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Community Detection: cluster nodes i ∈ V of graph
G = (V ,E ), into subsets V1, . . . ,VK of “statistically similar nodes”

Applications:
-recommendation (graph between users and products);
-biology (graph of chemical interactions between proteins);
-...



→ Focus on G = (V ,E ) drawn from the Stochastic Block
Model G(n, α,P):

I α = {α1, . . . , αK} probability distribution on [K ]

I P ∈ [0, 1]K×K : Symmetric matrix

I {σi}i∈[n] : i.i.d., ∼ α
I Conditionally on σ[n] := {σ1, . . . , σn}, edge (i , j) ∈ E with

probability Pσi ,σj

→ Generative model that generalizes the Erdős-Rényi random
graph G(n, p)

→ Community Detection: inference of node attributes σi from
observation G = (V ,E )

→ Spectral methods and phase transitions on feasibility of
community detection



→ Focus on G = (V ,E ) drawn from the Stochastic Block
Model G(n, α,P):

I α = {α1, . . . , αK} probability distribution on [K ]

I P ∈ [0, 1]K×K : Symmetric matrix

I {σi}i∈[n] : i.i.d., ∼ α
I Conditionally on σ[n] := {σ1, . . . , σn}, edge (i , j) ∈ E with

probability Pσi ,σj

→ Generative model that generalizes the Erdős-Rényi random
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Graphical models, a generalization of the Ising model on
{−1, 1}n:

P(X[n] = x[n]) ∝ e−h
∑

i∈[n] xi+σ
∑

i,j :i∼j xixj

Goal: Infer unobserved variables Xi of nodes i of graph G

→ Belief Propagation Algorithm

→ Emphasis on Tree Reconstruction problem: infer
characteristics Xa where a: ancestor in genealogical tree, from
characteristics of its descendants

→ Phase transitions on feasibility of inference, and links to
community detection
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Hypothesis tests: does observed graph G have some structure
(ex: is drawn from Stochastic Block Model with K > 1 blocks) or
is it “totally random”, i.e. an Erdős-Rényi graph?

Special Case: the Planted Clique Problem

→ Highlight existence of two kinds of phase transitions:

I Informational, i.e. is there enough information present in the
observation

I Computational, i.e. can the information present in the
observation be extracted in polynomial time



Outline for today

I Background results from Linear Algebra

I Bounds on spectral radius of random matrices

I Spectral methods for community detection in Stochastic
Block Model



Singular Value Decomposition (SVD)

SVD of matrix X ∈ Cn×p:

X = UΛV ∗ =
∑n∧p

i=1 σiuiv
∗
i , where:

U = (u1, . . . , un) ∈ Cn×n, U∗U = In, (ui : i-th left singular vector)

V = (v1, . . . , vp) ∈ Cp×p, V ∗V = Ip, (vi : i-th right singular
vector)

Λ ∈ Rn×p, Λ =

σ1 0 . . . 0

0
. . .

...
0 0 σn∧p 0

,

σ1 ≥ · · · ≥ σn∧p ≥ 0, (σi : i-th singular value)



Principal Component Analysis (Karl Pearson “On Lines and
Planes of Closest Fit to Systems of Points in Space”, 1901)

Definition
For matrix X ∈ Cn×p with SVD X =

∑n∧p
i=1 σiuiv

∗
i ,

Operator norm: ‖X‖op := supu∈Cp
‖Xu‖
‖u‖ = σ1;

Frobenius norm: ‖X‖F :=
√∑

i ,j X
2
ij =

√∑
i σ

2
i .

For r < n ∧ p, let Xr :=
∑r

i=1 σiuiv
∗
i . Then:

Xr best rank-r approximation of X both for ‖·‖F and ‖·‖op, with

inf
Y : rk(Y )=r

‖X − Y ‖op = ‖X − Xr‖op = σr+1,

inf
Y : rk(Y )=r

‖X − Y ‖F = ‖X − Xr‖F =

√∑
i>r

σ2
i .



Perturbation results: Eigenvalues

Definition
For M ∈ Cn×n,
spectral radius ρ(M) := sup{|λ|, λ ∈ Spectrum(M)}.

For Hermitian M ∈ Cn×n, order its (real) eigenvalues as
λ1(M) ≥ · · · ≥ λn(M).

Then ρ(M) = σ1(M) = max(|λ1(M)|, |λn(M)|).

Lemma
(Weyl’s inequality) For Hermitian H, W in Cn×n,
for all i ∈ [n], |λi (H)− λi (H + W )| ≤ ρ(W )
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Proof: by Courant-Fisher theorem,

λi (H + W ) = sup
dim(E)=i

inf
x∈E ,‖x‖=1

xT (H + W )x

Apply to E = Vect{x1(H), . . . , xi (H)} to obtain

λi (H + W ) ≥ infx∈E ,‖x‖=1 x
T (H + W )x

≥ infx∈E ,‖x‖=1 x
THx + infx∈E ,‖x‖=1 x

TWx
≥ λi (H)− ρ(W ).

Similarly, λi (H) ≥ λi (H + W )− ρ(−W ) hence the result



Cauchy’s interlacing theorem

Theorem
For Hermitian A ∈ Cn×n, P ∈ Cn×n, m < n such that P∗P = Im,
then B := P∗AP verifies
λi (A) ≥ λi (B) ≥ λn−m+i (A)

Proof: Let x1(B), . . . , xn(B) eigenvector basis of B,
Vi = Vect(x1(B), . . . , xi (B)), Wi = P(Vi ).

Courant-Fisher:
λi (B) = infu∈Vi ,‖u‖=1 u

∗P∗APu = infv∈Wi ,‖v‖=1 v
∗Av ≤ λi (A).

Similarly:
λm−i+1(−A) ≥ λm−i+1(−B); equivalently:
−λn−m+i (A) ≥ −λi (B).
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Perturbation of eigenvectors: the Davis-Kahane “sin Θ”
theorem

Theorem
For symmetric, real H, Ĥ,W = Ĥ − H ∈ Rn×n any 1 ≤ r ≤ s ≤ n,
d = s − r + 1, if

δ := min(λr−1(H)− λr (H), λs(H)− λs+1(H)) > 0,

then for matrices V = (vr , . . . , vs), V̂ = (v̂r , v̂s) of orthonormal
eigenvectors of H resp. of Ĥ, there exists O ∈ Rd×d such that
O>O = Id and

‖V̂ O − V ‖op ≤ ‖V̂ O − V ‖F ≤
23/2 min(d1/2‖W ‖op, ‖W ‖F )

δ
·



Perturbation of eigenvectors: a more elementary result

Lemma
For fixed i let ∆ := inf j :λj (H)6=λi (H) |λj(H)− λi (H)|. Assume

ρ(W ) < ∆. Then for any normed eigenvector x̂i of Ĥ = H + W
associated with λi (Ĥ) there exists xi normed eigenvector of H

associated with λi (H) such that 〈xi , x̂i 〉 ≥
√

1−
(

ρ(W )
∆−ρ(W )

)2

Proof: Decompose x̂i =
∑

j θjxj to get

Ĥx̂i = λi (Ĥ)x̂i =
∑

j θjλj(H)xj + Wx̂i

hence Wx̂i =
∑

j(λi (Ĥ)− λj(H))θjxj

By Weyl’s inequality, |λi (Ĥ)− λj(H)| ≥ ∆− ρ(W ) if
λi (H) 6= λj(H). Thus

ρ(W ) ≥ (∆− ρ(W ))
√

1−
∑

k:λk (H)=λi (H) |θk |2

⇒
∑

k:λk (H)=λi (H) |θk |2 ≥ 1−
(

ρ(W )
∆−ρ(W )

)2
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Perturbation arguments recap

For Ĥ = H + W , eigenvalue λi (Ĥ) and associated eigenvector x̂i
of Ĥ, with ∆ = infλj (H) 6=λi (H) |λj(H)− λi (H)|:

|λi (H)− λi (Ĥ)| ≤ ρ(W )

∃xi ↔ λi (H) such that 〈xi , x̂i 〉 = 1− O
(
ρ(W )2

∆2

)
·



Spectral properties of graphs

Non-oriented graph G = (V ,E ), V = [n], E = {edges (i , j)}

Adjacency matrix A(G ) : Aij = I(i ,j)∈E = Ii∼j , i , j ∈ V = [n]
→ Symmetric for non-oriented graph

Laplacian matrix L(G ) : Lij =

{
−Aij if i 6= j ,
di :=

∑
k 6=i Aik if j = i .

di : degree of node i .

xTLx =
∑

i<j Aij(xi − xj)
2 so that:

0 � L, where �: semi-definite order on symmetric matrices, and
λn(L) = 0 with associated eigenvector {1/

√
n}i∈[n]

L: infinitesimal generator of continuous-time random walk on G ,
with transition rates Aij from i to j 6= i



Isoperimetric constant of graph G :

I (G ) := min{ |E(S ,S)|
|S | ,S ⊂ V , 0 < |S | ≤ n

2}
Let ∆(G ) := maxi∈V=[n] di (G ), largest node degree.

Lemma
(Cheeger’s inequality). I (G ) ≤

√
2∆(G )λn−1(L(G )).

Easier result:

Lemma
I (G ) ≥ λn−1(L(G))

2

Proof: Courant-Fisher: λn−1 = inf
{

x>Lx
‖x‖2 , x : 〈x , e〉 = 0

}
For x : xi = Ii∈S − |S |n , yields

λn−1 ≤ |E(S,S)|
|S |(1−|S|/n)

Corollary

Graph connected iff λn−1(L) > 0



Isoperimetric constant of graph G :

I (G ) := min{ |E(S ,S)|
|S | ,S ⊂ V , 0 < |S | ≤ n

2}
Let ∆(G ) := maxi∈V=[n] di (G ), largest node degree.

Lemma
(Cheeger’s inequality). I (G ) ≤

√
2∆(G )λn−1(L(G )).

Easier result:

Lemma
I (G ) ≥ λn−1(L(G))

2

Proof: Courant-Fisher: λn−1 = inf
{

x>Lx
‖x‖2 , x : 〈x , e〉 = 0

}
For x : xi = Ii∈S − |S |n , yields

λn−1 ≤ |E(S,S)|
|S |(1−|S|/n)

Corollary

Graph connected iff λn−1(L) > 0



Isoperimetric constant of graph G :

I (G ) := min{ |E(S ,S)|
|S | ,S ⊂ V , 0 < |S | ≤ n

2}
Let ∆(G ) := maxi∈V=[n] di (G ), largest node degree.

Lemma
(Cheeger’s inequality). I (G ) ≤

√
2∆(G )λn−1(L(G )).

Easier result:

Lemma
I (G ) ≥ λn−1(L(G))

2

Proof: Courant-Fisher: λn−1 = inf
{

x>Lx
‖x‖2 , x : 〈x , e〉 = 0

}
For x : xi = Ii∈S − |S |n , yields

λn−1 ≤ |E(S,S)|
|S |(1−|S|/n)

Corollary

Graph connected iff λn−1(L) > 0



Alon-Boppana theorem

Definition
d-regular graph G is Ramanujan if λ2(A) ≤ 2

√
d − 1

Note: L = dIn − A, hence λn−1(L) = d − λ2(A)

Theorem
For d-regular G with diameter ≥ 2r + 1,

λ2(A) ≥ 2
√
d − 1 cos

(
π

r+2

)
= 2
√
d − 1(1− O(r−2)).

Hence Ramanujan graph G has maximal spectral gap λn−1(L)
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Proof

Take i , j ∈ V : dG (i , j) ≥ 2r + 1.
G ′: subgraph of G induced by nodes of B(i , r), B(j , r)
A′G = P∗AGP, where P ∈ Rn×m such that P∗P = Im

Cauchy’s interlacing theorem
⇒ λ2(AG ) ≥ λ2(AG ′) = min{λ1(AB(i ,r)), λ1(AB(j ,r))}

Nb of closed walks of length 2q started at i in B(i , r): w2q(B(i , r)).

w2q(B(i , r)) ≥ w2q(Td−1,r ) = (d − 1)qw2q(Pr )

lim
q→∞

[w2q(B(i , r))]1/2q = λ1(AB(i ,r)) ≥ · · ·

· · · ≥
√
d − 1λ1(Pr ) =

√
d − 1× 2 cos π

r+2



Bounding spectral radius ρ(W ) of random matrices W :
the Trace method

(method due to [Füredi-Komlos’81]; here a sub-optimal version
avoiding sharp combinatorics)

Lemma
Let W ∈ Rn×n: symmetric matrix with entries independent up to
symmetry, such that |Wij | ≤ 1, E(Wij) = 0, and
E(W 2

ij ) ≤ O(d/n) for some d ≥ 1. Then for any fixed ε > 0, with

high probability, ρ(W ) ≤ O(
√
dnε).

Corollary

If we assume d ≥ nδ for some δ ∈]0, 1[, then with high probability
ρ(W ) = o(d).

Proof: Take ε < δ/2 to obtain ρ(W ) = O(nδ/2+ε) = o(nδ).



Proof
For fixed k ∈ N, write ρ2k ≤

∑
i∈[n]

λi (W )2k = Trace(W 2k)

Thus P(ρ ≥ x) ≤ x−2kE(ρ2k) ≤ x−2kETrace(W 2k)
Combinatorial expression of trace:

Trace(W 2k) =
∑

i2k0 ∈[n]2k+1:i0=i2k

2k∏
j=1

Wij−1ij

Recall Wij : centered and independent
→ Only paths contributing non-zero expectation: traverse each
edge at least twice

⇒ ETrace(W 2k) ≤
k∑

e=1

e+1∑
v=1

C (e, v)nvO((d/n)e)

Yields ETrace(W 2k) = O(ndk).
For x =

√
dnε, yields P(ρ ≥ x) ≤ O(n1−2kε)

Result follows by taking k > 1/(2ε)



Method 2: Bernstein’s inequality for matrices

Theorem
(Tropp’15) Let X1, . . . ,Xm be independent Hermitian random
matrices such that:
E(Xk) = 0, ‖Xk‖op ≤ L almost surely, k ∈ [m].

Let Y =
∑

k∈[m] Xk , and v(Y ) := ‖E(Y 2)‖op = ‖
∑

k∈[m] EX 2
k ‖op.

Then for all t > 0, P(λ1(Y ) ≥ t) ≤ n exp
(

−t2

2(v(Y )+Lt/3)

)
·

This implies for all t > 0: P(‖Y ‖op ≥ t) ≤ 2n exp
(

−t2

2(v(Y )+Lt/3)

)
·

Corollary

For W s.t. Wij independent up to symmetry, EWij = 0, |Wij | ≤ 1,
EW 2

ij = O(d/n):
If d � log(n) then with high probability ρ(W ) = o(d).



Stronger bounds on ρ = ρ(W )

Theorem (Feige and Ofek, 2005)

Let A ∈ Rn×n: symmetric matrix with entries independent up to
symmetry, Aij ∈ [0, 1], and such that E(Aij) ≤ d/n, where
d ≤ n1/5.
Then for some (universal) constant κ > 0,
with high probability ρ(A−E(A)) ≤ κ

√
max(d , log(n)).

Corollary

For d �
√

max(d , log(n)), i.e. d �
√

log(n), with high
probability ρ(A−EA) = o(d)



Proof of Bernstein matrix inequality

Lemma
For independent Hermitian matrices Xk , k ∈ [m], and
Y =

∑
k∈[m] Xk :

ETreθY ≤ Tr exp
(∑

k∈[m] lnEeθXk

)
Lemma
For Hermitian X such that E(X ) = 0 and ‖X‖ ≤ L almost surely,
then:

∀θ ∈ (0, 3/L),

 EeθX � exp
(

θ2/2
1−θL/3EX

2
)
,

lnEeθX � θ2/2
1−θL/3EX

2,

Lemma
For Hermitian A,B, if A � B, then ∀i ∈ [n], λi (A) ≤ λi (B). Hence
for all non-decreasing f : R→ R,
Tr f (A) ≤ Tr f (B).





Application: Community Detection in the Stochastic Block
Model

G(n, {αi}i∈[K ],P), where αi > 0,
∑

i∈[K ] αi = 1, P ∈ [0, 1]K×K :
multi-type version of the Erdős-Rényi random graph

I n vertices partitioned into K communities

I Type (community) of node i : σi ∈ [K ], σi : i.i.d., ∼ α

I Conditionally on σ[n], independently for each pair i , j ∈ [n]:
edge (i , j) present with probability Pσ(i),σ(j).

Strong signal regime:: fixed K , α,B ∈ RK×K
+ ; P = (d/n)B, with

limn→+∞ d = +∞



Spectral embedding

I Extract top two (more generally top R) eigenvalues λ1, λ2 of
graph’s adjacency matrix A ∈ Rn×n (ordered by absolute
value: |λ1| ≥ |λ2| ≥ · · ·)

I Let x1, x2 ∈ Rn: corresponding normalized eigenvectors

I Embed vertex k ∈ [n] into R2 by letting
zk :=

√
n(x1(k), x2(k))

→ based on PCA dimensionality reduction of A to dimension R
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Example: spectral embedding for SBM

A case with K = 4 communities
Spectral embedding seems to reflect community structure
→ Why / when do spectral methods work?



Theorem
Assume communities are distinguishable, i.e. for each
k 6= ` ∈ [K ], there exists m ∈ [K ] such that Bkm 6= B`m.
Assume

√
ln(n)� d � nδ for some fixed δ ∈]0, 1[. Let R: rank of

matrix B. Then with high probability:
(i) the spectrum of A consists of R eigenvalues of order Θ(d) and
n − R eigenvalues of order o (d).
(ii) R-dimensional spectral embedding reveals underlying
communities: except for vanishing fraction of nodes i ∈ [n],

||zi − zj || =

{
o(1) if σ(i) = σ(j),
Ω(1) if σ(i) 6= σ(j)

Corollary

Under these conditions any sensible clustering scheme (eg K-means
properly initialized) correctly classifies all but vanishing fraction of
nodes.
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Proof strategy

A=

 𝐴 : block matrix (useful “signal”)

+ W

Noise matrix

I Write adjacency matrix as A = A + W with Aij = d
nBσ(i),σ(j)

I R leading eigen-elements of A capture community structure

I Control perturbation of eigen-elements of a symmetric matrix
A by addition of symmetric matrix W in terms of spectral
radius ρ(W ) of noise matrix

I Prove bound on ρ(W ) for random noise matrix W



Eigenstructure of A

Block structure of A⇒ Ax constant on each block ⇒ eigenvectors
associated to non-zero eigenvalue are block-constant.

For t ∈ RK define x := φ(t) = (tσ(i))i∈[n] ∈ Rn.

Then Aφ(t) = dφ(Mt), where Muv := Buvαv .

Lemma
Spectrum of A:
R eigen-pairs (λu = dµu, xu = φ(tu)) where (µu, tu): eigen-pairs
of M with µu 6= 0;
0: eigenvalue with multiplicity n − R



Eigenstructure of A (continued)

Lemma
Under distinguishability hypothesis there exists ε > 0 function of
B, α such that for any choice of normalized leading eigenvectors
x1, . . . , xR , z i =

√
n(x1(i), . . . , xR(i))T verify

σ(i) 6= σ(j)⇒ ||z i − z j || ≥ ε > 0

Proof: Let tu ∈ RK be such that
√
nxu = φ(tu), and√

α = Diag(
√
αu).

Then: {
√
αtu}u∈[R]: orthonormal family by orthonormality of the

xu.
tu eigenvectors of matrix M = Bα, hence

√
αtu: orthonormal

family of eigenvectors of matrix
√
αB
√
α.

Thus
√
αB
√
α =

∑
u∈[R] µu(

√
αtu)(

√
αtu)T .

Equivalently: B =
∑

u∈[R] µutut
T
u .

Hence minimum of ||z i − z j || over σ(i) 6= σ(j) strictly positive, for
otherwise B has two identical rows, i.e. distinguishability fails.



Proof

I Matrix A of rank R, spectral gaps |λi − λj | = Ω(d),
R-dimensional spectral embedding with x1, . . . , xR separates
clusters Vk = {i ∈ [n] : σi = k}

I Assuming ρ = ρ(A− A)� d , Weyl’s inequality: R
eigenvalues λi close to λi = Ω(d), others of order ρ� d

I Associated eigenvectors xi such that 〈xi , x i 〉 = 1− O((ρ/d)2)

Then
∑

i∈[n] ‖zi − z i‖2 = n
∑

u∈[R] ‖xu − xu‖2 = nθ with

θ = O((ρ/d)2) = o(1)
Hence (Tchebitchev inequality):
|{i : ‖zi − z i‖ ≥ θ1/3}| ≤ nθ1/3 = o(n)
Yields desired conclusion: except for vanishing fraction θ1/3 of
nodes, spectral representatives zi θ

1/3-close of corresponding z i ,
themselves clustered according to community structure
Feige-Ofek: d �

√
log n⇒ ρ(A− A)� d


