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Community Detection: cluster nodes i € V of graph
G = (V,E), into subsets Vi,..., Vk of “statistically similar nodes”

Applications:
-recommendation (graph between users and products);
-biology (graph of chemical interactions between proteins);



— Focus on G = (V/, E) drawn from the Stochastic Block
Model G(n, a, P):

» o ={a,...,ak} probability distribution on [K]

> P c [0,1]K*K: Symmetric matrix

> {Ui}ie[n] Diid., ~a

» Conditionally on oy, := {01,...,04,}, edge (i,j) € E with
probability Py, 5,



— Focus on G = (V, E) drawn from the Stochastic Block
Model G(n, a, P):
» o ={a,...,ak} probability distribution on [K]
> P c [0,1]%*K: Symmetric matrix
> {oi}tign iid., ~a
» Conditionally on oy, := {01,...,0,}, edge (i,j) € E with
probability Py, o,

— Generative model that generalizes the Erdés-Rényi random
graph G(n, p)

— Community Detection: inference of node attributes o; from
observation G = (V, E)

— Spectral methods and phase transitions on feasibility of
community detection



Graphical models, a generalization of the Ising model on
{_17 1}'1:
P(Xim = Xa)) e N Xieln XiTO X jiin XiXj

Goal: Infer unobserved variables X; of nodes i of graph G



Graphical models, a generalization of the Ising model on
{717 1}'1:
P(X{n] = X[p) 0 €1 2ieln 57 L ins X1

Goal: Infer unobserved variables X; of nodes i of graph G

— Belief Propagation Algorithm

— Emphasis on Tree Reconstruction problem: infer
characteristics X, where a: ancestor in genealogical tree, from

characteristics of its descendants

— Phase transitions on feasibility of inference, and links to
community detection



Hypothesis tests: does observed graph G have some structure
(ex: is drawn from Stochastic Block Model with K > 1 blocks) or
is it “totally random”, i.e. an Erd6s-Rényi graph?

Special Case: the Planted Clique Problem

— Highlight existence of two kinds of phase transitions:
» Informational, i.e. is there enough information present in the
observation

» Computational, i.e. can the information present in the
observation be extracted in polynomial time



Outline for today

» Background results from Linear Algebra
» Bounds on spectral radius of random matrices

» Spectral methods for community detection in Stochastic
Block Model



Singular Value Decomposition (SVD)

SVD of matrix X € C"*P:
X = UNV* = """ giu:v7, where:
U= (u1,...,up) € C™" U*U = I,, (uj: i-th left singular vector)

V= (v1,...,vp) € CP*P, V*V = |, (vj: i-th right singular
vector)

op O ... 0
NeR™P N=1| o ) :
0 0 opp O

01> -+ > 0npp > 0, (00 i-th singular value)



Principal Component Analysis (Karl Pearson "On Lines and
Planes of Closest Fit to Systems of Points in Space”, 1901)

Definition
For matrix X € C"™P with SVD X = Z"L\f oiuivF

I

Operator norm: || X|,, := sup,cq» HII)ZITIH = o1;

Frobenius norm: || X|| == \/Z,j = \/Z o?

For r < nAp, let X, := > [_; ojuiv’. Then:

X: best rank-r approximation of X both for [|-||¢ and ||-|,,, with

v L?f) rHX - YHop = ”X _Xl’Hop = Or41,

inf X=Y|=|X-X = | 2
v. rl'(f(‘y):rH ”F | rHF ;U,



Perturbation results: Eigenvalues

Definition
For M € C"™",
spectral radius p(M) := sup{|\|, A\ € Spectrum(M)}.

For Hermitian M € C"*", order its (real) eigenvalues as
AM(M) > > Ap(M).

Then p(M) = o1(M) = max(IAu(M)], [Aa(M)]).



Perturbation results: Eigenvalues

Definition
For M € C"™",
spectral radius p(M) := sup{|\|, A\ € Spectrum(M)}.

For Hermitian M € C"*", order its (real) eigenvalues as
AM(M) > > Ap(M).

Then p(M) = 1(M) = max(IA (M), [Aa(M)]).
Lemma

(Weyl's inequality) For Hermitian H, W in C"*",
for all i € [n], |\i(H) — Xi(H + W)| < p(W)




Proof: by Courant-Fisher theorem,

ANi(H+ W)= sup inf  xT(H+ W)x
dim(g)=i *€ElIx[I=1

Apply to E = Vect{xi(H),...,x;(H)} to obtain

)\,’(H + W) > ian€E7||X||:1 XT(H + W)X
> infer,||x||:1 xT Hx + inferHX”:l xT Wx
> Ai(H) = p(W).

Similarly, A\j(H) > X\i(H + W) — p(—W) hence the result



Cauchy’s interlacing theorem

Theorem

For Hermitian A € C"™", P € C"™" m < n such that P*P = I,
then B := P*AP verifies

Ai(A) = Ai(B) = An—m+i(A)



Cauchy’s interlacing theorem

Theorem
For Hermitian A € C"™ ", P € C"™", m < n such that P*P = |,
then B := P*AP verifies

Ai(A) = Ai(B) = An—m+i(A)

Proof: Let x1(B),. ,x,,(B) elgenvector basis of B,
Vi = Vect(x1(B), ..., xi(B)), W; = P(V;).

Courant-Fisher:
/\,(B) = infueV,-,HuH:l u*P*APu = infveW;,HvH:l v*Av < )\,(A)

Similarly:
Am—i+1(=A) > Am—it1(—B); equivalently:
_)\n—m+i(A) > _)\i(B)-



Perturbation of eigenvectors: the Davis-Kahane “sin ©"
theorem

Theorem
For symmetric, real H HW = H—-H e R"™" any 1 <r <s <n,
d=s—r+1,if

§ := min(Ar_1(H) — A (H), As(H) — Ass1(H)) > 0,
then for matrices VV = (v,,...,vs), V = (0, Us) of orthonormal
eigenvectors of H resp. of H, there exists O € R9*? such that

0'0 = Iy and

23/2 min(dl/zH W lops [|W/ F)
1)

IVO = Vliop < IVO = V]l <



Perturbation of eigenvectors: a more elementary result

Lemma
For fixed i let A := inf}.5 (Hy2x(H) [Ni(H) — Ai(H)|. Assume
p(W) < A. Then for any normed eigenvector %; of H = H+ W

A

associated with \ij(H) there exists x; normed eigenvector of H

2
associated with \;(H) such that (x;, %;) > \/1 — <%)




Perturbation of eigenvectors: a more elementary result

Lemma

For fixed i let A := inf}.5 (Hy2x(H) [Ni(H) — Ai(H)|. Assume
p(W) < A. Then for any normed eigenvector %; of H = H+ W
associated with )\;(I-AI) there exists x; normed eigenvector of H

2
associated with \;(H) such that (x;, %;) > \/1 — <%)

Proof: Decompose X; = Z 0ix; to get
AL = Xi(A)&; =2 0N (H)x + WX;
hence W%; = Zj()\,-(H) — Xi(H))0;x;

By Weyl's inequality, [A\i(H) — A\j(H)| > A — p(W) if
Ni(H) # XNi(H ) Thus

p(W) = (B = p(W)) /1= S e, (oo 10

o j 2
= Zkzxk(H>:A,-(H) Ol* =1~ (A p(vv))




Perturbation arguments recap

and associated eigenvector X;

For H = H + W, eigenvalue \;(H)
H) = Ai(H)[:

(H
of A, with A = inf,. J(H)EN(H) IAG(

Ni(H) = Xi(A)| < p(W)

3x; 4+ Ai(H) such that {x;, %) = 1— 0 (242).



Spectral properties of graphs

Non-oriented graph G = (V,E), V = [n], E = {edges (i,j)}

Adjacency matrix A(G) : Aj =L jyeg = Linyj, i,j € V = [n]
— Symmetric for non-oriented graph

Laplacian matrix L(G) : L,-j:{ ;AU S A :: J’#JI
i ki ik = I.

d;: degree of node i.
xTlx = >oicj Aij(xi — xj)? so that:

0 < L, where <: semi-definite order on symmetric matrices, and
An(L) = 0 with associated eigenvector {1//n}ic(n

L: infinitesimal generator of continuous-time random walk on G,
with transition rates A;; from i to j # i



Isoperimetric constant of graph G:
E(S,S n
1(6) = min{EG2 s c v,0< 5] < 2}
Let A(G) := maxjey—(, di(G), largest node degree.

Lemma

(Cheeger's inequality). 1(G) < \/2A(G)Ap—1(L(G)).
Easier result:

Lemma c
An_1(L
1(6) > ealte)



Isoperimetric constant of graph G:

1(G) := mm{'5§|5>‘ Scv,0<|S|<

Let A(G) := maxjey—(, di(G), largest node degree.
Lemma

(Cheeger's inequality). 1(G) < \/2A(G)Ap—1(L(G)).

Easier result:

Lemma
A1 (L(G
/(6) > A=)

Proof: Courant-Fisher: \,_1 = inf {%,x D (x,e) = O}

For x : xj = Tjes — @ yields

IE(5.3)
An—1 < TSITs]/m)



Isoperimetric constant of graph G:
E(S,S n
1(6) = min{EG2 s c v,0< 5] < 2}
Let A(G) := maxjey—(, di(G), largest node degree.

Lemma
(Cheeger's inequality). 1(G) < \/2A(G)Ap—1(L(G)).

Easier result:

Lemma
A1 (L(G
/(6) > A=)

Proof: Courant-Fisher: \,_1 = inf {%,x D (x,e) = O}

For x : xj = Tjes — @ yields

IE(5.3)
An—1 < TSITs]/m)

Corollary
Graph connected iff \p—1(L) > 0



Alon-Boppana theorem

Definition
d-regular graph G is Ramanujan if \y(A) < 2v/d —1

Note: L = dl, — A, hence A\,_1(L) = d — X2(A)



Alon-Boppana theorem

Definition
d-regular graph G is Ramanujan if \y(A) < 2v/d —1
Note: L = dl, — A, hence A\,_1(L) = d — X2(A)

Theorem
For d-regular G with diameter > 2r + 1,

A2(A) > 2v/d — 1 cos (&) —2y/d —1(1 - O(r2)).

Hence Ramanujan graph G has maximal spectral gap A,—1(L)



Proof

Take i,j € V 1 dg(i,j) > 2r + 1.
G’: subgraph of G induced by nodes of B(i,r), B(j,r)
A/G = P*AcP, where P € R"™"™ such that P*P = |,

Cauchy'’s interlacing theorem
= M2(Ag) = Aa(Acgr) = min{A1(Ag(i,r)), AM(As(,n)}

Nb of closed walks of length 2q started at i in B(i, r): waq(B(i,r)).
waq(B(7, r)) = waq(Ta-1,r) = (d — 1)Twaq(Pr)
Jim [waq(B(/, Y27 = M(Ap(in) > -+

<> V/d =1\ (P) =Vd =1 x 2cos =5

r+2



Bounding spectral radius p(W) of random matrices W:
the Trace method

(method due to [Fiiredi-Komlos'81]; here a sub-optimal version
avoiding sharp combinatorics)

Lemma

Let W € R"™": symmetric matrix with entries independent up to
symmetry, such that |W;| <1, E(Wj) =0, and

E( WU2) < O(d/n) for some d > 1. Then for any fixed ¢ > 0, with

high probability, p(W) < O(+v/dn).

Corollary

If we assume d > n® for some § €]0, 1[, then with high probability
p(W) = o(d).

Proof: Take ¢ < §/2 to obtain p(W) = O(n%?*+¢) = o(n?).



Proof
For fixed k € N, write p™* < " X((W)?* = Trace(W?¥)
i€[n]
Thus P(p > x) < x 2kE(p?*) < x 2k ETrace(W?k)
Combinatorial expression of trace:

Trace(W?K) = Z H iy

i2ke[n)2k+1ig=ip J=1

Recall Wij;: centered and independent
— Only paths contributing non-zero expectation: traverse each
edge at least twice

k e+l
= ETrace(W?k) < ZZC e,v)n"O((d/n)®)
e=1v=1
Yields ETrace(W?2K) = O(nd").
For x = \/dn¢, yields P(p > x) < O(n*~2)
Result follows by taking k > 1/(2¢)



Method 2: Bernstein's inequality for matrices

Theorem

(Tropp’'15) Let Xi,...,Xm be independent Hermitian random
matrices such that:

E(Xc) =0, |[Xkllop < L almost surely, k € [m].

Let Y = 3ty Xior and v(Y) := [E(Y?)lop = | et EXE -

Then for all t > 0, P(A1(Y) > t) < nexp (WM) '
This implies for all t > 0: P(||Y|lop > t) < 2nexp (WM) :
Corollary

For W s.t. Wj; independent up to symmetry, IEWj; = 0,
EW}; = O(d/n):
If d > log(n) then with high probability p(W) = o(d).

Wj| <1,



Stronger bounds on p = p(W)

Theorem (Feige and Ofek, 2005)

Let A € R"™": symmetric matrix with entries independent up to
symmetry, A € [0,1], and such that IE(Aj;) < d/n, where

d < nl/5,

Then for some (universal) constant x > 0,

with high probability p(A — E(A)) < ky/max(d, log(n)).

Corollary

For d > y/max(d, log(n)), i.e. d > +/log(n), with high

probability p(A — EA) = o(d)



Proof of Bernstein matrix inequality

Lemma
For independent Hermitian matrices Xy, k € [m], and

Y = Zke[m] X

ETre?Y < Trexp (Zke[m] In Eeexk)

Lemma
For Hermitian X such that E(X) = 0 and || X|| < L almost surely,
then:
EefX < exp (/2 EX2
V0 € (0,3/L), % 0 }2 1-0L/3 , )
InEe™ < 1=73EX,
Lemma

For Hermitian A, B, if A < B, then Vi € [n], \i(A) < \i(B). Hence
for all non-decreasing f : R — R,
Tr f(A) < Tr f(B).



o



Application: Community Detection in the Stochastic Block
Model

G(n, {ai}tick: P), where a; > 0,37 cjq i = 1, P € [0, 1K<k
multi-type version of the Erdés-Rényi random graph

P n vertices partitioned into K communities
> Type (community) of node i : o € [K], 0j : i.id., ~«

» Conditionally on oy, independently for each pair i,/ € [n]:
edge (i, /) present with probability P,(j) »(j)-

Strong signal regime:: fixed K, o, B € RfXK; P = (d/n)B, with

limp—yoo d =400



Spectral embedding

» Extract top two (more generally top R) eigenvalues A1, Ay of
graph's adjacency matrix A € R"*" (ordered by absolute
value: |A1] > [Aa] > --)

> Let x1,x0 € R": corresponding normalized eigenvectors

» Embed vertex k € [n] into R? by letting

zy = +/n(x1(k), x2(k))



Spectral embedding

» Extract top two (more generally top R) eigenvalues A1, Ay of
graph's adjacency matrix A € R"*" (ordered by absolute
value: |A1] > [Aa] > --)

> Let x1,x0 € R": corresponding normalized eigenvectors

» Embed vertex k € [n] into R? by letting

z = /n(x1(k), x2(k))

— based on PCA dimensionality reduction of A to dimension R



Example: spectral embedding for SBM

Second eigenvector
o

=0.02 -

-0.05
004 0035 003 0025 002 0015 001 -0.005
First eigenvector

A case with K = 4 communities
Spectral embedding seems to reflect community structure
— Why / when do spectral methods work?



Theorem

Assume communities are distinguishable, i.e. for each

k # { € [K], there exists m € [K] such that By, # Bim.

Assume +/In(n) < d < n® for some fixed 6 €]0,1[. Let R: rank of
matrix B. Then with high probability:

(i) the spectrum of A consists of R eigenvalues of order ©(d) and
n — R eigenvalues of order o (d).

(ii) R-dimensional spectral embedding reveals underlying
communities: except for vanishing fraction of nodes i € [n],

Iz — 7] = { o(1) ifo(i) = o(j),
L Q1) ifa(i) # o))



Theorem

Assume communities are distinguishable, i.e. for each

k # { € [K], there exists m € [K] such that By, # Bim.

Assume +/In(n) < d < n® for some fixed 6 €]0,1[. Let R: rank of
matrix B. Then with high probability:

(i) the spectrum of A consists of R eigenvalues of order ©(d) and
n — R eigenvalues of order o (d).

(ii) R-dimensional spectral embedding reveals underlying
communities: except for vanishing fraction of nodes i € [n],

Iz — 7] = { o(1) ifo(i) = o(j),
L Q1) ifa(i) # o))

Corollary

Under these conditions any sensible clustering scheme (eg K-means
properly initialized) correctly classifies all but vanishing fraction of
nodes.



Proof strategy

Ea
(|
|
A= +W
i H . )
D Noise matrix

L—Y—J

A : block matrix (useful “signal”)

» Write adjacency matrix as A= A+ W with Z,-j = %Bo(,-),g(j)
» R leading eigen-elements of A capture community structure

» Control perturbation of eigen-elements of a symmetric matrix
A by addition of symmetric matrix W in terms of spectral
radius p(W) of noise matrix

» Prove bound on p(W) for random noise matrix W



Eigenstructure of A

Block structure of A = Ax constant on each block = eigenvectors
associated to non-zero eigenvalue are block-constant.

For t € R¥ define x := ¢(t) = (ty(i))ie[s € R"-

Then A¢(t) = dp(Mt), where M, = By, a,.

Lemma

Spectrum of A:

R eigen-pairs (A, = dpy, X, = ¢(t,)) where (uy, ty): eigen-pairs
of M with i, # 0;

0: eigenvalue with multiplicity n — R



Eigenstructure of A (continued)

Lemma
Under distinguishability hypothesis there exists ¢ > 0 function of
B, a such that for any choice of normalized leading eigenvectors

X1, XR, Zi = /n(x1(i), ..., xg(i))T verify

o(i) #o() = llzi =zl =€ >0

Proof: Let t, € RX be such that /nx, = ¢(t,), and

\/> = Diag(\/ ).
Then: {\/aty,},e[r): orthonormal family by orthonormality of the
X,

t, eigenvectors of matrix M = Ba, hence y/at,: orthonormal
family of eigenvectors of matrix /aB+/a.

Thus aBy/a = ZuG[R] pa(Vaty)(Vat,)"

Equivalently: B =3 (g putut)]

Hence minimum of ||Z; — Z;|| over o (i) # o(j) strictly positive, for
otherwise B has two identical rows, i.e. distinguishability fails.



Proof

> Matrix A of rank R, spectral gaps |\; — \;| = Q(d),
R-dimensional spectral embedding with X1,...,Xr separates
clusters Vi = {i € [n] : 0 = k}

» Assuming p = p(A — ZL< d, Weyl's inequality: R
eigenvalues \; close to \; = Q(d), others of order p < d

> Associated eigenvectors x; such that (x;,x;) =1 — O((p/d)?)

Then > icpq llzi — zil]? = N> uerr) 1xu — %u|* = nf with

0= 0((p/d)?) = o(1)

Hence (Tchebitchev inequality):

{i+ |z — 2| > 6V3)] < n6*/% = o(n)

Yields desired conclusion: except for vanishing fraction §1/3 of
nodes, spectral representatives z; 61/3-close of corresponding z;,

themselves clustered according to community structure
Feige-Ofek: d > \/logn = p(A— A) < d



