Inference in large random graphs

Laurent Massoulié

Inria

January 2021

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Community Detection: cluster nodes $i \in V$ of graph G = (V, E), into subsets V_1, \ldots, V_K of "statistically similar nodes"

Applications:

-recommendation (graph between users and products);

-biology (graph of chemical interactions between proteins);

-...

 \rightarrow Focus on G = (V, E) drawn from the **Stochastic Block Model** $\mathcal{G}(n, \alpha, P)$:

- $\alpha = \{\alpha_1, \ldots, \alpha_K\}$ probability distribution on [K]
- ▶ $P \in [0,1]^{K \times K}$: Symmetric matrix
- $\blacktriangleright \{\sigma_i\}_{i\in[n]}: i.i.d., \sim \alpha$
- Conditionally on σ_[n] := {σ₁,...,σ_n}, edge (i, j) ∈ E with probability P_{σ_i,σ_j}

 \rightarrow Focus on G = (V, E) drawn from the **Stochastic Block Model** $\mathcal{G}(n, \alpha, P)$:

- $\alpha = \{\alpha_1, \ldots, \alpha_K\}$ probability distribution on [K]
- ▶ $P \in [0,1]^{K \times K}$: Symmetric matrix
- $\blacktriangleright \{\sigma_i\}_{i\in[n]}: i.i.d., \sim \alpha$
- ► Conditionally on $\sigma_{[n]} := \{\sigma_1, \ldots, \sigma_n\}$, edge $(i, j) \in E$ with probability P_{σ_i, σ_j}

 \rightarrow Generative model that generalizes the Erdős-Rényi random graph $\mathcal{G}(n,p)$

 \rightarrow Community Detection: inference of node attributes σ_i from observation G = (V, E)

 \rightarrow Spectral methods and phase transitions on feasibility of community detection

Graphical models, a generalization of the Ising model on $\{-1,1\}^n$: $\mathbb{P}(X_{[n]} = x_{[n]}) \propto e^{-h \sum_{i \in [n]} x_i + \sigma \sum_{i,j:i \sim j} x_i x_j}$

Goal: Infer unobserved variables X_i of nodes *i* of graph *G*

Graphical models, a generalization of the Ising model on $\{-1, 1\}^n$: $\mathbb{P}(X_{[n]} = x_{[n]}) \propto e^{-h \sum_{i \in [n]} x_i + \sigma \sum_{i,j:i \sim j} x_i x_j}$

Goal: Infer unobserved variables X_i of nodes *i* of graph *G*

 \rightarrow Belief Propagation Algorithm

 \rightarrow Emphasis on **Tree Reconstruction** problem: infer characteristics X_a where *a*: ancestor in genealogical tree, from characteristics of its descendants

 \rightarrow Phase transitions on feasibility of inference, and links to community detection

Hypothesis tests: does observed graph *G* have some structure (ex: is drawn from Stochastic Block Model with K > 1 blocks) or is it "totally random", i.e. an Erdős-Rényi graph?

Special Case: the Planted Clique Problem

- \rightarrow Highlight existence of two kinds of phase transitions:
 - Informational, i.e. is there enough information present in the observation

Computational, i.e. can the information present in the observation be extracted in polynomial time

Outline for today

- Background results from Linear Algebra
- Bounds on spectral radius of random matrices
- Spectral methods for community detection in Stochastic Block Model

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Singular Value Decomposition (SVD)

SVD of matrix $X \in \mathbb{C}^{n \times p}$:

 $X = U\Lambda V^* = \sum_{i=1}^{n \wedge p} \sigma_i u_i v_i^*$, where:

 $U = (u_1, \dots, u_n) \in \mathbb{C}^{n \times n}, \ U^* U = I_n$, $(u_i: i$ -th left singular vector)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $V = (v_1, \dots, v_p) \in \mathbb{C}^{p \times p}, V^* V = I_p, (v_i: i-\text{th right singular vector})$

$$\Lambda \in \mathbb{R}^{n \times p}, \ \Lambda = \begin{pmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \ddots & \vdots \\ 0 & 0 & \sigma_{n \wedge p} & 0 \end{pmatrix},$$
$$\sigma_1 \ge \dots \ge \sigma_{n \wedge p} \ge 0, \ (\sigma_i: i\text{-th singular value})$$

Principal Component Analysis (Karl Pearson "On Lines and Planes of Closest Fit to Systems of Points in Space", 1901)

Definition

For matrix $X \in \mathbb{C}^{n \times p}$ with SVD $X = \sum_{i=1}^{n \wedge p} \sigma_i u_i v_i^*$,

Operator norm: $\|X\|_{op} := \sup_{u \in \mathbb{C}^p} \frac{\|Xu\|}{\|u\|} = \sigma_1;$

- Frobenius norm: $\|X\|_F := \sqrt{\sum_{i,j} X_{ij}^2} = \sqrt{\sum_i \sigma_i^2}.$
 - For $r < n \land p$, let $X_r := \sum_{i=1}^r \sigma_i u_i v_i^*$. Then:

 X_r best rank-*r* approximation of X both for $\|\cdot\|_F$ and $\|\cdot\|_{op}$, with

$$\inf_{Y: rk(Y)=r} \|X - Y\|_{op} = \|X - X_r\|_{op} = \sigma_{r+1},$$

$$\inf_{Y: rk(Y)=r} \|X - Y\|_F = \|X - X_r\|_F = \sqrt{\sum_{i>r} \sigma_i^2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Perturbation results: Eigenvalues

Definition For $M \in \mathbb{C}^{n \times n}$, spectral radius $\rho(M) := \sup\{|\lambda|, \lambda \in \operatorname{Spectrum}(M)\}$.

For Hermitian $M \in \mathbb{C}^{n \times n}$, order its (real) eigenvalues as $\lambda_1(M) \geq \cdots \geq \lambda_n(M)$.

Then $\rho(M) = \sigma_1(M) = \max(|\lambda_1(M)|, |\lambda_n(M)|).$

Perturbation results: Eigenvalues

Definition For $M \in \mathbb{C}^{n \times n}$, spectral radius $\rho(M) := \sup\{|\lambda|, \lambda \in \operatorname{Spectrum}(M)\}$.

For Hermitian $M \in \mathbb{C}^{n \times n}$, order its (real) eigenvalues as $\lambda_1(M) \geq \cdots \geq \lambda_n(M)$.

Then $\rho(M) = \sigma_1(M) = \max(|\lambda_1(M)|, |\lambda_n(M)|).$

Lemma

(Weyl's inequality) For Hermitian H, W in $\mathbb{C}^{n \times n}$, for all $i \in [n]$, $|\lambda_i(H) - \lambda_i(\overline{H + W})| \le \rho(W)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof: by Courant-Fisher theorem,

$$\lambda_i(H+W) = \sup_{\dim(E)=i} \inf_{x \in E, \|x\|=1} x^T (H+W) x$$

Apply to $E = \text{Vect}\{x_1(H), \dots, x_i(H)\}$ to obtain

$$\lambda_{i}(H+W) \geq \inf_{x \in E, \|x\|=1} x^{T}(H+W)x$$

$$\geq \inf_{x \in E, \|x\|=1} x^{T}Hx + \inf_{x \in E, \|x\|=1} x^{T}Wx$$

$$\geq \lambda_{i}(H) - \rho(W).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Similarly, $\lambda_i(H) \geq \lambda_i(H+W) - \rho(-W)$ hence the result

Cauchy's interlacing theorem

Theorem For Hermitian $A \in \mathbb{C}^{n \times n}$, $P \in \mathbb{C}^{n \times n}$, m < n such that $P^*P = I_m$, then $B := P^*AP$ verifies $\lambda_i(A) \ge \lambda_i(B) \ge \lambda_{n-m+i}(A)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cauchy's interlacing theorem

Theorem

For Hermitian $A \in \mathbb{C}^{n \times n}$, $P \in \mathbb{C}^{n \times n}$, m < n such that $P^*P = I_m$, then $B := P^*AP$ verifies $\lambda_i(A) \ge \lambda_i(B) \ge \lambda_{n-m+i}(A)$

Proof: Let $x_1(B), \ldots, x_n(B)$ eigenvector basis of B, $V_i = \text{Vect}(x_1(B), \ldots, x_i(B)), W_i = P(V_i).$

Courant-Fisher: $\lambda_i(B) = \inf_{u \in V_i, ||u||=1} u^* P^* A P u = \inf_{v \in W_i, ||v||=1} v^* A v \le \lambda_i(A).$

Similarly: $\lambda_{m-i+1}(-A) \ge \lambda_{m-i+1}(-B)$; equivalently: $-\lambda_{n-m+i}(A) \ge -\lambda_i(B)$.

Perturbation of eigenvectors: the Davis-Kahane "sin Θ " theorem

Theorem

For symmetric, real $H, \hat{H}, W = \hat{H} - H \in \mathbb{R}^{n \times n}$ any $1 \le r \le s \le n$, d = s - r + 1, if

 $\delta := \min(\lambda_{r-1}(H) - \lambda_r(H), \lambda_s(H) - \lambda_{s+1}(H)) > 0,$

then for matrices $V = (v_r, \ldots, v_s)$, $\hat{V} = (\hat{v}_r, \hat{v}_s)$ of orthonormal eigenvectors of H resp. of \hat{H} , there exists $O \in \mathbb{R}^{d \times d}$ such that $O^{\top}O = I_d$ and

$$\|\hat{V}O - V\|_{op} \le \|\hat{V}O - V\|_F \le \frac{2^{3/2}\min(d^{1/2}\|W\|_{op}, \|W\|_F)}{\delta}.$$

Perturbation of eigenvectors: a more elementary result

Lemma

For fixed *i* let $\Delta := \inf_{j:\lambda_j(H) \neq \lambda_i(H)} |\lambda_j(H) - \lambda_i(H)|$. Assume $\rho(W) < \Delta$. Then for any normed eigenvector \hat{x}_i of $\hat{H} = H + W$ associated with $\lambda_i(\hat{H})$ there exists x_i normed eigenvector of *H* associated with $\lambda_i(H)$ such that $\langle x_i, \hat{x}_i \rangle \geq \sqrt{1 - \left(\frac{\rho(W)}{\Delta - \rho(W)}\right)^2}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Perturbation of eigenvectors: a more elementary result

Lemma

For fixed *i* let $\Delta := \inf_{j:\lambda_j(H) \neq \lambda_i(H)} |\lambda_j(H) - \lambda_i(H)|$. Assume $\rho(W) < \Delta$. Then for any normed eigenvector \hat{x}_i of $\hat{H} = H + W$ associated with $\lambda_i(\hat{H})$ there exists x_i normed eigenvector of *H* associated with $\lambda_i(H)$ such that $\langle x_i, \hat{x}_i \rangle \geq \sqrt{1 - \left(\frac{\rho(W)}{\Delta - \rho(W)}\right)^2}$

(日本本語を本書を本書を入事)の(で)

Proof: Decompose $\hat{x}_i = \sum_j \theta_j x_j$ to get $\hat{H}\hat{x}_i = \lambda_i(\hat{H})\hat{x}_i = \sum_j \theta_j \lambda_j(H)x_j + W\hat{x}_i$ hence $W\hat{x}_i = \sum_j (\lambda_i(\hat{H}) - \lambda_j(H))\theta_j x_j$ By Weyl's inequality, $|\lambda_i(\hat{H}) - \lambda_j(H)| \ge \Delta - \rho(W)$ if $\lambda_i(H) \ne \lambda_j(H)$. Thus $\rho(W) \ge (\Delta - \rho(W))\sqrt{1 - \sum_{k:\lambda_k(H) = \lambda_i(H)} |\theta_k|^2}$ $\Rightarrow \sum_{k:\lambda_k(H) = \lambda_i(H)} |\theta_k|^2 \ge 1 - \left(\frac{\rho(W)}{\Delta - \rho(W)}\right)^2$

Perturbation arguments recap

For $\hat{H} = H + W$, eigenvalue $\lambda_i(\hat{H})$ and associated eigenvector \hat{x}_i of \hat{H} , with $\Delta = \inf_{\lambda_j(H) \neq \lambda_i(H)} |\lambda_j(H) - \lambda_i(H)|$:

 $|\lambda_i(H) - \lambda_i(\hat{H})| \leq \rho(W)$

 $\exists x_i \leftrightarrow \lambda_i(H) \text{ such that } \langle x_i, \hat{x}_i \rangle = 1 - O\left(rac{
ho(W)^2}{\Delta^2}\right)$.

Spectral properties of graphs

Non-oriented graph G = (V, E), V = [n], $E = \{ edges (i, j) \}$

Adjacency matrix A(G): $A_{ij} = \mathbb{I}_{(i,j)\in E} = \mathbb{I}_{i\sim j}, i, j \in V = [n]$ \rightarrow Symmetric for non-oriented graph

Laplacian matrix
$$L(G)$$
: $L_{ij} = \begin{cases} -A_{ij} & \text{if } i \neq j, \\ d_i := \sum_{k \neq i} A_{ik} & \text{if } j = i. \end{cases}$
 d_i : **degree** of node *i*.

 $x^T L x = \sum_{i < j} A_{ij} (x_i - x_j)^2$ so that: $0 \leq L$, where \leq : semi-definite order on symmetric matrices, and $\lambda_n(L) = 0$ with associated eigenvector $\{1/\sqrt{n}\}_{i \in [n]}$

L: infinitesimal generator of continuous-time random walk on *G*, with transition rates A_{ij} from *i* to $j \neq i$

Isoperimetric constant of graph *G*: $I(G) := \min\{\frac{|E(S,\overline{S})|}{|S|}, S \subset V, 0 < |S| \le \frac{n}{2}\}$ Let $\Delta(G) := \max_{i \in V = [n]} d_i(G)$, largest node degree. Lemma (*Cheeger's inequality*). $I(G) \le \sqrt{2\Delta(G)\lambda_{n-1}(L(G))}$. Easier result:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma $I(G) \geq \frac{\lambda_{n-1}(L(G))}{2}$

Isoperimetric constant of graph *G*: $I(G) := \min\{\frac{|E(S,\overline{S})|}{|S|}, S \subset V, 0 < |S| \le \frac{n}{2}\}$ Let $\Delta(G) := \max_{i \in V = [n]} d_i(G)$, largest node degree. Lemma (*Cheeger's inequality*). $I(G) \le \sqrt{2\Delta(G)\lambda_{n-1}(L(G))}$. Easier result:

Lemma $I(G) \geq \frac{\lambda_{n-1}(L(G))}{2}$

Proof: Courant-Fisher: $\lambda_{n-1} = \inf \left\{ \frac{x^{\top} Lx}{\|x\|^2}, x : \langle x, e \rangle = 0 \right\}$

A D N A 目 N A E N A E N A B N A C N

For $x: x_i = \mathbb{I}_{i \in S} - \frac{|S|}{n}$, yields

 $\lambda_{n-1} \leq \frac{|E(S,\overline{S})|}{|S|(1-|S|/n)}$

Isoperimetric constant of graph *G*: $I(G) := \min\{\frac{|E(S,\overline{S})|}{|S|}, S \subset V, 0 < |S| \le \frac{n}{2}\}$ Let $\Delta(G) := \max_{i \in V = [n]} d_i(G)$, largest node degree. Lemma (*Cheeger's inequality*). $I(G) \le \sqrt{2\Delta(G)\lambda_{n-1}(L(G))}$. Easier result:

Lemma $I(G) \geq \frac{\lambda_{n-1}(L(G))}{2}$

Proof: Courant-Fisher: $\lambda_{n-1} = \inf \left\{ \frac{x^{\top} Lx}{\|x\|^2}, x : \langle x, e \rangle = 0 \right\}$

For
$$x: x_i = \mathbb{I}_{i \in S} - \frac{|S|}{n}$$
, yields

 $\lambda_{n-1} \leq \frac{|E(S,\overline{S})|}{|S|(1-|S|/n)}$

Corollary Graph connected iff $\lambda_{n-1}(L) > 0$

Alon-Boppana theorem

Definition

d-regular graph *G* is **Ramanujan** if $\lambda_2(A) \leq 2\sqrt{d-1}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Note: $L = dI_n - A$, hence $\lambda_{n-1}(L) = d - \lambda_2(A)$

Alon-Boppana theorem

Definition

d-regular graph *G* is **Ramanujan** if $\lambda_2(A) \leq 2\sqrt{d-1}$

Note:
$$L = dI_n - A$$
, hence $\lambda_{n-1}(L) = d - \lambda_2(A)$

Theorem For *d*-regular *G* with diameter $\geq 2r + 1$, $\lambda_2(A) \geq 2\sqrt{d-1} \cos\left(\frac{\pi}{r+2}\right) = 2\sqrt{d-1}(1 - O(r^{-2})).$

Hence Ramanujan graph G has maximal spectral gap $\lambda_{n-1}(L)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof

Take $i, j \in V : d_G(i, j) \ge 2r + 1$. *G'*: subgraph of *G* induced by nodes of $\mathcal{B}(i, r), \mathcal{B}(j, r)$ $A'_G = P^*A_GP$, where $P \in \mathbb{R}^{n \times m}$ such that $P^*P = I_m$

Cauchy's interlacing theorem $\Rightarrow \lambda_2(A_G) \ge \lambda_2(A_{G'}) = \min\{\lambda_1(A_{\mathcal{B}(i,r)}), \lambda_1(A_{\mathcal{B}(j,r)})\}$

Nb of closed walks of length 2q started at i in $\mathcal{B}(i, r)$: $w_{2q}(\mathcal{B}(i, r))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $w_{2q}(\mathcal{B}(i,r)) \geq w_{2q}(\mathcal{T}_{d-1,r}) = (d-1)^q w_{2q}(\mathcal{P}_r)$

$$\lim_{q \to \infty} [w_{2q}(\mathcal{B}(i,r))]^{1/2q} = \lambda_1(\mathcal{A}_{\mathcal{B}(i,r)}) \ge \cdots$$
$$\cdots \ge \sqrt{d-1}\lambda_1(\mathcal{P}_r) = \sqrt{d-1} \times 2\cos\frac{\pi}{r+2}$$

Bounding spectral radius $\rho(W)$ of random matrices W: the Trace method

(method due to [Füredi-Komlos'81]; here a sub-optimal version avoiding sharp combinatorics)

Lemma

Let $W \in \mathbb{R}^{n \times n}$: symmetric matrix with entries independent up to symmetry, such that $|W_{ij}| \leq 1$, $\mathbb{E}(W_{ij}) = 0$, and $\mathbb{E}(W_{ij}^2) \leq O(d/n)$ for some $d \geq 1$. Then for any fixed $\epsilon > 0$, with high probability, $\rho(W) \leq O(\sqrt{dn^{\epsilon}})$.

Corollary

If we assume $d \ge n^{\delta}$ for some $\delta \in]0, 1[$, then with high probability $\rho(W) = o(d)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof: Take $\epsilon < \delta/2$ to obtain $\rho(W) = O(n^{\delta/2+\epsilon}) = o(n^{\delta})$.

Proof

For fixed $k \in \mathbb{N}$, write $\rho^{2k} \leq \sum_{i \in [n]} \lambda_i(W)^{2k} = \operatorname{Trace}(W^{2k})$ Thus $\mathbb{P}(\rho \geq x) \leq x^{-2k} \mathbb{E}(\rho^{2k}) \leq x^{-2k} \mathbb{E}\operatorname{Trace}(W^{2k})$ Combinatorial expression of trace:

$$\mathsf{Trace}(W^{2k}) = \sum_{i_0^{2k} \in [n]^{2k+1}: i_0 = i_{2k}} \prod_{j=1}^{2k} W_{i_{j-1}i_j}$$

Recall W_{ij} : centered and independent \rightarrow Only paths contributing non-zero expectation: traverse each edge at least twice

$$\Rightarrow \mathbb{E} \operatorname{Trace}(W^{2k}) \leq \sum_{e=1}^{k} \sum_{v=1}^{e+1} C(e,v) n^{v} O((d/n)^{e})$$

Yields \mathbb{E} Trace $(W^{2k}) = O(nd^k)$. For $x = \sqrt{d}n^{\epsilon}$, yields $\mathbb{P}(\rho \ge x) \le O(n^{1-2k\epsilon})$ Result follows by taking $k > 1/(2\epsilon)$

Method 2: Bernstein's inequality for matrices

Theorem (Tropp'15) Let X_1, \ldots, X_m be independent Hermitian random matrices such that: $\mathbb{E}(X_k) = 0, \quad ||X_k||_{op} \leq L \text{ almost surely, } k \in [m].$ Let $Y = \sum_{k \in [m]} X_k$, and $v(Y) := \|\mathbb{E}(Y^2)\|_{op} = \|\sum_{k \in [m]} \mathbb{E}X_k^2\|_{op}$. Then for all t > 0, $\mathbb{P}(\lambda_1(Y) \ge t) \le n \exp\left(\frac{-t^2}{2(v(Y)+Lt/3)}\right)$. This implies for all t > 0: $\mathbb{P}(||Y||_{op} \ge t) \le 2n \exp\left(\frac{-t^2}{2(v(Y)+Lt/3)}\right)$. Corollary

For W s.t. W_{ij} independent up to symmetry, $\mathbb{E}W_{ij} = 0$, $|W_{ij}| \le 1$, $\mathbb{E}W_{ij}^2 = O(d/n)$: If $d \gg \log(n)$ then with high probability $\rho(W) = o(d)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Stronger bounds on $\rho = \rho(W)$

Theorem (Feige and Ofek, 2005)

Let $A \in \mathbb{R}^{n \times n}$: symmetric matrix with entries independent up to symmetry, $A_{ij} \in [0, 1]$, and such that $\mathbb{E}(A_{ij}) \leq d/n$, where $d \leq n^{1/5}$. Then for some (universal) constant $\kappa > 0$,

A D N A 目 N A E N A E N A B N A C N

with high probability $\rho(A - \mathbb{E}(A)) \leq \kappa \sqrt{\max(d, \log(n))}$.

Corollary

For $d \gg \sqrt{\max(d, \log(n))}$, i.e. $d \gg \sqrt{\log(n)}$, with high probability $\rho(A - \mathbb{E}A) = o(d)$

Proof of Bernstein matrix inequality

Lemma

For independent Hermitian matrices X_k , $k \in [m]$, and $Y = \sum_{k \in [m]} X_k$:

$$\mathbb{E}\mathrm{Tr} e^{ heta Y} \leq \mathrm{Tr} \exp\left(\sum_{k \in [m]} \ln \mathbb{E} e^{ heta X_k}\right)$$

Lemma

For Hermitian X such that $\mathbb{E}(X) = 0$ and $||X|| \le L$ almost surely, then:

$$orall heta \in (0, 3/L), \ \left\{ egin{array}{ll} \mathbb{E}e^{ heta X} \preceq \exp\left(rac{ heta^2/2}{1- heta L/3}\mathbb{E}X^2
ight), \ \ln \mathbb{E}e^{ heta X} \preceq rac{ heta^2/2}{1- heta L/3}\mathbb{E}X^2, \end{array}
ight.$$

Lemma

For Hermitian A, B, if $A \leq B$, then $\forall i \in [n], \lambda_i(A) \leq \lambda_i(B)$. Hence for all non-decreasing $f : \mathbb{R} \to \mathbb{R}$, $\operatorname{Tr} f(A) \leq \operatorname{Tr} f(B)$.

ふして 山田 ふぼやえばや 山下

Application: Community Detection in the Stochastic Block Model

 $\mathcal{G}(n, \{\alpha_i\}_{i \in [K]}, P)$, where $\alpha_i > 0, \sum_{i \in [K]} \alpha_i = 1, P \in [0, 1]^{K \times K}$: multi-type version of the Erdős-Rényi random graph

n vertices partitioned into K communities

► Type (community) of node $i : \sigma_i \in [K], \sigma_i : i.i.d., \sim \alpha$

Conditionally on σ_[n], independently for each pair i, j ∈ [n]: edge (i, j) present with probability P_{σ(i),σ(j)}.
 Strong signal regime:: fixed K, α, B ∈ ℝ^{K×K}₊; P = (d/n)B, with lim_{n→+∞} d = +∞

Spectral embedding

Extract top two (more generally top R) eigenvalues λ₁, λ₂ of graph's adjacency matrix A ∈ ℝ^{n×n} (ordered by absolute value: |λ₁| ≥ |λ₂| ≥ ···)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Let $x_1, x_2 \in \mathbb{R}^n$: corresponding normalized eigenvectors

• Embed vertex $k \in [n]$ into \mathbb{R}^2 by letting $z_k := \sqrt{n}(x_1(k), x_2(k))$

Spectral embedding

Extract top two (more generally top R) eigenvalues λ₁, λ₂ of graph's adjacency matrix A ∈ ℝ^{n×n} (ordered by absolute value: |λ₁| ≥ |λ₂| ≥ ···)

• Let $x_1, x_2 \in \mathbb{R}^n$: corresponding normalized eigenvectors

• Embed vertex $k \in [n]$ into \mathbb{R}^2 by letting $z_k := \sqrt{n}(x_1(k), x_2(k))$

 \rightarrow based on PCA dimensionality reduction of A to dimension R

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: spectral embedding for SBM

A case with K = 4 communities Spectral embedding seems to reflect community structure \rightarrow Why / when do spectral methods work?

(日) (四) (日) (日) (日)

Theorem

Assume communities are distinguishable, i.e. for each

 $k \neq \ell \in [K]$, there exists $m \in [K]$ such that $B_{km} \neq B_{\ell m}$. Assume $\sqrt{\ln(n)} \ll d \ll n^{\delta}$ for some fixed $\delta \in]0,1[$. Let R: rank of matrix B. Then with high probability: (i) the spectrum of A consists of R eigenvalues of order $\Theta(d)$ and n - R eigenvalues of order o(d).

(ii) *R*-dimensional spectral embedding reveals underlying communities: except for vanishing fraction of nodes $i \in [n]$,

$$||z_i - z_j|| = \begin{cases} o(1) & \text{if } \sigma(i) = \sigma(j), \\ \Omega(1) & \text{if } \sigma(i) \neq \sigma(j) \end{cases}$$

Theorem

Assume communities are distinguishable, i.e. for each

 $k \neq \ell \in [K]$, there exists $m \in [K]$ such that $B_{km} \neq B_{\ell m}$. Assume $\sqrt{\ln(n)} \ll d \ll n^{\delta}$ for some fixed $\delta \in]0,1[$. Let R: rank of matrix B. Then with high probability: (i) the spectrum of A consists of R eigenvalues of order $\Theta(d)$ and n - R eigenvalues of order o(d).

(ii) *R*-dimensional spectral embedding reveals underlying communities: except for vanishing fraction of nodes $i \in [n]$,

$$|z_i - z_j|| = \begin{cases} o(1) & \text{if } \sigma(i) = \sigma(j), \\ \Omega(1) & \text{if } \sigma(i) \neq \sigma(j) \end{cases}$$

Corollary

Under these conditions any sensible clustering scheme (eg K-means properly initialized) correctly classifies all but vanishing fraction of nodes.

Proof strategy

- \bar{A} : block matrix (useful "signal")
- Write adjacency matrix as $A = \overline{A} + W$ with $\overline{A}_{ij} = \frac{d}{n} B_{\sigma(i),\sigma(j)}$
- ▶ *R* leading eigen-elements of \overline{A} capture community structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Prove bound on $\rho(W)$ for random noise matrix W

Eigenstructure of \overline{A}

Block structure of $\overline{A} \Rightarrow \overline{A}x$ constant on each block \Rightarrow eigenvectors associated to non-zero eigenvalue are block-constant.

For $t \in \mathbb{R}^{K}$ define $x := \phi(t) = (t_{\sigma(i)})_{i \in [n]} \in \mathbb{R}^{n}$.

Then $\overline{A}\phi(t) = d\phi(Mt)$, where $M_{uv} := B_{uv}\alpha_v$.

Lemma

Spectrum of \overline{A} : R eigen-pairs ($\lambda_u = d\mu_u, \overline{x}_u = \phi(t_u)$) where (μ_u, t_u): eigen-pairs of M with $\mu_u \neq 0$; 0: eigenvalue with multiplicity n - R

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Eigenstructure of \overline{A} (continued)

Lemma

Under distinguishability hypothesis there exists $\epsilon > 0$ function of B, α such that for any choice of normalized leading eigenvectors $\overline{x}_1, \ldots, \overline{x}_R, \overline{z}_i = \sqrt{n}(\overline{x}_1(i), \ldots, \overline{x}_R(i))^T$ verify

$$\sigma(i) \neq \sigma(j) \Rightarrow ||\overline{z}_i - \overline{z}_j|| \geq \epsilon > 0$$

Proof: Let $t_u \in \mathbb{R}^K$ be such that $\sqrt{n}\overline{x}_u = \phi(t_u)$, and $\sqrt{\alpha} = \text{Diag}(\sqrt{\alpha_u})$. Then: $\{\sqrt{\alpha}t_u\}_{u \in [R]}$: orthonormal family by orthonormality of the \overline{x}_u .

 t_u eigenvectors of matrix $M = B\alpha$, hence $\sqrt{\alpha}t_u$: orthonormal family of eigenvectors of matrix $\sqrt{\alpha}B\sqrt{\alpha}$. Thus $\sqrt{\alpha}B\sqrt{\alpha} = \sum_{u \in [R]} \mu_u(\sqrt{\alpha}t_u)(\sqrt{\alpha}t_u)^T$. Equivalently: $B = \sum_{u \in [R]} \mu_u t_u t_u^T$. Hence minimum of $||\overline{z}_i - \overline{z}_j||$ over $\sigma(i) \neq \sigma(j)$ strictly positive, for otherwise B has two identical rows, i.e. distinguishability fails.

Proof

- Matrix A of rank R, spectral gaps |λ_i − λ_j| = Ω(d), R-dimensional spectral embedding with x₁,..., x_R separates clusters V_k = {i ∈ [n] : σ_i = k}
- Assuming ρ = ρ(A − Ā) ≪ d, Weyl's inequality: R eigenvalues λ_i close to λ̄_i = Ω(d), others of order ρ ≪ d
- Associated eigenvectors x_i such that $\langle x_i, \overline{x}_i \rangle = 1 O((\rho/d)^2)$

Then $\sum_{i \in [n]} ||z_i - \overline{z}_i||^2 = n \sum_{u \in [R]} ||x_u - \overline{x}_u||^2 = n\theta$ with $\theta = O((\rho/d)^2) = o(1)$ Hence (Tchebitchev inequality): $|\{i : ||z_i - \overline{z}_i|| \ge \theta^{1/3}\}| \le n\theta^{1/3} = o(n)$ Yields desired conclusion: except for vanishing fraction $\theta^{1/3}$ of nodes, spectral representatives $z_i \ \theta^{1/3}$ -close of corresponding \overline{z}_i , themselves clustered according to community structure Feige-Ofek: $d \gg \sqrt{\log n} \Rightarrow \rho(A - \overline{A}) \ll d$