defined by $\mu(x):=\frac{1}{Z}\prod_{i\in\mathcal{V}}\psi_i(x_i)\prod_{e=(i,j)\in\mathcal{E}}\psi_{i,j}(x_i,x_j)$

is a **pairwise graphical model** with underlying graph ${\cal G}$

The normalization constant
$$Z = \sum_{\mathbf{x} \in \mathcal{X}^{\mathcal{V}}} \prod_{i \in \mathcal{V}} \psi_i(\mathbf{x}_i) \prod_{e=(i,j) \in \mathcal{E}} \psi_{i,j}(\mathbf{x}_i, \mathbf{x}_j)$$
 is

known as its partition function.

Example

Ising model: $\mathcal{X} = \{-1, 1\}$, $\psi_i(x_i) = e^{h_i x_i}$, $\psi_{ij}(x_i, x_j) = e^{J_{ij} x_i x_j}$. X_i : spin at site i; h_i : external field at i; J_{ij} : coupling coefficient between sites i and j

Definition

For undirected graph $\mathcal{G}:=(\mathcal{V},\mathcal{E})$, finite alphabet \mathcal{X} , probability measure μ on $\mathcal{X}^{\mathcal{V}}$, (\mathcal{G},μ) : Markov field if there exist functions $\psi_K:\mathcal{X}^K\to\mathbb{R}_+$ indexed by **cliques** K of \mathcal{G} and Z such that $\mu(x)=\frac{1}{Z}\prod_K\psi_K(x_K), x\in\mathcal{X}^{\mathcal{V}}$, where $x_K:=(x_i)_{i\in K}$.

Easy property: For any pairwise graphical model μ with underlying graph \mathcal{G} , (μ, \mathcal{G}) is a Markov random field.

Definition

For subsets $A, B, C \subset \mathcal{V}$, C separates A and B in \mathcal{G} if any path in \mathcal{G} from A to B traverses C. We denote this $A - \frac{C}{G} = B$.

Hammersley-Clifford Theorem

Theorem

For Markov field (μ, \mathcal{G}) , and A, B, C such that $A \stackrel{C}{=} B$, then under μ, X_A and X_R are independent conditionally on X_C .

Conversely, for any probability measure μ on $\mathcal{X}^{\mathcal{V}}$ such that $\forall x \in \mathcal{X}^{\mathcal{V}}, \ \mu(x) > 0$ and for all A, B, C such that $A = \frac{c}{c} B$, under μ , X_A

and X_B are independent conditionally on X_C , then (μ, \mathcal{G}) is a Markov field.

Markov random field distributions: $\mu(x) = \frac{1}{Z}\psi(x), \quad x \in \mathcal{X}^{\mathcal{V}}.$

For $\psi > 0$, $\mu(x) = \frac{1}{Z}e^{-E(x)/T}$, Boltzmann distribution with energy E(x) and temperature T

Definition

Gibbs free energy functional

 $\mathbb{G}: M(\mathcal{X}^{\mathcal{V}}) = ext{ probability measures on } \mathcal{X}^{\mathcal{V}}
ightarrow \mathbb{R}$

 $\mathbb{G}(\nu) := -H(\nu) - \mathbb{E}_{\nu} \ln \psi(x)$, where

 $H(\nu) := \sum_{x} \nu(x) \ln(1/\nu(x))$: Shannon entropy of ν

Proposition

 \mathbb{G} strictly convex on $M(\mathcal{X}^{\mathcal{V}})$, minimal at $\nu = \mu$, the Boltzmann-Gibbs distribution, and $\mathbb{G}(\mu) = -\ln(Z)$.

Remark

Recall Kullback-Leibler divergence between distributions on discrete \mathcal{X} :

$$D(p\|q) := \sum_{x \in \mathcal{X}} p(x) \ln\left(\frac{p(x)}{q(x)}\right)$$
. Then $\mathbb{G}(\nu) = -\ln(Z) + D(\nu\|\mu)$.

4 / 24

Tree Markov fields and belief propagation

$$(\mathcal{G},\mu)$$
: \mathcal{G} tree graph, $\mu(x)=rac{1}{Z}\prod_{i\in\mathcal{V}}\psi_i(x_i)\prod_{(ij)\in\mathcal{E}}\psi_{ij}(x_i,x_j),\quad x\in\mathcal{X}^\mathcal{V}$

For edge (ij) of \mathcal{G} with orientation $i \to j$, $\mathcal{T}_{i \to j} = (\mathcal{V}_{i \to j}, \mathcal{E}_{i \to j})$: subtree of \mathcal{G} = connected component of i after removal of edge (ij)

Let
$$\mu_{i \to j}(x_{\mathcal{V}_{i \to j}}) = \frac{1}{Z_{i \to j}} \prod_{k \in \mathcal{V}_{i \to j}} \psi_k(x_k) \prod_{(k\ell) \in \mathcal{E}_{i \to j}} \psi_{k\ell}(x_k, x_\ell)$$
: Pairwise graphical model induced on $\mathcal{T}_{i \to j}$

Let:

$$b_{i \to j}(x_i)$$
 = marginal of X_i under $\mu_{i \to j}$, $\mu(x_i)$ = marginal of X_i under μ , $\mu_{ij}(x_i, x_i)$ = marginal of (X_i, X_i) under μ

Recursive computations on trees

For leaf node i with incident edge (ij) in \mathcal{G} , $b_{i \to j}(x_i) = \frac{1}{Z_{i \to i}} \psi_i(x_i), \ Z_{i \to j} = \sum_{x_i \in \mathcal{X}} \psi_i(x_i).$

Induction for non-leaf node i:

$$b_{i\rightarrow j}(x_i) = \frac{1}{Z_{i\rightarrow j}} \sum_{x_k, k \in \mathcal{V}_{i\rightarrow j} \setminus \{i\}} \prod_{k \in \mathcal{V}_{i\rightarrow j}} \psi_k(x_k) \prod_{(k\ell) \in \mathcal{E}_{i\rightarrow j}} \psi_{k\ell}(x_k, x_\ell)$$

$$= \frac{1}{Z_{i\rightarrow j}} \psi_i(x_i) \prod_{k \sim i, k \neq j} \sum_{x_k} \psi_{ki}(x_k, x_i) Z_{k\rightarrow i} b_{k\rightarrow i}(x_k).$$

$$Z_{i\rightarrow j} = \sum_{x_k, k \in \mathcal{V}_{i\rightarrow j}} \prod_{k \in \mathcal{V}_{i\rightarrow j}} \psi_k(x_k) \prod_{(k\ell) \in \mathcal{E}_{i\rightarrow j}} \psi_{k\ell}(x_k, x_\ell)$$

$$= \sum_{x_i \in \mathcal{X}} \psi_i(x_i) \prod_{k \sim i, k \neq j} \sum_{x_k} \psi_{ki}(x_k, x_i) Z_{k\rightarrow i} b_{k\rightarrow i}(x_k).$$

Formulas for marginals

$$\mu_{i}(x_{i}) = \frac{1}{Z}\psi_{i}(x_{i})\prod_{k \sim i} \sum_{x_{k}} \psi_{ki}(x_{k}, x_{i})Z_{k \rightarrow i}b_{k \rightarrow i}(x_{k}),$$

$$\mu_{ij}(x_{i}, x_{j}) = \frac{1}{Z}\psi_{ij}(x_{i}, x_{j})Z_{i \rightarrow j}b_{i \rightarrow j}(x_{i})Z_{j \rightarrow i}b_{j \rightarrow i}(x_{j}),$$

$$Z = \sum_{x_{i} \in \mathcal{X}} \psi_{i}(x_{i})\prod_{k \sim i} \sum_{x_{k}} \psi_{ki}(x_{k}, x_{i})Z_{k \rightarrow i}b_{k \rightarrow i}(x_{k}).$$

Computational cost for obtaining Z and all marginals, with recursive approach: $O(|\mathcal{X}|^2)$ cost per oriented edge, hence $O(|\mathcal{V}|\cdot|\mathcal{X}|^2)$ operations in total.

Compare to brute force computation of Z: sum of $|\mathcal{X}|^{|\mathcal{V}|}$ terms...

Belief Propagation (a.k.a. Product-Sum) Algorithm

Iteratively update beliefs, or messages $b_{i \to j}$ by letting $b_{i \to j}(x_i) \propto \psi_i(x_i) \prod_{k \sim i, k \neq j} \sum_{x_k} \psi_{ki}(x_k, x_i) b_{k \to i}(x_k)$

- Can be run synchronously or asynchronously
- Converges after each vector $b_{i \rightarrow j}$ updated finite number of times
- Limit values allow to determine marginals and normalization constants

Tree Markov fields, further properties

$$\mu(x) = \prod_{i \in \mathcal{V}} \mu_i(x_i) \prod_{(ij) \in \mathcal{E}} \frac{\mu_{ij}(x_i, x_j)}{\mu_i(x_i)\mu_j(x_j)}$$
$$= \prod_{i \in \mathcal{V}} \mu_i(x_i)^{1-d_i} \prod_{(ij) \in \mathcal{E}} \mu_{ij}(x_i, x_j)$$

Proof.

Induction on $|\mathcal{V}|$: for leaf node i, and incident edge (ij), write

$$\mu(x) = \frac{\mu_{ij}(x_i, x_j)}{\mu_i(x_i)} \mathbb{P}_{\mu}(X_{\mathcal{V}-i} = x_{\mathcal{V}-i})$$

Note that $\mathbb{P}_{\mu}(X_{\mathcal{V}-i}=\cdot)$: tree Markov field on $\mathcal{T}_{j\to i}...$

Belief propagation in general (non-tree) Markov fields

Recall Gibbs free energy $\mathbb{G}(\nu) = -H(\nu) - \mathbb{E}_{\nu} \ln \psi(x)$ minimized by Boltzmann-Gibbs distribution $\mu(x) \propto \psi(x)$.

For $\psi(x) = \prod_{i \in \mathcal{V}} \psi_i(x_i) \prod_{(ij) \in \mathcal{E}} \psi_{ij}(x_i, x_j)$, "energy" term:

$$\mathbb{E}_{\nu} \ln(\psi(x)) = \sum_{i \in \mathcal{V}} \sum_{x_i \in \mathcal{X}} \nu_i(x_i) \ln(\psi_i(x_i)) + \sum_{(ij) \in \mathcal{E}} \sum_{x_i, x_j \in \mathcal{X}} \nu_{ij}(x_i, x_j) \ln(\psi_{ij}(x_i, x_j)),$$

where ν_i , ν_{ij} : marginals of ν .

If $\mathcal{G} = \text{tree}$, and $(\mathcal{G}, \nu) = \text{tree}$ Markov field, entropy term:

$$H(\nu) = \sum_{(ij)\in\mathcal{E}} \sum_{x_i, x_j \in \mathcal{X}} \nu_{ij}(x_i, x_j) \ln\left(\frac{1}{\nu_{ij}(x_i, x_j)}\right) + \sum_{i\in\mathcal{V}} \sum_{x_i\in\mathcal{X}} (1 - d_i)\nu_i(x_i) \ln\left(\frac{1}{\nu_i(x_i)}\right)$$

Bethe free energy

Using expression for tree-field entropy, free energy becomes $\mathbb{G}_{\mathsf{Bethe}}(\{\nu_i\}_{i\in\mathcal{V}},\{\nu_{ij}\}_{(ij)\in\mathcal{E}}):=\cdots$

$$\cdots \sum_{i \in \mathcal{V}} \sum_{x_i \in \mathcal{X}} \nu_i(x_i) \left[-\ln(\psi_i(x_i)) + (1 - d_i) \ln(\nu_i(x_i)) \right]$$

$$+ \sum_{(ij) \in \mathcal{E}} \sum_{x_i, x_j \in \mathcal{X}} \nu_{ij}(x_i, x_j) \left[-\ln(\psi_{ij}(x_i, x_j)) + \ln(\nu_{ij}(x_i, x_j)) \right]$$

Remark

- 1) Number of variables $|\mathcal{X}|^{|\mathcal{V}|}$ in Gibbs free energy $\to |\mathcal{V}| \cdot |\mathcal{X}| + |\mathcal{E}| \cdot |\mathcal{X}|^2$ in Bethe free energy
- 2) For marginal distributions ν_i , ν_{ij} satisfying constraints, existence of ν on $\mathcal{X}^{\mathcal{V}}$ with these marginals is not guaranteed

Bethe Free Energy minimization and belief propagation Lagrangian for BFE minimization:

$$\mathcal{L}((\nu_{i},\nu_{ij}),(\alpha_{i},\beta_{ij},\lambda_{i\to j})) = \mathbb{G}_{\mathsf{Bethe}}(\{\nu_{i}\},\{\nu_{ij}\})
+ \sum_{i\in\mathcal{V}} \alpha_{i}(\sum_{x_{i}\in\mathcal{X}} \nu_{i}(x_{i}) - 1)
+ \sum_{(ij)\in\mathcal{E}} \beta_{ij}(\sum_{x_{i},x_{j}\in\mathcal{X}} \nu_{ij}(x_{i},x_{j}) - 1)
+ \sum_{(i\to j)} \sum_{x_{i}\in\mathcal{X}} \lambda_{i\to j}(x_{i})[\nu_{i}(x_{i}) - \sum_{x_{j}\in\mathcal{X}} \nu_{ij}(x_{i},x_{j})].$$
(1)

Stationarity conditions: $\partial \mathcal{L}/\partial \alpha_i = \partial \mathcal{L}/\partial \beta_{ij} = \partial \mathcal{L}/\partial \lambda_{i \to j}(x_i) = 0$, and

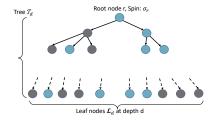
$$-\ln \psi_{ij}(x_i, x_j) + 1 + \ln \nu_{ij}(x_i, x_j) - \lambda_{i \to j}(x_i) - \lambda_{j \to i}(x_j) + \beta_{ij} = 0,$$

$$-\ln \psi_i(x_i) + (1 - d_i)(1 + \ln \nu_i(x_i)) + \alpha_i + \sum_{i \sim i} \lambda_{i \to j}(x_i) = 0.$$

Theorem

Assume that $\psi_i(x_i)$ and $\psi_{ij}(x_i, x_j) > 0$ for all $(i, j) \in \mathcal{E}$ and $x_i, x_j \in \mathcal{X}$. There is then a one-to-one correspondence between stationary points of Lagrangian (1) associated with BFE minimization and fixed points $b_{i \to j}(x_i)$ of BP, obtained via relationships $b_{i \to j}(x_i) = \exp(\lambda_{i \to j}(x_i))$.

The tree reconstruction problem



Tree \mathcal{T} , root r. \mathcal{L}_d : nodes in generation d (at distance d from r). Tree of nodes of generations $0, \ldots, d$: $\mathcal{T}_d = (V_d, E_d)$.

 $\sigma_i \in [q]$: "trait" of individual i. p(i): parent of i.

Probabilistic transmission: $\mathbb{P}(\sigma_{\mathcal{L}_d} = s_{\mathcal{L}_d} | \mathcal{T}, \sigma_{V_{d-1}}) = \prod_{i \in \mathcal{L}_d} P_{\sigma_{p(i)}s_i}$ where P: stochastic matrix, assumed irreducible, with invariant distribution ν on [q]

The tree reconstruction problem

Assume root spin
$$\sigma_r \sim \nu$$
. Then $\mathbb{P}(\sigma_{V_d} = s_{V_d} | \mathcal{T}) = \nu_{s_r} \prod_{(i,j) \in E_d, i = p(j)} P_{s_i s_j}$ \rightarrow A tree Markov field.

Special case: $P_{\tau\tau} = p$, $P_{\tau s} = \frac{1-p}{q-1}$, $s \neq \tau$: symmetric Potts model (q = 2: Ising model).

Question: can one estimate σ_r from $\mathcal{T}_d, \sigma_{\mathcal{L}_d}$ non-trivially as $d \to \infty$?

Assumptions on \mathcal{T} : either deterministic, or Galton-Watson branching tree.

Information theory background

Shannon entropy

$$H(\nu) = \sum_s \nu_s \ln(1/\nu_s) \to \text{also denote } H(X) \text{ for r.v. } X$$

Conditional entropy

$$H(X|Y) := \sum_{x,y} p_{X,Y}(x,y) \ln \left(\frac{1}{p_{X|Y}(x|y)} \right)$$

= $H(\{X,Y\}) - H(Y)$
= $\sum_{y} p_{Y}(y) H(\mathcal{L}(X|Y=y)).$

Mutual information

$$I(X;Y) = H(X) + H(Y) - H(\{X,Y\})$$

$$= \sum_{x,y} p_{X,Y}(x,y) \ln \left(\frac{p_{X,Y}(x,y)}{p_X(x)p_Y(y)} \right)$$

$$= D(p_{X,Y} || p_X \otimes p_Y).$$

Non-negativity of KL divergence $\Rightarrow I(X; Y) \geq 0$.

Information theory background

Conditional mutual information

$$I(X; Y|Z) := H(X|Z) + H(Y|Z) - H(\{X, Y\}|Z) = \sum_{z} p_{Z}(z) D(p_{\{X, Y\}|Z=z} ||p_{X|Z=z} \otimes p_{Y|Z=z})$$

 $\Rightarrow I(X; Y|Z) \geq 0.$

Chain rule: $I(X; \{Y, Z\}) = I(X; Z) + I(X; Y|Z)$.

Lemma

Data processing inequality: Let X, Y, Z such that X, Y independent conditional on Z. Then $I(X; Y) \leq I(X; Z)$.

Proof.

$$I(X; (Y, Z)) = I(X; Z) + I(X; Y|Z) = I(X; Z)$$
 (conditional independence) $I(X; (Y, Z)) = I(X; Y) + I(X; Z|Y) \ge I(X; Y)$ (non-negativity of mutual information)

Non-trivial tree reconstruction

Let
$$\mathcal{F}_d = \sigma(\mathcal{T}_d, \sigma_{V_d})$$
, $\mathcal{G}_d = \sigma(\mathcal{T}_d, \sigma_{\mathcal{L}_d})$, $\hat{\nu}_{s,d} = \mathbb{P}(\sigma_r = s | \mathcal{G}_d)$, $s \in [q]$.
Then $I(\sigma_r; \mathcal{G}_d) = H(\sigma_r) - H(\sigma_r | \mathcal{G}_d)$
 $= \mathbb{E} \sum_{s \in [q]} \hat{\nu}_{s,d} \ln(\hat{\nu}_{s,d} / \nu_s)$
 $= \mathbb{E} D(\{\hat{\nu}_{s,d}\}_{s \in [q]} \| \nu)$.

For \mathcal{T} : deterministic or Galton-Watson, conditionally on \mathcal{G}_d , σ_r and \mathcal{G}_{d+1} are independent.

- \Rightarrow (data processing inequality) $I(\sigma_r; \mathcal{G}_d) \geq I(\sigma_r; \mathcal{G}_{d+1})$.
- $\Rightarrow \exists \lim_{d\to\infty} I(\sigma_r; \mathcal{G}_d).$

Definition

tree reconstruction is feasible if and only if $\lim_{d\to\infty} I(\sigma_r; \mathcal{G}_d) > 0$.

Proposition

Non-reconstructibility, i.e. $\lim_{d\to\infty} I(\sigma_r; \mathcal{G}_d) = 0$ is equivalent to $\forall s \in [q], \ \hat{\nu}_{s,d} \stackrel{d\to\infty}{\to} \nu_s$ in probability.

Proof: By irreducibility, $\inf_{s \in [q]} \nu_s > 0$.

Map $f: M([q]) \to \mathbb{R}_+$, $f(\mu) := D(\mu \| \nu)$ is thus continuous, null only for $\mu = \nu$.

Recall that $I(\sigma_r; \mathcal{G}_d) = \mathbb{E}f(\{\hat{\nu}_{\cdot,d}\})$. Thus if $I(\sigma_r; \mathcal{G}_d) \stackrel{d \to \infty}{\to} 0$, then for all $\epsilon > 0$, $\mathbb{P}(\{\hat{\nu}_{\cdot,d}\} \in \{\mu \in M([q]) : f(\mu) \ge \epsilon\}) \stackrel{d \to \infty}{\to} 0$. Hence $\{\hat{\nu}_{\cdot,d}\} \to \nu$ in probability.

Conversely if $\{\hat{\nu}_{\cdot,d}\} \to \nu$ in probability, by continuity of f and compactness of M([q]), $I(\sigma_r; \mathcal{G}_d) \to f(\nu) = 0$.

Illustration of non-reconstructibility

```
Estimate \hat{\sigma}_r = \phi(\mathcal{G}_d) maximizing \mathbb{P}(\hat{\sigma}_r = \sigma_r), i.e. maximizing \mathbb{E}(\mathbb{I}_{\hat{\sigma}_r = \sigma_r}) = \mathbb{E} \sum_{s \in [q]} \hat{\nu}_{s,d} \mathbb{I}_{\hat{\sigma}_r = s}, achieved by \hat{\sigma}_r \in \arg\max\{\hat{\nu}_{s,d}\}_{s \in [q]}, yielding \mathbb{P}(\hat{\sigma}_r = \sigma_r) = \mathbb{E} \max_{s \in [q]} \hat{\nu}_{s,d}.
```

For ν : uniform on [q],

non-reconstructibility
$$\Leftrightarrow \max_{s \in [q]} \hat{\nu}_{s,d} \overset{\mathsf{prob.}}{\underset{d \to \infty}{\longrightarrow}} \frac{1}{q} \Leftrightarrow \mathbb{E} \max_{s \in [q]} \hat{\nu}_{s,d} \overset{d \to \infty}{\longrightarrow} \frac{1}{q}$$

Hence non-reconstructibility equivalent to $\mathbb{P}(\hat{\sigma}_r = \sigma_r) \stackrel{d \to \infty}{\to} \frac{1}{q}$, performance that can be achieved trivially (take fixed or random σ_r , independent of \mathcal{G}_d)

Census reconstructibility

Define generation d's **census**: $X_d = \{X_{s,d}\}_{s \in [q]}$ where

$$X_{s,d} := \sum_{i \in \mathcal{L}_d} \mathbb{I}_{\sigma_i = s}.$$

Definition

Census reconstructibility holds if $\lim_{d\to\infty} I(\sigma_r; X_d) > 0$.

Remark

Data processing inequality ensures $\lim_{d\to\infty} I(\sigma_r; X_d)$ exists for Galton-Watson tree \mathcal{T} .

It also ensures $I(\sigma_r; \mathcal{G}_d) \geq I(\sigma_r; X_d)$. Hence census reconstructibility implies (tree) reconstructibility.

Assume \mathcal{T} : Galton-Watson, with r.v. Z: number of children verifying $\mathbb{E}Z = \alpha > 1$ and $\mathbb{E}Z^2 < \infty$.

For transition matrix $P_{s\tau} := \mathbb{P}(\sigma_i = \tau | \sigma_{p(i)} = s)$, let $\lambda_2(P)$: eigenvalue of P with second largest modulus $(\lambda_1(P) = 1)$.

Census reconstructibility and Kesten-Stigum threshold

Theorem

If $\alpha |\lambda_2(P)|^2 > 1$, census reconstructibility holds.

Proof: Let $\{x_s\}_{s\in[q]}$: eigenvector of P for $\lambda_2(P)$. Necessarily, x non-constant, since constant vector: eigenvector for $\lambda_1(P)=1$.

Let
$$Z_d = \phi(X_d) = \sum_{s \in [q]} x_s X_{s,d} (\alpha \lambda_2)^{-d}$$
.

We shall show that $\liminf I(\sigma_r; Z_d) > 0$, using

Lemma

 $\{Z_d\}$: uniformly integrable \mathcal{F}_d -martingale, where $\mathcal{F}_d = \sigma(\mathcal{T}_d, \sigma_{V_d})$.

Background on martingales

Definition

Family of random variables $\{M_d\}_{d\geq 0}$ is a martingale for filtration $\{\mathcal{G}_d\}_{d\geq 0}$ iff $\forall d\geq 0,\ \mathbb{E}(M_{d+1}|\mathcal{G}_d)=M_d$. It is uniformly integrable iff $\lim_{A\to +\infty}\sup_d \mathbb{E}(|M_d|\mathbb{I}_{|M_d|>A})=0$.

Theorem

For uniformly integrable $\{\mathcal{G}_d\}$ -martingale $\{M_d\}$, there exists \mathcal{G}_{∞} -measurable random variable M_{∞} such that: $M_d = \mathbb{E}(M_{\infty}|\mathcal{G}_d), \ d \geq 0;$ $M_d \stackrel{d \to \infty}{\to} M_{\infty}$ almost surely and in \mathbb{L}^1 .

Theorem

Let $\{\mathcal{H}_d\}$: decreasing sequence of σ -fields $(\mathcal{H}_{d+1} \subseteq \mathcal{H}_d)$. For integrable r.v. X, then $X_d := \mathbb{E}(X|\mathcal{H}_d)$ verifies $X_d \overset{d \to \infty}{\to} \mathbb{E}(X|\mathcal{H}_\infty)$ almost surely and in \mathbb{L}^1 .

Lemma's proof

$$\begin{split} \mathbb{E}(Z_d|\mathcal{F}_{d-1}) &= (\alpha\lambda_2)^{-d}\mathbb{E}\left[\sum_{i\in\mathcal{L}_{d-1}}\sum_{j:p(j)=i}\mathsf{x}_{\sigma_j}|\mathcal{F}_{d-1}\right] \\ &= (\alpha\lambda_2)^{-d}\sum_{i\in\mathcal{L}_{d-1}}\alpha\sum_{s\in[q]}P_{\sigma_is}\mathsf{x}_s \\ &= Z_{d-1}. \end{split}$$

$$\mathsf{Var}Z_d &= \mathsf{Var}(\mathbb{E}(Z_d|\mathcal{F}_{d-1})) + \mathbb{E}(\mathsf{Var}(Z_d|\mathcal{F}_{d-1})) \\ &= \mathsf{Var}(Z_{d-1}) + |\alpha\lambda_2|^{-2d}\mathbb{E}[\mathsf{Var}(\sum_{i\in\mathcal{L}_d}\mathsf{x}_{\sigma_i}|\mathcal{F}_{d-1})] \\ &= \mathsf{Var}(Z_{d-1}) + |\alpha\lambda_2|^{-2d}\mathbb{E}[\sum_{i\in\mathcal{L}_{d-1}}\mathsf{Var}(\sum_{j:p(j)=i}\mathsf{x}_{\sigma_i}|\mathcal{F}_{d-1})] \\ &\leq \mathsf{Var}(Z_{d-1}) + |\alpha\lambda_2|^{-2d}\mathbb{E}(|\mathcal{L}_{d-1}|) \sup_s |x_s|^2\mathbb{E}(Z^2) \\ &\leq \mathsf{Var}(Z_{d-1}) + C(\alpha|\lambda_2|^2)^{-d}. \end{split}$$
 Hence $\sup_{d>0} \mathsf{Var}(Z_d) \leq \frac{C'}{\alpha|\lambda_2|^2-1} < +\infty. \end{split}$ Uniform integrability follows: $\sup_d \mathbb{E}(|Z_d|\mathbb{I}_{|Z_d|>A}) \leq \sup_d \frac{1}{A}\mathbb{E}|Z_d|^2 \leq \frac{C''}{A}. \end{split}$

By martingale convergence theorem, $Z_d \overset{\text{a.s.}}{\underset{d \to \infty}{\longrightarrow}} \mathbb{L}^1 Z_{\infty}$.

Necessarily $\mathbb{E}[Z_{\infty}|\mathcal{F}_0] = Z_0 = x_{\sigma_r}$.

Assume that for Lebesgue almost all $t \in \mathbb{R}$, $\mathbb{I}_{Z_{\infty} \leq t}$ independent of σ_r , and thus $\forall s \in [q], \ \mathbb{P}(Z_{\infty} \leq t | \sigma_r = s) = \mathbb{P}(Z_{\infty} \leq t)$.

Then $\mathbb{E}(Z_{\infty}|\sigma_r=s)$ independent of $s\in[q]$, a contradiction.

Thus there exists a set of positive Lebesgue measure of $t \in \mathbb{R}$ such that Z_{∞} , σ_r non-independent.

Choose such t that is also a continuity point of $\mathbb{P}(Z_{\infty} \leq t | \sigma_r = s)$ for all $s \in [q]$

For such
$$t$$
, a.s. $\lim_{d\to\infty}\mathbb{P}(\sigma_r=s|Z_d\leq t)=\mathbb{P}(\sigma_r=s|Z_\infty\leq t)$

$$\Rightarrow \lim_{d\to\infty} I(\sigma_r; \mathbb{I}_{Z_d \le t}) = I(\sigma_r; \mathbb{I}_{Z_\infty \le t}) > 0$$

$$\Rightarrow \lim_{d\to\infty} I(\sigma_r; Z_d) > 0$$
, i.e. census reconstructibility

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○