
Method 2: Bernstein’s inequality for matrices

Theorem

(Tropp’15) Let X1, . . . ,Xm be independent Hermitian random matrices
such that: E(Xk) = 0, ‖Xk‖op ≤ L almost surely, k ∈ [m].

Let Y =
∑

k∈[m] Xk , and v(Y ) := ‖E(Y 2)‖op = ‖
∑

k∈[m] EX 2
k ‖op.

Then for all t > 0, P(λ1(Y ) ≥ t) ≤ n exp
(

−t2

2(v(Y )+Lt/3)

)
·

This implies for all t > 0: P(‖Y ‖op ≥ t) ≤ 2n exp
(

−t2

2(v(Y )+Lt/3)

)
·

Corollary

For W s.t. Wij independent up to symmetry, EWij = 0, |Wij | ≤ 1,
EW 2

ij = O(d/n):
If d � log(n) then with high probability ρ(W ) = o(d).
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Stronger bounds on ρ = ρ(W )

Theorem (Feige and Ofek, 2005)

Let A ∈ Rn×n: symmetric matrix with entries independent up to
symmetry, Aij ∈ [0, 1], and such that E(Aij) ≤ d/n, where d ≤ n1/5.
Then for some (universal) constant κ > 0,
with high probability ρ(A−E(A)) ≤ κ

√
max(d , log(n)).

Corollary

For d �
√

max(d , log(n)), i.e. d �
√

log(n), with high probability
ρ(A−EA) = o(d)
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Proof of Bernstein matrix inequality

Lemma

For independent Hermitian matrices Xk , k ∈ [m], and Y =
∑

k∈[m] Xk :

ETreθY ≤ Tr exp
(∑

k∈[m] lnEeθXk

)
Lemma

For Hermitian X such that E(X ) = 0 and ‖X‖ ≤ L almost surely, then:

∀θ ∈ (0, 3/L),

 EeθX � exp
(

θ2/2
1−θL/3EX

2
)
,

lnEeθX � θ2/2
1−θL/3EX

2,

Lemma

For Hermitian A,B, if A � B, then ∀i ∈ [n], λi (A) ≤ λi (B). Hence for all
non-decreasing f : R→ R,
Tr f (A) ≤ Tr f (B).
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Application: Community Detection in the Stochastic Block
Model

G(n, {αi}i∈[K ],P), where αi > 0,
∑

i∈[K ] αi = 1, P ∈ [0, 1]K×K :
multi-type version of the Erdős-Rényi random graph

n vertices partitioned into K communities

Type (community) of node i : σi ∈ [K ], σi : i.i.d., ∼ α

Conditionally on σ[n], independently for each pair i , j ∈ [n]: edge (i , j)
present with probability Pσ(i),σ(j).

Strong signal regime:: fixed K , α,B ∈ RK×K
+ ; P = (d/n)B, with

limn→+∞ d = +∞
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Spectral embedding

Extract top two (more generally top R) eigenvalues λ1, λ2 of graph’s
adjacency matrix A ∈ Rn×n (ordered by absolute value:
|λ1| ≥ |λ2| ≥ · · ·)

Let x1, x2 ∈ Rn: corresponding normalized eigenvectors

Embed vertex k ∈ [n] into R2 by letting zk :=
√
n(x1(k), x2(k))

→ based on PCA dimensionality reduction of A to dimension R
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Example: spectral embedding for SBM

A case with K = 4 communities
Spectral embedding seems to reflect community structure
→ Why / when do spectral methods work?
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Theorem

Assume communities are distinguishable, i.e. for each k 6= ` ∈ [K ], there
exists m ∈ [K ] such that Bkm 6= B`m.
Assume

√
ln(n)� d � nδ for some fixed δ ∈]0, 1[. Let R: rank of matrix

B. Then with high probability:
(i) the spectrum of A consists of R eigenvalues of order Θ(d) and n − R
eigenvalues of order o (d).
(ii) R-dimensional spectral embedding reveals underlying communities:
except for vanishing fraction of nodes i ∈ [n],

‖zi − zj‖ =

{
o(1) if σ(i) = σ(j),
Ω(1) if σ(i) 6= σ(j)

Corollary

Under these conditions any sensible clustering scheme (eg K-means
properly initialized) correctly classifies all but vanishing fraction of nodes.

January 25, 2021 9 / 23



Theorem

Assume communities are distinguishable, i.e. for each k 6= ` ∈ [K ], there
exists m ∈ [K ] such that Bkm 6= B`m.
Assume

√
ln(n)� d � nδ for some fixed δ ∈]0, 1[. Let R: rank of matrix

B. Then with high probability:
(i) the spectrum of A consists of R eigenvalues of order Θ(d) and n − R
eigenvalues of order o (d).
(ii) R-dimensional spectral embedding reveals underlying communities:
except for vanishing fraction of nodes i ∈ [n],

‖zi − zj‖ =

{
o(1) if σ(i) = σ(j),
Ω(1) if σ(i) 6= σ(j)

Corollary

Under these conditions any sensible clustering scheme (eg K-means
properly initialized) correctly classifies all but vanishing fraction of nodes.

January 25, 2021 9 / 23



Proof strategy

A=

 𝐴 : block matrix (useful “signal”)

+ W

Noise matrix

Write adjacency matrix as A = A + W with Aij = d
nBσ(i),σ(j)

R leading eigen-elements of A capture community structure

Control perturbation of eigen-elements of a symmetric matrix A by
addition of symmetric matrix W in terms of spectral radius ρ(W ) of
noise matrix

Prove bound on ρ(W ) for random noise matrix W
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Eigenstructure of A

Block structure of A⇒ Ax constant on each block ⇒ eigenvectors
associated to non-zero eigenvalue are block-constant.

For t ∈ RK define x := φ(t) = (tσ(i))i∈[n] ∈ Rn.

Then Aφ(t) = dφ(Mt), where Muv := Buvαv .

Lemma

Spectrum of A:
R eigen-pairs (λu = dµu, xu = φ(tu)) where (µu, tu): eigen-pairs of M
with µu 6= 0;
0: eigenvalue with multiplicity n − R
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Eigenstructure of A (continued)

Lemma

Under distinguishability hypothesis there exists ε > 0 function of B, α such
that for any choice of normalized leading eigenvectors x1, . . . , xR ,
z i =

√
n(x1(i), . . . , xR(i))T verify

σ(i) 6= σ(j)⇒ ‖z i − z j‖ ≥ ε > 0

Proof: Let tu ∈ RK be such that
√
nxu = φ(tu), and

√
α = Diag(

√
αu).

Then: {
√
αtu}u∈[R]: orthonormal family by orthonormality of the xu.

tu eigenvectors of matrix M = Bα, hence
√
αtu: orthonormal family of

eigenvectors of matrix
√
αB
√
α.

Thus
√
αB
√
α =

∑
u∈[R] µu(

√
αtu)(

√
αtu)T .

Equivalently: B =
∑

u∈[R] µutut
T
u .

Hence minimum of ‖z i − z j‖ over σ(i) 6= σ(j) strictly positive, for
otherwise B has two identical rows, i.e. distinguishability fails.
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Proof

Matrix A of rank R, spectral gaps |λi − λj | = Ω(d), R-dimensional
spectral embedding with x1, . . . , xR separates clusters
Vk = {i ∈ [n] : σi = k}
Feige-Ofek: d �

√
log n⇒ ρ := ρ(A− A)� d . Weyl’s inequality: R

eigenvalues λi close to λi = Θ(d), others of order ρ� d

Davis-Kahane: eigenvectors xi such that 〈xi , x i 〉 = 1− O((ρ/d)2)

Then
∑

i∈[n] ‖zi − z i‖2 = n
∑

u∈[R] ‖xu − xu‖2 = nθ with

θ = O((ρ/d)2) = o(1)
Hence (Tchebitchev inequality): |{i : ‖zi − z i‖ ≥ θ1/3}| ≤ nθ1/3 = o(n)

Yields desired conclusion: except for vanishing fraction θ1/3 of nodes,
spectral representatives zi θ

1/3-close of corresponding z i , themselves
clustered according to community structure
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Graphon model

Let X : compact metric space, π: probability measure on X ,
P(x , y) : X 2 → [0, 1]: continuous symmetric function

Definition

Graphon G(n, π,P): σi i.i.d. ∼ π. Conditionally on σ[n], (Ai ,j)i<j :
independent, ∼ Ber(P(σi , σj)).

Focus on strong signal regime: Graphon G(n, π, (d/n)K ) for fixed π and
kernel K , and signal strength d →∞
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Operator theory background

Theorem

(Kato’66) Let T : linear self-adjoint operator on Hilbert space L2(π) where
π: non-negative measure be compact, i.e. for any bounded set C , T (C )
is compact.
Then: T admits discrete real spectrum {λk}k≥1 and associated
orthonormal collection of eigenfunctions {ψk}k≥1 such that
Tf (x) =

∑
k≥1 λkψk(x)

∫
X ψk(y)f (y)π(dy).

Special case: for compact X , continuous symmetric kernel K : X 2 → R,
associated operator T : Tf (x) =

∫
X K (x , y)f (y)π(dy) is compact. Its

eigen-elements {λk}k≥1, {ψk}k≥1 verify
K (x , y) =

∑
k≥1 λkψk(x)ψk(y),∑

k≥1 λ
2
k =

∫
X 2 K (x , y)2π(dx)π(dy).
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Koltchinskii-Giné Theorem

Theorem

For compact X endowed with probability measure π, continuous
symmetric kernel K : X 2 → R, associated operator T , positive part of its
spectrum {λ+

i }i≥1: λ+
1 ≥ λ

+
2 ≥ · · · ≥ 0.

Let {σi}i≥1: i.i.d., ∼ π, and M = 1
n (K (σi , σj))i ,j∈[n] .

Let i0 : λ+
i0−1 > λ+

i0
= · · · = λ+

i0+d−1 > λ+
i0+d . (d-dimensional eigenspace)

Let λ+,n
j : positive eigenvalues of M, and associated ON eigenvectors v+,n

j .
Then for j = i0, . . . , i0 + d − 1:
λ+,n
j → λ+

j in probability as n→∞;

There exist orthonormal eigenfunctions ψ+
j of T such that∥∥∥v+,n

j − 1√
n
{ψj(σk)}k∈[n]

∥∥∥→ 0 in probability as n→∞.
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Graphon reconstruction, strong signal regime

Theorem

Let A ∼ G(n, π, (d/n)K ). Let R ≥ 1 be fixed such that
|λR+1(T )| < |λR(T )|. Let u1, . . . , uR : orthonormal collection of
eigenvectors of A associated with λ1(A), . . . , λR(A).
Assume that

√
log n� d � nδ for some fixed δ ∈ (0, 1). Define

K̂ij =
∑R

`=1 λ`(A)u`(i)u`(j), i , j ∈ [n].

Then with high probability

∑
i ,j∈[n]

[
n
d K̂ij − K (σi , σj)

]2
= o(n2) + O(n2ε2

R),

where σi ∈ X : type of vertex i ∈ [n], and

ε2
R =

∑
`>R λ`(K )2.

January 25, 2021 17 / 23



Interpretation: For fraction 1− o(1) of pairs i , j ,
K̂ij = d

nK (σi , σj) [o(1) + O(εR)] .

Proof idea: Write A = d
n (K (σi , σj))i ,j∈[n] + W

Feige-Ofek or Bernstein inequality: w.h.p. ρ(W ) = o(d).

Koltchinskii-Giné’s theorem: eigen-elements of
d
n (K (σi , σj)) ≈ dλ`(T ), {n−1/2ψ`(σk)}k∈[n]

Hence K̂ij ≈ d
n

∑
`∈[R] λ`(T )ψ`(σi )ψ`(σj).

Finally K ′(x , y) := K (x , y)−
∑

`∈[R] λ`(T )ψ`(x)ψ`(y) verifies LLN:

1
n2

∑
i ,j∈[n][K

′(σi , σj)]2 →
∑

`>R λ`(T )2 = ε2
R
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Example

Take X = [0, 1], π = U([0, 1]), g : R→ R 1-periodic continuous function,
and K (x , y) = g(x − y).

Then spectrum of K determined by Fourier coefficients of g

Ex: for g(x) = |x |, |x | ≤ 1/2: g(x) = 1
4 +

∑
k≥1

(−1)k−1
π2k2 cos(2πx)

→ λ1 = 1
4 , λ2k = λ2k+1 = −1

π2(2k−1)2 , k ≥ 1.

→ Power-law decay of spectrum of A
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Pairwise graphical models and Markov random fields

Definition

For undirected graph G := (V, E), finite alphabet X , functions
ψi : X → R+, i ∈ V, ψe : X × X → R+, e ∈ E , the probability

distribution µ on X V defined by µ(x) :=
1

Z

∏
i∈V

ψi (xi )
∏

e=(i ,j)∈E

ψi ,j(xi , xj)

is a pairwise graphical model with underlying graph G

The normalization constant Z =
∑
x∈XV

∏
i∈V

ψi (xi )
∏

e=(i ,j)∈E

ψi ,j(xi , xj) is

known as its partition function.

Example

Ising model: X = {−1, 1}, ψi (xi ) = ehixi , ψij(xi , xj) = eJijxixj .
Xi : spin at site i ; hi : external field at i ; Jij : coupling coefficient between
sites i and j
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Definition

For undirected graph G := (V, E), finite alphabet X , probability measure µ
on X V , (G, µ): Markov field if there exist functions ψK : XK → R+

indexed by cliques K of G and Z such that
µ(x) = 1

Z

∏
K ψK (xK ), x ∈ X V ,

where xK := (xi )i∈K .

Easy property: For any pairwise graphical model µ with underlying graph
G, (µ,G) is a Markov random field.

Definition

For subsets A,B,C ⊂ V, C separates A and B in G if any path in G from

A to B traverses C . We denote this A
C
−−
G

B.
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Hammersley-Clifford Theorem

Theorem

For Markov field (µ,G), and A,B,C such that A
C
−−
G

B, then under µ, XA

and XB are independent conditionally on XC .

Conversely, for any probability measure µ on X V such that

∀x ∈ X V , µ(x) > 0 and for all A,B,C such that A
C
−−
G

B, under µ, XA

and XB are independent conditionally on XC , then (µ,G) is a Markov field.
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Proof (Markov field ⇒ conditional independence)

Let A
C
−−
G

B. Denote Ā, resp. B̄ : nodes reachable from A, resp. B

without entering C . Let A′ = Ā \ A, B ′ = B̄ \ B.

Lemma

Ā and B̄ are disjoint. Any clique K of G is included in Ā ∪ C or in B̄ ∪ C.

Corollary

For Markov field (µ,G) there exist functions F ,G such that for any
x ∈ X V , µ(x) = F (xĀ∪C )G (xB̄∪C ).

Thus: P(XA∪C = xA∪C ) =
∑

yA′ ,yB̄
F (xA∪C , yA′)G (yB̄ , xC ),

P(XB∪C = xB∪C ) =
∑

zB′ ,zĀ
F (zĀ, xC )G (xB∪C , zB′),

P(XA∪B∪C = xA∪B∪C ) =
∑

yA′ ,zB′
F (xA∪C , yA′)G (xB∪C , zB′),

P(XC = xC ) =
∑

zĀ,yB̄
F (zĀ, xC )G (yB̄ , xC ).

⇒ P(XA∪C = xA∪C )P(XB∪C = xB∪C ) = P(XA∪B∪C = xA∪B∪C )P(XC = xC )
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Proof (Conditional independence ⇒ Markov field)

Fix x∗ ∈ X V ; for S ⊂ V, note φS(xS) :=
∏

U⊆S µ(xU , x
∗
V \U)(−1)|S\U|

Lemma

One has µ(x) = µ(x∗)
∏

S⊆V ,S 6=∅ φS(xS).

Proof:∏
S⊆V ,S 6=∅

φS(xS) =
∏

S⊆V ,S 6=∅

∏
U⊂S

µ(xU , x
∗
V\U)(−1)|S\U| =

∏
U⊆V

µ(xU , x
∗
V\U)κU ,

where κU =
∑

S 6=∅,U⊆S⊆V(−1)|S\U|.

Use
∑
B⊆A

(−1)|B| =
∑
B⊆A

(−1)|A\B| = IA=∅ ⇒
∑
S⊆V

(−1)|S | = 0 to establish:

κ∅ = −1, κV = 1, ∅ 6= U ( V ⇒ κU = 0.

January 25, 2021 24 / 23



Lemma

For S not a clique of G, φX (xS) ≡ 1.

Proof: If ∃j ∈ S : xj = x∗j , then

φS(xS) =
∏

U⊆S−j

(
µ(xU ,x

∗
V\U)

µ(xU+j ,x
∗
V\(U+j)

)

)(−1)|S\U|

= 1.

S not a clique ⇒ ∃i , j ∈ S : (i , j) /∈ E .

φS(xS) =
∏

U⊆S−i

(
µ(xU ,x

∗
V\U)

µ(xU+i ,x
∗
V\(U+i)

)

)(−1)|S\U|

.

For fixed U ⊆ S − i , K := V \ {i , j}, let yk =

{
xk if k ∈ U,
x∗k if k ∈ V \ U.

Then, since {i}
K
−−
G
{j},

µ(xU ,x
∗
V\U)

µ(xU+i ,x
∗
V\(U+i)

) =
P(Xi=x∗i |XK=yK )P(Xj=yj |XK=yK )
P(Xi=xi |XK=yK )P(Xj=yj |XK=yK ) · · ·

· · · =
P(Xi=x∗i |XK=yK )
P(Xi=xi |XK=yK ) , which does not depend on value xj .

Thus φS(xS) = φS(xS−j , x
∗
j ) = 1.
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