Method 2: Bernstein's inequality for matrices

Theorem

(Tropp’'15) Let Xi,...,Xm be independent Hermitian random matrices
such that: E(Xc) =0, || Xk|lop < L almost surely, k € [m].

Let Y =3 cim Xk and v(Y) = [E(Y?)lop = || X e im) EXllop-

Then for all t > 0, P(A1(Y) > t) < nexp <—2(V(y_)fu/3)> '

This implies for all t > 0: P(||Y]|op > t) < 2nexp (was)) :

Corollary

For W s.t. Wj; independent up to symmetry, EW;; =0, |Wj;| <1,

]EW,-J? = 0(d/n):

If d > log(n) then with high probability p(W) = o(d).
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Stronger bounds on p = p(W)

Theorem (Feige and Ofek, 2005)

Let A € R"™": symmetric matrix with entries independent up to
symmetry, A; € [0,1], and such that B(A;) < d/n, where d < n'/°.
Then for some (universal) constant k > 0,

with high probability p(A — E(A)) < ky/max(d, log(n)).
Corollary

For d > \/max(d, log(n)), i.e. d > y/log(n), with high probability

p(A — EA) = o(d)
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Proof of Bernstein matrix inequality

Lemma

For independent Hermitian matrices Xy, k € [m], and Y =3 o[, X«

ETre?Y < Trexp (Zke[m] In IEeeXk)

Lemma

For Hermitian X such that E(X) = 0 and ||X|| < L almost surely, then:

Ee?X < exp g—fz/f EX?),
V0 € (0,3/L), ox 9}2 /32 )

InEe"* < 1_9L/3EX ,
Lemma

For Hermitian A, B, if A < B, then ¥i € [n], \i(A) < \i(B). Hence for all
non-decreasing f : R — R,

Tr fiAi < Tr fIB‘.
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Application: Community Detection in the Stochastic Block
Model

g(n, {Oz,'},-e[K], P), where o > 0, Zie[K] o = 1, P e [0, 1]K><K :
multi-type version of the Erdds-Rényi random graph

@ n vertices partitioned into K communities
e Type (community) of node i : o; € [K], 0; : i.id., ~«
o Conditionally on oy, independently for each pair i, € [n]: edge (/,})

present with probability Py () »(j)-

Strong signal regime:: fixed K, o, B € R¥*K; P = (d/n)B, with
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Spectral embedding

e Extract top two (more generally top R) eigenvalues A1, A\, of graph's
adjacency matrix A € R"*" (ordered by absolute value:
A1l = [A2f = --0)

@ Let x3,x0 € R"™: corresponding normalized eigenvectors

o Embed vertex k € [n] into R? by letting zx := /n(x1(k), x2(k))
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Spectral embedding

e Extract top two (more generally top R) eigenvalues A1, A\, of graph's
adjacency matrix A € R"*" (ordered by absolute value:
A1l = [A2f = --0)

@ Let x3,x0 € R"™: corresponding normalized eigenvectors
o Embed vertex k € [n] into R? by letting zx := /n(x1(k), x2(k))

— based on PCA dimensionality reduction of A to dimension R
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Example: spectral embedding for SBM

Second eigenvector
o

g

-0.03

-0.04

-0.05
004 0035 003 0025 002 -0015 001 -0.005

First eigenvector

A case with K = 4 communities
Spectral embedding seems to reflect community structure
— Why / when do spectral methods work?
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Theorem

Assume communities are distinguishable, i.e. for each k # ( € [K], there
exists m € [K] such that By, # Bim.

Assume +/In(n) < d < n® for some fixed § €]0,1[. Let R: rank of matrix
B. Then with high probability:

(i) the spectrum of A consists of R eigenvalues of order ©(d) and n — R
eigenvalues of order o (d).

(i) R-dimensional spectral embedding reveals underlying communities:
except for vanishing fraction of nodes i € [n],

lzi— 7 = { oW ifo(i)=0(),
Y Q1) ifa(i) # o(j)
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Theorem

Assume communities are distinguishable, i.e. for each k # ( € [K], there
exists m € [K] such that By, # Bim.

Assume +/In(n) < d < n® for some fixed § €]0,1[. Let R: rank of matrix
B. Then with high probability:

(i) the spectrum of A consists of R eigenvalues of order ©(d) and n — R
eigenvalues of order o (d).

(i) R-dimensional spectral embedding reveals underlying communities:
except for vanishing fraction of nodes i € [n],

lzi— 7 = { oW ifo(i)=0(),
Y Q1) ifa(i) # o(j)

Corollary

Under these conditions any sensible clustering scheme (eg K-means
properly initialized) correctly classifies all but vanishing fraction of nodes.

v
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Proof strategy

HE N

+W
\

Noise matrix

\—Y—)

A : block matrix (useful “signal”)

o Write adjacency matrix as A= A+ W with A; = %Ba(;)’g(j)

@ R leading eigen-elements of A capture community structure

e Control perturbation of eigen-elements of a symmetric matrix A by

addition of symmetric matrix W in terms of spectral radius p(WW) of
noise matrix

@ Prove bound on p(W) for random noise matrix W
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Eigenstructure of A

Block structure of A = Ax constant on each block = eigenvectors
associated to non-zero eigenvalue are block-constant.

For t € RK define x := ¢(t) = (ty())ic[y) € R".

Then A¢(t) = de(Mt), where M, := By, a,.

Lemma

Spectrum of A:

R eigen-pairs (A, = dpy, X, = ¢(t,)) where (wy, t,): eigen-pairs of M
with i, # 0;

0: eigenvalue with multiplicity n — R
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Eigenstructure of A (continued)

Lemma
Under distinguishability hypothesis there exists ¢ > 0 function of B, « such
that for any choice of normalized leading eigenvectors X1, . .. ,XR,

z; = /n(x1(i), ..., xg(i)) " verify

o(i) #o(j) = lzi =zl 2 >0

Proof: Let t, € RKX be such that \/nx, = ¢(t,), and \/a = Diag(,/a).
Then: {\/at,}c[r): orthonormal family by orthonormality of the X,.

t, eigenvectors of matrix M = Ba, hence \/at,: orthonormal family of
eigenvectors of matrix \/aB/a.

Thus \/an = ZUE[R] Mu(\/atu)(\/atu)—r

Equivalently: B =3 g putyt]
Hence minimum of ||Z; — Z;|| over o (i) # o(j) strictly positive, for
otherwise B has two identical rows, i.e. distinguishability fails.
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Proof

o Matrix A of rank R, spectral gaps [\; — \;| = Q(d), R-dimensional
spectral embedding with X1, ..., Xr separates clusters
Vk:{ie[n]:a;:k}

o Feige-Ofek: d > \/logn = p:= p(A — A) < d. Weyl's inequality: R
eigenvalues \; close to \; = ©(d), others of order p < d

o Davis-Kahane: eigenvectors x; such that (x;,x;) = 1 — O((p/d)?)

Then > 12 — Zil* = 03 e iy X — Xull? = 06 with

0 = 0((p/d)?) = o(1)
Hence (Tchebitchev inequality): |{i : ||zi — Z;|| > 6Y/3}| < n#'/3 = o(n)

Yields desired conclusion: except for vanishing fraction #1/3 of nodes,

spectral representatives z; §1/3-close of corresponding z;, themselves
clustered according to community structure
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Graphon model

Let X': compact metric space, 7: probability measure on X,
P(x,y) : X2 — [0,1]: continuous symmetric function

Definition

Graphon G(n,m, P): o i.i.d. ~ 7. Conditionally on oy, (Ai;)i<;:
independent, ~ Ber(P(o;, 0})).

Focus on strong signal regime: Graphon G(n, 7, (d/n)K) for fixed = and
kernel K, and signal strength d — oo
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Operator theory background

Theorem

(Kato'66) Let T: linear self-adjoint operator on Hilbert space 1.>(7) where
7: non-negative measure be compact, i.e. for any bounded set C, T(C)
is compact.

Then: T admits discrete real spectrum {\},>1 and associated
orthonormal collection of eigenfunctions {1 }«>1 such that

TF(x) = Lko1 Mt (x) [y () F () (dy)-

Special case: for compact X continuous symmetric kernel K : X2 — R,
associated operator T : Tf(x) = [, K(x,y)f(y)m(dy) is compact. Its
eigen-elements {\x}x>1, {¢k}k21 verify

K(x, ) > k1 /\kwk( )llfk( ),
Zk>1 k= f)@ (dX) (dy).
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Koltchinskii-Giné Theorem

Theorem

For compact X endowed with probability measure 7, continuous
symmetric kernel K : X% — R, associated operator T, positive part of its
spectrum {A?L};Zl: )\f > )\; > ... >0.
Let {0’,’},’21.' iid., ~m, and M = % (K(0i7af))iJe[n] .
Let iy : )\70“_1 > )\70“ == )\;(i)_+d*1 > )\?ngd. (d-dimensional eigenspace)
Let )\j-“”: positive eigenvalues of M, and associated ON eigenvectors ij“”.
Then for j =ig,...,ip+d—1:
)\JTL’" — )\jf in probability as n — co;
There exist orthonormal eigenfunctions df of T such that

,n
Vj+

- ﬁ{iﬁj(gk)}ke[n] — 0 in probability as n — oco.
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Graphon reconstruction, strong signal regime

Theorem
Let A~ G(n,m,(d/n)K). Let R > 1 be fixed such that
IAr+1(T)| < [Ar(T)|. Let u1,...,ur: orthonormal collection of

eigenvectors of A associated with A\1(A), ..., Ar(A).
Assume that \/logn < d < n’ for some fixed § € (0,1). Define

Ry = Sl A(A)ue(ue(), 7. € [n].
Then with high probability

n g 2 2 2.2
et |55 = K(oi,0))]” = o(n®) + O(n®),
where o; € X: type of vertex i € [n], and

€& = Y r M(K).
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Interpretation: For fraction 1 — o(1) of pairs i,,
K,:,' = gK(O’,’,O‘j) [0(1) + O(GR)] .

n
Proof idea: Write A = & (K(07,0;)); jefy + W
Feige-Ofek or Bernstein inequality: w.h.p. p(W) = o(d).

Koltchinskii-Giné's theorem: eigen-elements of
9 (K(oi,07)) = dX(T), {n"20(0k) }eln)

Hence Kjj &~ €37 ciq A T)ve(07) (7).
Finally K'(x,y) == K(x,y) — >oeir) Me(T)Ye(x)e(y) verifies LLN:

L3 el K (0, )P = g ATV = &

] January 25, 2021
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Example

Take X = [0,1], m =U([0,1]), g : R — R 1-periodic continuous function,

and K(x, ) = g(x - y).
Then spectrum of K determined by Fourier coefficients of g
k
Ex: for g(x) = |x], x| <1/2: g(x) = 1 + Y ,; EH? cos(2mx)

— AL = 3, Aok = Aoky1 = k> 1

=1
m2(2k—1)2?

— Power-law decay of spectrum of A

] January 25, 2021
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Pairwise graphical models and Markov random fields

Definition
For undirected graph G := (V, ), finite alphabet X, functions
Y X >Ry, i€V, we'XxX—HRJr, eeé’ the probability

distribution 1 on X'V defined by p(x Hv,b, Xi) H i j(xi, ;)

IEV e=(ij)e€

is a pairwise graphical model with underlying graph G

The normalization constant Z = Z H¢;(x, H Q,ZJ,J x,,xJ ) is

xeXxViey e=(ij)e€
known as its partition function.

Example
Ising model: X' = {—1,1}, 1;(x) = e, ;(x;, x;) = elixX.

X;i: spin at site /; h;: external field at i; J,J coupling coefficient between

sites / and j

v

] January 25, 2021
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Definition

For undirected graph G := (V, ), finite alphabet X', probability measure
on XY, (G, u): Markov field if there exist functions 1, : XK — Ry
indexed by cliques K of G and Z such that

p(x) = 3 Tk ¥r(xx), x € XY,
where xx 1= (Xi)iek-

v

Easy property: For any pairwise graphical model p with underlying graph
G, (1, G) is a Markov random field.
Definition
For subsets A, B, C C V, C separates A and B in G if any path in G from
C
A to B traverses C. We denote this A —— B.
g
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Hammersley-Clifford Theorem

Theorem

C
For Markov field (11,G), and A, B, C such that A o B, then under i, Xa

and Xg are independent conditionally on Xc.

Conversely, for any probability measure ;v on XV such that

c
Vx € XY, u(x) > 0 and for all A, B, C such that A o B, under i, Xa

and Xg are independent conditionally on Xc, then (i, G) is a Markov field.
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Proof (Markov field = conditional independence)

C _ _
Let A s B. Denote A, resp. B : nodes reachable from A, resp. B
without entering C. Let A = A\ A, B’ = B\ B.

Lemma
A and B are disjoint. Any cliqgue K of G is included in AU C or in BU C.

Corollary
For Markov field (11, G) there exist functions F, G such that for any
x € XY, u(x) = F(xz,c)G(xguc)-

Thus: P(Xauc = xauc) = 2, y, F(xauc, ya)G(yg, xc),

P(Xguc = xguc) = 2_,, -, F(2z,xc)G(xsuc, 287),

P(Xausuc = xausuc) = 2., ,, 2., F(xauc, ya)G(xsuc, z8),

P(Xc = xc) = 2., F(22:xc)G(yz: xc)-

= P(Xauc = xauc)P(Xsuc = xuc) = P(Xausuc = xausuc)P(Xc = xc)

L i T




Proof (Conditional independence = Markov field)

Fix x* € XY, for S C V, note ¢s(xs) == [Tycs M(XU,X\*/\U)(’l)‘S\Ul
Lemma
One has p(x) = p(x*) [Iscv sz Ps(xs)- J
Proof: sl

IT o¢stxs)= TI TI #Cusn)07 = T sl x0)™,
SCV,5#0 SCV,5#0 UCS ucy

Use S (~1)BI = 3" (~1)MBI =1, = 3 (~1)SI = 0 to establish:

BCA BCA scy
kp=-1, kp=1,0£AUCV=ry=0.
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Lemma
For S not a clique of G, ¢x(xs) = 1. J

Proof: If 3j € S : x; = xf, then

pouge) NP
— XU\ —
¢s(xs) = Ilucs—; <“(XU+JvXT;\(u+j))> =1

S not aclique = 3i,j € S:(i,j) ¢¢E.

posg) DT
XU X
¢s(xs) = [luycs_; <M> :
x, if ke U,

For fixed UC S — i, K := V\ {i,j}, Ietyk:{ i kev\U
k .

. *
XU+ XD\ (U+i

K pOU5n y) P(X;=x" | Xk =yi )P(X;=y;| Xk =)
' AR W) POXi=x [ Xe=y)P(XG=y [ Xk=yr) |
Then, since {i} G Ut W0 ) POG=XIXk=yi) PO =1 Xk =yic)

o PXi=x" | Xk=yK)
P(Xi=x;| Xk=yk) '

Thus ¢s(xs) = ¢s(xs—j, x7) = 1.

which does not depend on value x;.
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