
Probabilistic Path Planning

P. Švestka M. H. Overmars

This is the fifth chapter of the book:

Robot Motion Planning and Control
Jean-Paul Laumond (Editor)

Laboratoire d’Analye et d’Architecture des Systèmes
Centre National de la Recherche Scientifique

LAAS report 97438

Previoulsy published as:
Lectures Notes in Control and Information Sciences 229.

Springer, ISBN 3-540-76219-1, 1998, 343p.

Probabilistic Path Planning

P. Švestka and M. H. Overmars

Utrecht University

1 Introduction

The robot path planning problem, which asks for the computation of colli-
sion free paths in environments containing obstacles, has received a great deal
of attention in the last decades [25,15]. In the basic problem, there is one
robot present in a static and known environment, and the task is to compute
a collision-free path describing a motion that brings the robot from its current
position to some desired goal position. Variations and extensions of this basic
problem statement are numerous.

To start with, for a large class of robots (i.e., nonholonomic robots) compu-
tation of collision-free paths is not sufficient. Not only are the admissible robot
placements constrained by obstacles and the robot geometry, but also are the
directions of motion subject to constraints. For example, mobile robots moving
on wheels have such nonholonomic constraints, due to the fact that their wheels
are not allowed to slide. Another realistic scenario is that of multiple robots
acting in the same environment. In this case, apart from the restrictions im-
posed by the obstacles, robot geometry, and possible nonholonomic constraints,
one also has to avoid collisions between the robots mutually. Moving obstacles,
uncertainties in sensing, and inexact control add further levels of difficulty.

In order to build robots that can autonomously act in real-life environ-
ments, path planning problems as sketched above need to be solved. However,
it has been proven that, in general, solving even the basic path planning prob-
lem requires time exponential in the robots number of degrees of freedom. In
spite of this discouraging problem complexity, various such complete planners
have been proposed. Their high complexity however makes them impractical
for most applications. And every extension of the basic path planning prob-
lem adds in computational complexity. For example, if we have n robots of d
degrees of freedom each, the complexity becomes exponential in nd. Or if we
allow for moving obstacles, the problem becomes exponential in their number
[9,35]. Assuming uncertainties in the robots sensing and control, leads to an
exponential dependency on the complexity of the obstacles [9].

The above bounds deal with the exact problem, and therefore apply to
complete planners. These are planners that solve any solvable problem, and
return failure for each non-solvable one. So for most practical problems it seems

256 P. Švestka and M. H. Overmars

impossible to use such complete planners. This has lead many researchers to
consider simplifications of the problem statement.

A quite recent direction of research, which we just want to mention briefly
here, deals with the formulation of assumptions on the robot environment that
reduce the path planning complexity. This is based on the belief that there
exists a substantial gap between the theoretical worst-case bounds of path
planning algorithms and their practical complexity. A number of researchers
have attempted to formulate assumptions on the obstacles that prohibit the
(artificial) constructions that cause the worst-case bounds. Examples of such
assumptions are, amongst others, fatness [54,53], bounded local complexity [36],
and dispersion [33]. However, this line of research has been mainly of theo-
retical nature, and has not yet resulted in implementations of practical path
planners. Also, it is currently not clear whether similar results can be obtained
for extensions of the basic path planning problem.

Instead of assuming things about the robot environment, many researchers
have simply dropped the requirement of completeness for the planner. Heuris-
tic planners have been developed that solve particular difficult problems in
impressively low running times. However, the same planners also fail or con-
sume prohibitive time on seemingly simpler ones. For autonomous robots in
realistic environments this might be a problem, since one cannot predict the
path planning problems such robots will face.

So, on one hand, completeness is a preferred property of motion planners
for autonomous robots, while, on the other hand, only heuristic algorithms are
capable of solving many of the practical problems that people are interested in.
This has lead to the design of path planners that satisfy weaker forms of com-
pleteness, in particular resolution completeness and probabilistic completeness.
In this chapter we deal with the latter. A planner is called probabilistically
complete if, given a solvable problem, the probability of solving it converges to
1 as the running time goes to infinity. Such a planner is guaranteed to solve any
solvable problem within finite time. And if one can estimate the probability of
solving a problem with respect to the running time, one has an even stronger
result.

Two of the most successful such planners are the probabilistic path planner
(PPP) and the randomized path planner (RPP).

RPP [5,17] is a potential field planner, that escapes local minima by per-
forming Brownian motions. It has successfully been applied to articulated
robots with many degrees of freedom (dof). Also, it has been used for check-
ing whether parts can be removed from aircraft engines for inspection and
maintenance, and for automatically synthesising a video clip with graphically
simulated human and robot characters entailing a 78-dimensional configuration
space. The planner works as follows : Given a goal configuration g, a potential
field U is computed, being a function that assigns positive real values to con-

Probabilistic Path Planning 257

figurations. Roughly, as is the case for potential fields in general, U is defined
by an attracting potential of the goal configuration, and repulsing potentials of
the obstacles, and can be seen as a landscape with the obstacles as mountains
and the goal configuration as lowest point. Connecting the start configuration s
to the goal configuration g is attempted by “descending” along U . Such a down
motion always ends in a local minimum. If this local minimum is g (the global
minimum), then the problem is solved. If this is not the case, a Brownian mo-
tion is performed, and the process is repeated. Using well-known properties of
Brownian motions, RPP can be proven to be probabilistically complete [17,24].
Moreover, a calculation of the finite expected number of Brownian motions is
given in [24]. This calculation uses the fact that the basins Bi of attraction
of the local minima form a partition of the free configuration space. For each
pair (Bi, Bj) one can define the transition probability pij that a Brownian
motion, starting at the minimum of Bi, terminates somewhere in Bj . The ex-
pected number of Brownian motions can then be expressed as a function of
the transition probabilities pij ’s. This nice theoretical result has however the
practical drawback that the pij ’s are, in non-trivial cases, unknown. Although
RPP proves to be very powerful for many practical problems, the method also
has some drawbacks. For example, since the planner is potential field based, it
does not memories any knowledge about the configuration space after having
solved a particular problem, and, for this reason, each new problem requires a
whole new search. In other words, it is a single shot approach. Furthermore, it
appears to be easy to create seemingly simple problems for which the planner
consumes a more than reasonable amount of time, due to very low transition
probabilities between certain basins. Also, the method does not apply directly
to nonholonomic robots.

Other probabilistically complete planners for static and dynamic environ-
ments utilising genetic algorithms are described in [1,7]. Other work on related
probabilistic path planning approaches includes [16]. We will not go into details
here.

This chapter gives a survey on the probabilistic path planner PPP, which
is a very general planner, or planning scheme, building probabilistic roadmaps
by randomly selecting configurations from the free configuration space and
interconnecting certain pairs by simple feasible paths. The method is proba-
bilistically complete and not restricted to any particular class of robots.

A first single-shot version of the planner for free-flying planar robots was de-
scribed in [31] and subsequently expanded into a general learning approach, for
various robot types, in [32]. Independently, “PPP-like” preprocessing schemes
for holonomic robots where introduced in [21] and [14]. These schemes also build
probabilistic roadmaps in the free C-space, but focus on the case of many-dof
robots. In [23] the ideas developed in [32] and [21] have been combined, result-
ing in an even more powerful planner for high-dof robots. Simultaneously, PPP

258 P. Švestka and M. H. Overmars

has been applied to nonholonomic robots. Planners for car-like robots that
can move both forwards and backwards as well as such that can only move
forwards are described in [45,47]. PPP applied to tractor-trailer robots is the
topic of [49,39]. Probabilistic completeness of the planners for nonholonomic
robots is proven in [47]. Recently some first results on the expected running
times of PPP, under certain geometric assumptions on the free configuration
space, have been obtained [22,20,3]. For a thorough survey of probabilistic path
planning for holonomic robots we also refer to the thesis of Kavraki [19]. Fi-
nally, extensions of PPP addressing multi-robot path planning problems have
been presented in [46,48].

In this chapter an overview is given of the algorithmic aspects of PPP and
applications of the planning scheme to various robot types are discussed. Also,
some theory is presented regarding probabilistic completeness and expected
running times. The chapter is organised as follows: In Section 2 the probabilis-
tic paradigm is described in its general form. In the following two sections the
paradigm is applied to specific robot types, i.e., to holonomic robots (free-flying
and articulated) in Section 3, and to nonholonomic mobile robots (car-like and
tractor-trailer) in Section 4. In both sections the robot specific components
of the algorithm are defined, and obtained simulation results are presented.
Sections 5 and 6 are of a more theoretical nature. In Section 5 aspects re-
garding probabilistic completeness of the method are discussed, and proofs of
probabilistic completeness are given for the planners described in this chapter.
Section 6 deals with analyses of expected running time. Results by Kavraki
et al. [22,20,3] are reviewed, and some new results are presented as well. In
Section 7 an extension of PPP for solving multi-robot path planning problems
is described, and simulation results are given for problems involving multiple
car-like robots.

2 The Probabilistic Path Planner

The Probabilistic Path Planner (PPP) can be described in general terms, with-
out focusing on any specific robot type. The idea is that during the roadmap
construction phase a data structure is incrementally constructed in a proba-
bilistic way, and that this data structure is later, in the query phase, used for
solving individual path planning problems.

The data-structure constructed during the roadmap construction phase is
an undirected graph G = (V,E), where the nodes V are probabilistically gener-
ated free configurations and the edges E correspond to (simple) feasible paths.
These simple paths, which we refer to as local paths, are computed by a local
planner. A local planner L is simply a function that takes two configurations
as arguments, and returns a path connecting them, that is feasible in absence

Probabilistic Path Planning 259

of obstacles (that is, the path respects the constraints of the robot). Proper
choice of the local planner guarantees probabilistic completeness of the global
planner, as we will see in Section 5. If, given two configurations a and b, the
path L(a, b) is collision-free, then we will say that L connects from a to b.

In the query phase, given a start configuration s and a goal configuration
g, we try to connect s and g to suitable nodes s̃ and g̃ in V . Then we perform
a graph search to find a sequence of edges in E connecting s̃ to g̃, and we
transform this sequence into a feasible path. So the paths generated in the
query phase (that is described in detail later) are basically just concatenations
of local paths, and therefore the properties of these “global paths” are induced
by the local planner.

2.1 The roadmap construction phase

We assume that we are dealing with a robot A, and that L is a local planner
that constructs paths for A. We assume that L is symmetric, that is, for any
pair of configurations (a, b) L(a, b) equals L(b, a) reversed. See Section 2.3 for
remarks on non-symmetric local planners. As mentioned above, in the roadmap
construction phase a probabilistic roadmap is constructed, and stored in an
undirected graph G = (V,E). The construction of the roadmap is performed
incrementally in a probabilistic way. Repeatedly a random free configuration c
is generated and added to V . Heuristics however are used for generating more
nodes in “difficult” areas of the free configuration space (or free C-space). We
try to connect each generated node c to previously added ones with L, and
each such successful connection results in a corresponding edge being added to
E.

More precisely, this edge adding is done as follows : First, a set Nc of
neighbours is chosen from V . This set consists of nodes lying within a certain
distance from c, with respect to some distance measure D. Then, in order
of increasing distance from c, we pick nodes from Nc. For each such picked
node n, we test whether L connects from c to n, and, if so, (c, n) is added
to E. However, if n is already graph-connected with c at the moment that it
is picked, n is simply ignored. So no cycles can be created and the resulting
graph is a forest, i.e., a collection of trees. The motivation for preventing cycles
is that no query would ever succeed thanks to an edge that is part of a cycle.
Hence, adding an edge that creates a cycle can impossibly improve the planners
performance in the query phase.

A price to be paid for disallowing cycles in the graph is that in the query
phase often unnecessarily long paths will be obtained. Suppose that a and b are
two configurations that can easily be connected by some short feasible path.
Due to the probabilistic nature of the roadmap construction algorithm, it is
very well possible that, at some point, a and b get connected by some very

260 P. Švestka and M. H. Overmars

long path. Obtaining a shorter connection between a and b would require the
introduction of a cycle in the graph, which we prevent. So, for any pair of nodes,
the first graph path connecting them blocks other possibilities.

There are a number of ways for dealing with this problem. One possibility is
to apply an edge adding method that does allow cycles in the graph [32]. These
methods however have the disadvantage that they slow down the roadmap
construction algorithm, due to the fact that the adding of a node requires more
calls of the local planner. Another possibility is to build a forest as described
above, but, before using the graph for queries, “smoothing” the graph by adding
certain edges that create cycles. Some experiments that we have done indicated
that smoothing the graph for just a few seconds significantly reduces the path
lengths in the query phase. Finally, it is possible to apply some smoothing
techniques on the paths constructed in the query phase. We briefly describe
a simple but efficient and general probabilistic path smoothing technique in
Section 2.4.

Let C denote the C-space of the robot, and Cf the free portion of C (i.e.,
the free C-space). To describe the roadmap construction algorithm formally,
we need a function D ∈ C×C → R+. It defines the distance measure used, and
should give a suitable notion of distance for arbitrary pairs of configurations,
taking the properties of the robot A into account. We assume that D is sym-
metric. The graph G = (V,E) ∈ Cf × C2

f is constructed as follows:

The roadmap construction algorithm

(1) V = ∅, E = ∅
(2) loop
(3) c = a “randomly” chosen free configuration
(4) V = V ∪ {c}
(5) Nc = a set of neighbours of c chosen from V
(6) forall n ∈ Nc, in order of increasing D(c, n) do
(7) if ¬connected(c, n) ∧ L(c, n) ⊂ Cf then E = E ∪ {(c, n)}

The construction algorithm, as described above, leaves a number of choices
to be made: A local planner must be chosen, a distance measure must be de-
fined, and it must be defined what the neighbours of a node are. Furthermore,
heuristics for generating more nodes in interesting C-space areas should be de-
fined. Some choices must be left open as long as we do not focus on a particular
robot type, but certain global remarks can be made here.

Local planner One of the crucial ingredients in the roadmap construction
phase is the local planner. As mentioned before, the local planner must
construct paths that are feasible for A, in absence of obstacles. This simply

Probabilistic Path Planning 261

means that the paths it constructs describe motions that are performable by
the robot, that is, motions that respect the robots constraints. For example,
assume the robot is a car-like vehicle moving on wheels, then a local planner
that just connects the two argument configurations with a straight-line
segment (in C-space) is not suitable, since it describes motions that force
the wheels of the robot to slide.
Furthermore, we want the roadmap construction algorithm to be fast. For
this, it is important that (1) the local planner constructs its paths in a
time efficient manner and (2) the probability that local paths intersect with
obstacles is low. The first requirement can be met by keeping the path con-
structs as simple as possible. For obtaining low intersection probabilities,
the local planner should construct paths with relatively small sweep vol-
umes. That is, the volumes (in workspace) swept by the robot when moving
along local paths should preferably be small. Clearly, local planners min-
imising these sweep volumes also minimise the probabilities of the local
paths intersecting obstacles.
Finally, the local planner should guarantee probabilistic completeness of
PPP. In Section 5 we give sufficient properties.

Neighbours and edge adding methods Another important choice to be
made is that of the neighbours Nc of a (new) node c. As is the case for
the choice of the local planner, the definition of Nc has large impact on the
performance of the roadmap construction algorithm. Reasons for this are
that the choice of the neighbours strongly influences the overall structure of
the graph, and that, regardless of how the local planner is exactly defined,
the calls of the local planner are by far the most time-consuming operations
of the roadmap construction algorithm (due to the collision tests that must
be performed).
So it is clear that calls of the local planner that do not effectively extend the
knowledge stored in the roadmap should be avoided as much as possible.
Firstly, as mentioned before, attempts to connect to nodes that are already
in c’s connected component are useless. For this reason the roadmap con-
struction algorithm builds a forest. Secondly, local planner calls that fail
add no knowledge to the roadmap. To avoid too many local planner fail-
ures we only submit pairs of configurations whose relative distance (with
respect to D) is small, that is, less than some constant threshold maxdist.
Thus:

Nc ⊂ {c̃ ∈ V |D(c, c̃) ≤ maxdist} (1)

This criterion still leaves many possibilities regarding the actual choice
for Nc. We have decided on taking all nodes within distance maxdist as
neighbours. Experiments with various definitions for Nc on a wide range of
problems lead to this choice.

262 P. Švestka and M. H. Overmars

Hence, according to the algorithm outline given above, we try to connect
to all “nearby” nodes of c, in order of increasing distance D, but we skip
those nodes that are already in c’s connected component at the moment
that the connection is to be attempted. By considering elements of Nc
in this order we expect to maximise the chances of quickly connecting c
to other configurations and, consequently, reduce the number of calls to
the local planner (since every successful connection results in merging two
connected components into one). We refer to the described edge adding
method as the forest method.

Distance We have seen that a distance function D is used for choosing and
sorting the neighboursNc of a new node c. It should be defined in such a way
that D(a, b) (for arbitrary a and b) somehow reflects the chance that the lo-
cal planner will fail to connect a to b. For example, given two configurations
a and b, a possibility is to define D(a, b) as the size of the sweep volume (in
the workspace) of L(a, b), that is, as the volume of the area swept by the
robot when moving along L(a, b). In this way each local planner L induces
its own distance measure, that reflects the described “failure-chance” very
well. In fact, if the obstacles were randomly distributed points, then this
definition would reflect the local planner’s failure chance exactly. However,
in the general case, exact computations of the described sweep-volumes tend
to be rather expensive, and in practice it turns out that certain rough but
cheap to evaluate approximations of the sweep volumes are to be preferred.

Node adding heuristics If the number of nodes generated during the road-
map construction phase is large enough, the set V gives a fairly uniform
covering of the free C-space. In easy cases, for example for holonomic robots
with few degrees of freedom (say not more than 4), G is then well connected.
But in more complicated cases where the free C-space is actually connected,
G tends to remain disconnected for a long time in certain narrow (and hence
difficult) areas of the free C-space.
Due to the probabilistic completeness of the method, we are sure that even-
tually G will grasp the connectivity of the free space, but to prevent exor-
bitant running times, it is wise to guide the node generation by heuristics
that create higher node densities in the difficult areas. To identify these,
there are a number of possibilities.
In some cases, one can use the geometry of the workspace obstacles. For
example, for car-like robots adding (extra) configurations that correspond
to placements of the robot ”parallel” to obstacle edges and “around” con-
vex obstacle corners boosts the performance of the roadmap construction
algorithm significantly.
A more general criterion is to use the (run-time) structure of the roadmap
G. Given a node c ∈ V , one can count the number of nodes of V lying
within some predefined distance of c. If this number is low, the obstacle

Probabilistic Path Planning 263

region probably occupies a large subset of c’s neighbourhood. This suggests
that c lies in a difficult area. Another possibility is to look at the distance
from c to the nearest connected component not containing c. If this distance
is small, then c lies in a region where two components failed to connect,
which indicates that this region might be a difficult one (it may also be
actually obstructed).
Alternatively, rather than using the structure of the obstacles or the road-
map to identify difficult regions, one can look at the run-time behaviour of
the local planner. For example, if the local planner often fails to connect
c to other nodes, this is also an indication that c lies in a difficult region.
Which particular heuristic function should be used depends to some extent
on the input scene.

2.2 The query phase

During the query phase, paths are to be found between arbitrary start and
goal configurations, using the graph G computed in the roadmap construction
phase. The idea is that, given a start configuration s and a goal configuration
g, we try to find feasible paths Ps and Pg, such that Ps connects s to a graph
node s̃, and Pg connects g to a graph node g̃, with s̃ graph-connected to g̃
(that is, they lie in the same connected component of G). If this succeeds, we
perform a graph search to obtain a path PG in G connecting s̃ to g̃. A feasible
path (in C-space) from s to g is then constructed by concatenating Ps, the
subpaths constructed by the local planner when applied to pairs of consecutive
nodes in PG, and Pg reversed. Otherwise, the query fails. The queries should
preferably terminate ‘instantaneously’, so no expensive algorithm is allowed for
computing Ps and Pg.

For finding the nodes s̃ and g̃ we use the function query mapping ∈ C×C →
V × V , defined as follows:

query mapping(a, b) =(ã, b̃), such that ã and b̃ are connected, and
D(a, ã) +D(b, b̃) = MIN(x,y)∈W : D(a, x) +D(y, b)

where W = {(x, y) ∈ V × V |connected(x, y)}

So query mapping(a, b) returns the pair of connected graph nodes (ã, b̃) that
minimise the total distance from a to ã and from b to b̃. We will refer to ã as
a’s graph retraction, and to b̃ as b’s graph retraction.

The most straightforward way for performing a query with start configu-
ration s and goal configuration g is to compute (s̃, g̃) = query mapping(s, g),
and to try to connect with the local planner from s to s̃ and from g̃ to g.
However, since no obstacle avoidance is incorporated in the local planner, it

264 P. Švestka and M. H. Overmars

may, in unlucky cases, fail find the connections even if the graph captures the
connectivity of free C-space well.

Experiments with different robot types indicated that simple probabilistic
methods that repeatedly perform short random walks from s and g, and try to
connect to the graph retractions of the end-points of those walks with the local
planner, achieve significantly better results. These random walks should aim at
maneuvering the robot out of narrow C-space areas (that is, areas where the
robot is tightly surrounded by obstacles), and hereby improving the chances
for the local planner to succeed. For holonomic robots very good performance
is obtained by what we refer to as the random bounce walk (see also [32]). The
idea is that repeatedly a random direction (in C-space) is chosen, and the robot
is moved in this direction until a collision occurs (or time runs out). When a
collision occurs, a new random direction is chosen. This method performs much
better than for example pure Brownian motion in C-space. For nonholonomic
robots walks of a similar nature can be performed, but care must of course be
taken to respect the nonholonomic constraints.

2.3 Using a directed graph

In the algorithm outline of PPP, as described in the previous section, the
computed roadmaps are stored in undirected graphs. For many path planning
problems this is sufficient, and it appears that the method is easier and more
efficient to implement when based on undirected graphs. For example, path
planning problems involving free-flying robots, articulated robots, and (normal)
car-like robots can all be dealt with using undirected underlying graphs. There
are however path planning problems for which undirected underlying graphs
not sufficient, and directed ones are required instead. For example, problems in-
volving car-like robots that can only move forwards require directed underlying
graphs.

The existence of an edge (a, b) in the underlying graph G corresponds to
the statement that the local planner constructs a feasible path from a to b.
If however G is undirected, then the edge contains no information about the
direction in which the local planner can compute the path, and, hence, it must
correspond to the statement that the local planner constructs a feasible path
from a to b, as well as one from b to a. So an edge (a, b) can be added only if the
local planner connects in both directions. Doing so, useful information might be
thrown away. This will happen in those cases where the local planner connects
in exactly one direction, and the fact that it has successfully constructed a
feasible path will not be stored. If however the local planner is symmetric,
which means that it connects from say a to b whenever it connects from b
to a, then obviously this problem will never occur. So if the local planner is

Probabilistic Path Planning 265

symmetric, the underlying graph can be undirected, and if it is not symmetric,
then it is better to use a directed graph.

Whether it is possible to implement (good) local planners that are sym-
metric, depends on the properties of the robot A, defined by the constraints
imposed on it.

Definition 1. A robot A is C-symmetric (configuration space symmetric) if
and only if any feasible path for A remains feasible when reversed.

All holonomic robots are C-symmetric. For nonholonomic robots this is
not the case. For example, a car-like robot that can drive forwards as well
as backwards is C-symmetric while one that can only drive forwards is not. In
terms of control theory, a (nonholonomic) robot is C-symmetric if its control
system is symmetric. That is, it can attain a velocity v (in C-space) if and only
if it can also attain the velocity −v.

Clearly, if A is C-symmetric, then any local planner L that constructs feasi-
ble paths for A can be made symmetric in a trivial way, by reversing computed
paths when necessary. So this implies that for any C-symmetric robot an undi-
rected graph can be used for storing the local paths, and otherwise a directed
graph is required.

For directed graphs it is less straightforward to omit the adding of redundant
edges than was the case for undirected graphs. We refer to [45] and [47] for
discussions on this topic, and sensitive strategies for the adding of directed
edges.

2.4 Smoothing the paths

Paths computed in the query phase can be quite ugly and unnecessarily long.
This is due to the probabilistic nature of the algorithm, and to the fact that
cycle-creating edges are never added.

To improve this, one can apply some path smoothing techniques on these
‘ugly’ paths. The smoothing routine that we use is very simple. It repeatedly
picks a pair of random configurations (c1, c2) on the “to be smoothed” path
PC , tries to connect these with a feasible path Qnew using the local planner.
If this succeeds and Qnew is shorter than the path segment Qold in PC from
c1 to c2, then it replaces Qold by Qnew (in PC). So basically, randomly picked
segments of the path are replaced, when possible, by shorter ones, constructed
by the local planner. The longer this is done, the shorter (and nicer) the path
gets. Typically, this method smoothes a path very well in less than a second
for low dof robots, and in a few seconds for high dof robots.

Still one can argue that this is too much for a query. In that case one must
either accept the ugly paths, or use a more expensive edge adding method that
builds graphs containing loops. This will result in a slowdown of the roadmap

266 P. Švestka and M. H. Overmars

construction phase, but the gain is that the paths (directly) retrieved in the
query phase will be shorter.

3 Application to holonomic robots

In this section an application of PPP to two types of holonomic robots is
described: free-flying robots and articulated robots.

We consider here only planar holonomic robots. A free-flying robot is rep-
resented as a polygon that can rotate and translate freely in the plane among a
set of polygonal obstacles. Its C-space is represented by R2 × [0, 2π[. A planar
articulated robot A consists of n links L1, . . . , Ln, which are some solid planar
bodies (we use polygons), connected to each other by n − 1 joints J2, . . . , Jn.
Furthermore, the first link L1 is connected to some base point in the workspace
by a joint J1. Each joint is either a prismatic joint, or a revolute joint. If Ji is
a prismatic joint, then link Li can translate along some vector that is fixed to
link Li−1 (or to the workspace, if i = 1), and if Ji is a revolute joint, then link
Li can rotate around some point that is fixed to link Li−1 (or to the workspace,
if i = 1). The range of the possible translations or rotations of each link Li is
constrained by Ji’s joint bounds, consisting of a lower bound lowi and an up-
per bound upi. The C-space of a n-linked planar articulated robot can, hence,
be represented by [low1, up1]× [low2, up2]× · · · × [lown, upn]. In the scenes we
show, the revolute joints are indicated by small black discs, and the prismatic
joints by small black discs with double arrows.

Since holonomic robots are C-symmetric, it is feasible to use undirected
graphs for storing the roadmaps. Some of the (robot specific) details, left open
in the discussion of the general method, must be specified.

3.1 Filling in the details

The local planner: A very general local planner exists, that is directly appli-
cable to all holonomic robots. Given two configurations, it connects them by
a straight line segment in C-space and checks this line segment for collision
and joint limits (if any). We refer to this planner as the general holonomic
local planner. Collision checking can be done as follows: First, discretise the
line segment into a number of configurations c1, . . . , cm, such that for each
pair of consecutive configurations (ci, ci+1) no point on the robot, when
positioned at configuration ci, lies further than some ε away from its po-
sition when the robot is at configuration ci+1 (ε is a positive constant).
Then, for each configuration ci, test whether the robot, when positioned at
ci and “grown” by ε, is collision-free. If none of the m configurations yield
collision, conclude that the path is collision-free.

Probabilistic Path Planning 267

The distance measure: The distance between two configurations a and b
is defined as the length (in C-space) of the local path connecting a and
b, but scaled in the various C-space dimensions appropriately, in order to
reflect the local planners failure chance reasonably. For example, in the
case of of a long and thin free flying robot, small variations in orientation
(that is, variations in the third dimension) correspond to motions sweeping
relatively large volumes in the workspace, and should hence be reflected by
large distances, while, on the other hand, for disc-like robots they should
be reflected by small distances.

The random walks in the query phase: Section 2.2 described a general
scheme for solving a query using a graph constructed in the roadmap con-
struction phase. Multiple random walks were performed from the query
configurations s and g, aimed at connecting the end-points of these walks
to their graph retractions with the local planner. Remains to define the
specific random walks. For holonomic robots, a random bounce walk con-
sists of repeatedly picking at random a direction of motion in C-space and
moving in this direction until an obstacle is hit. When a collision occurs, a
new random direction is chosen. And so on.
The (maximal) number of these walks (per query) and their (maximal)
lengths are parameters of the planner, which we denote by, respectively,
NW and LW .

Node adding heuristics: For both the free-flying robots as the articulated
robots, we utilise the (run-time) structure of G to identify ”difficult” areas
in which more “random” nodes are to be added than in others. We increase
the chances for node generation in areas (of C-space) where the graph shows
disconnectivities (that is, where there are a number of separate connected
components present).
For high dof robots it also proves helpful to identify nodes lying in difficult
areas by considering the success/failure ratio of the local planner. If this
ration is low for a particular node (that is, the local planner fails to connect
to the node relatively often), this is an indication that the node lies in some
difficult area. In this case, more nodes are added in the (near) neighbour-
hood of the node, in order to locally improve the graph connectivity. We
say that the node is expanded [21],[23].

3.2 Simulation results

We have implemented the method for planar free-flying and articulated robots
in the way described above, and we present some simulation results obtained
with the resulting planners. The implementations are in C++ and the experi-
ments were performed on a Silicon Graphics Indigo2 workstation with an R4400

268 P. Švestka and M. H. Overmars

processor running at 150 MHZ. This machine is rated with 96.5 SPECfp92 and
90.4 SPECint92.

In the test scenes used, the coordinates of all workspace obstacles lie in the
unit square. Furthermore, in all scenes we have added an obstacle boundary
around the unit square, hence no part of the robot can move outside this square.

The experiments are aimed at measuring the “knowledge” acquired by the
method after having constructed roadmaps for certain periods of time. This is
done by testing how well the method solves certain (interesting) queries. For
each scene S we define a query test set TQ = {(s1, s1), (s2, g2), . . . , (sm, gm)},
consisting of a number of configuration pairs (that is, queries). Then, we re-
peatedly construct a graph for some specified time t, and we count how many
of these graphs solve the different queries in TQ. This experiment is repeated
for a number of different construction times t. The results are presented in the
tables under the figures. The numbers in the boxes indicate the percentage of
the runs that solve the corresponding query within the given time bound.

The values for the random walk parameters NW and LW are, respectively,
10 and 0.05. This guarantees that the time spent per query is bounded by
approximately 0.3 seconds (on our machine). Clearly, if we allow more time per
query, the method will be more successful in the query phase, and vice versa.
Hence there is a trade-off between the construction time and the time allowed
for a query.

In Figure 1 we have a free flying L-shaped robot, placed at the configurations
a, b, and c. Simulation results are shown for the three corresponding queries,
and two paths are shown, both smoothed in 1 second. We see that around 1
second of roadmap construction is required for obtaining roadmaps that solve
the queries. These roadmaps consist of approximately 125 nodes.

In Figures 2 to 4 results are given for articulated robots.
In the first two scenes, just one query is tested, and well the query (a, b).

In both figures, several robot configurations along a path solving the query are
displayed using various grey levels. The results of the experiments are given
in the two tables. We see that the query in Figure 2 is solved in all cases
after 10 seconds of construction time. Roadmap construction for 5 seconds
however suffices to successfully answer the query in more than 90% of the
cases. In Figure 3 we observe something similar. For both scenes the roadmaps
constructed in 10 seconds contain around 500 nodes.

Figure 4 is a very difficult one. We have a seven dof robot in a very con-
strained environment. The configurations a, b, c, and d define 6 different queries,
for which the results are shown. These where obtained by a customised imple-
mentation by Kavraki et al. [23]. In this implementation, optimised collision

Probabilistic Path Planning 269

0.25 sec. 0.5sec. 1.0 sec. 1.25 sec.0.75 sec.

15% 75% 85% 100% 100%

(a,b)

(a,c)

(b,c)

c

a
b

20% 90% 100% 100% 100%

35% 55% 85% 95% 100%

Fig. 1. An L-shaped free-flying robot and its test configurations are shown. At
the top right, we see two paths computed by the planner and smoothed in 1
second.

(a,b)

2.5 sec. 5sec. 10 sec.7.5sec.

53.3% 93.3% 100%

a

b

100%

Fig. 2. A four dof articulated robot, and a path.

270 P. Švestka and M. H. Overmars

a

b

(a,b)

2.5 sec. 5sec. 10 sec.7.5sec.

50% 87% 97% 100%

Fig. 3. A five dof articulated robot, and a path.

checking routines are used, as well as a robot-specific local planner. Further-
more, “difficult” nodes are heuristically identified during the roadmap construc-
tion phase, and “expanded” subsequently. We see that roughly 1 minute was
sufficient to obtain roadmaps solving the 6 queries. These roadmaps consist of
approximately 4000 nodes.

4 Application to nonholonomic robots

In this section we deal with nonholonomic mobile robots. More specifically, we
apply PPP to car-like robots and tractor-trailer robots. We consider two types
of car-like robots, i.e., such that can drive both forwards and backwards, and
such that can only drive forwards. We refer to the former as general car-like
robots, and to the latter as forward car-like robots. First however we give a brief
overview on previous work on nonholonomic motion planning.

4.1 Some previous work on nonholonomic motion planning

Nonholonomic constraints add an extra level of difficulty to the path planning
problem. The paths must (1) be collision free and (2) describe motions that
are executable for the robot. We refer to such paths as feasible paths.

Probabilistic Path Planning 271

a b
c

d

20 sec. 30 sec. 50 sec. 60 sec.40 sec. 70 sec.

(a,b)

(a,c)

(a,d)

(b,c)

(b,d)

(c,d)

80 sec.

15% 70% 80% 90% 95% 100%

5% 65%45% 80% 100%

5% 60%40% 80%

100%

100%

25% 70% 80% 90% 100% 95% 100%

100%

95%

95%

10% 40% 60% 80% 95% 100%

95%

100%

35% 55% 75% 90% 100% 100% 100%

Fig. 4. A seven dof articulated robot in a very constrained environment and
the query test set.

For locally controllable robots [6], the existence of a feasible path between
two configurations is equivalent to the existence of a collision free path, due to
the fact that for any collision free path there exists a feasible path lying arbi-
trarily close to it. This fundamental property has led to a family of algorithms,
decomposing the search in two phases. They first try to solve the geometric
problem (i.e., the problem for the holonomic robot that is geometrically equiv-
alent to the nonholonomic one). Then they use the obtained collision-free path
to build a feasible one. So in the first phase the decision problem is solved,
and only in the second phase are the nonholonomic constraints taken into ac-
count. One such approach was developed for car-like robots [26], using Reeds
and Shepp works on optimal control to approximate the geometric path. In [34]
Reeds and Shepp presented a finite family of paths composed of line segments
and circle arcs containing a length-optimal path linking any two configurations
(in absence of obstacles). The planner introduced in [26] replaces the collision-
free geometric path by a sequence of Reeds and Shepp paths. This complete
and fast planner was extended to the case of tractor-trailer robots, using near
optimal paths numerically computed [27,12] (so far the exact optimal paths
for the tractor-trailer system in absence of obstacle are unknown). The result-
ing planners are however neither complete nor time-efficient. The same scheme
was used for systems that can be put into the chained form. For these sys-

272 P. Švestka and M. H. Overmars

tems, Tilbury et al. [50] proposed different controls to steer the system from
one configuration to another, in absence of obstacles. Sekhavat and Laumond
prove in [38] that the sinusoidal inputs proposed by Tilbury et al. can be used
in a complete algorithm transforming any collision-free path to a feasible one.
This algorithm was implemented for a car-like robot towing one or two trail-
ers, which can be put into the chained form, and finds paths in reasonable
times [38]. A multi-level extension of this approach has been presented in [40]
which further improves the running times of this scheme by separating the
nonholonomic constraints mutually, and introducing separately. The scheme
is however, as pointed out, only applicable to locally controllable robots. For
example, forward car-like robots do not fall in this class.

Barraquand and Latombe [6] have proposed a heuristic brute-force approach
to motion planning for nonholonomic robots. It consists of heuristically build-
ing and searching a graph whose nodes are small axis-parallel cells in C-space.
Two such cells are connected in the graph if there exists a basic path between
two particular configurations in the respective cells. The completeness of this
algorithm is guaranteed up to appropriate choice of certain parameters, and it
does not require local controllability of the robot. The main drawback of this
planner is that when the heuristics fail it requires an exhaustive search in the
discretised C-space. Furthermore, only the cell containing the goal configura-
tion is reached, not the goal configuration itself. Hence the planner is inexact.
Nevertheless, in many cases the method produces nice paths (with minimum
number of reversals) for car-like robots and tractors pulling one trailer. For sys-
tems of higher dimension however it becomes too time consuming. Ferbach [11]
builds on the approach of Barraquand and Latombe method in his progressive
constraints algorithm in order to solve the problem in higher dimensions. First
a geometric path is computed. Then the nonholonomic constraints are intro-
duced progressively in an iterative algorithm. Each iteration consists of explor-
ing a neighbourhood of the path computed in the previous iteration, searching
for a path that satisfies more accurate constraints. Smooth collision-free paths
in non-trivial environments were obtained with this method for car-like robots
towing two and three trailers. The algorithm however does not satisfy any form
of completeness.

The probabilistic path planner PPP has been applied to various types of
nonholonomic robots. An advantage over the above single shot methods is the
fact that a roadmap is constructed just ones, from which paths can subse-
quently be retrieved quasi-instantaneously. Also, local robot controllability is
not required. A critical point of PPP when applied to nonholonomic robots
is however the speed of the nonholonomic local planner. For car-like robots
very fast local planners have been developed. Thanks to this, PPP applied to
the car-like robots resulted in fast and probabilistically complete planners for
car-like robots that move both forwards and backwards, as well as for such

Probabilistic Path Planning 273

that can only move forwards [45,47]. Local planners for tractor-trailer robots
however tend to be much more time-consuming, which makes direct use of PPP
less attractive. In [49] a local planner is presented and integrated into PPP,
that uses exact closed form solutions for the kinematic parameters of a tractor-
trailer robot. In [39] the local planner using sinusoidal inputs for chained form
systems is used. For robots pulling more than one trailer, this local planner ap-
peared to be too expensive for capturing the connectivity of the free C-space.
For this reason, and inspired by the earlier mentioned works [26,27,12,38], in
[39] a two-level scheme is proposed, where at the first level the portion of CSfree
is reduced to a neighbourhood of a geometric path, and at the second level a
(real) solution is searched for within this neighbourhood (by PPP). The multi-
level algorithm proposed in [40] can in fact been seen as a generalisation of this
two level scheme.

4.2 Description of the car-like and tractor-trailer robots

We model a car-like robot as a polygon moving in R2, and its C-space is rep-
resented by R2 × [0, 2π). The motions it can perform are subject to nonholo-
nomic constraints. It can move forwards and backwards, and perform curves of
a lower bounded turning radius rmin, as an ordinary car. A tractor-trailer robot
is modelled as a car-like one, but with an extra polygon attached to it by a
revolute joint. Its C-space is (hence) 4-dimensional, and can be represented by
R2× [0, 2π)× [−αmax, αmax], where αmax is the (symmetric) joint bound. The
car-like part (the tractor) is a car-like robot. The extra part (the trailer) is sub-
ject to further nonholonomic constraints. Its motions are (physically) dictated
by the motions of the tractor (For details, see for example [25,40]).

For car-like robots, the paths constructed will be sequences of translational
paths (describing straight motions) and rotational paths (describing motions
of constant non-zero curvature) only. It is a well-known fact [25] that if for a
(general or forward) car-like robot a feasible path in the open free C-space exists
between two configurations, then there also exists one that is a (finite) sequence
of rotational paths. We include translational paths to enable straight motions
of the robot, hence reducing the path lengths. For tractor-trailer robots we will
use paths that are computed by transformation of the configuration coordinates
to the chained form, and using sinusoidal inputs.

4.3 Application to general car-like robots

We now apply PPP, using an undirected graph, to general car-like robots. This
again asks for filling in some of the (robot specific) details that have been left
open in the discussion of the general method.

274 P. Švestka and M. H. Overmars

Filling in the details

The local planner: A RTR path is defined as the concatenation of a rota-
tional path, a translational path, and another rotational path. Or, in other
words, it is the concatenation of two circular arcs and a straight line seg-
ment, with the latter in the middle. The RTR local planner constructs the
shortest RTR path connecting its argument configurations. Figure 5 shows
two RTR paths. It can easily be proven that any pair of configurations
is connected by a number of RTR paths (See [45] for more details). Fur-
thermore, the RTR local planner satisfies a local topological property that
guarantees probabilistic completeness (See Section 5).

b

a

Fig. 5. Two RTR paths for a triangular car-like robot, connecting configura-
tions a and b.

An alternative to the RTR local planner is to use a local planner that con-
structs the shortest (car-like) path connecting its argument configurations
[34], [42]. Constructing shortest car-like paths is however a relatively ex-
pensive operation, and the construct requires more expensive intersection
checking routines than does the RTR construct. On the other hand, RTR
paths will, in general, be somewhat longer than the shortest paths, and,
hence, they have a higher chance of intersection with the obstacles.
Collision checking for a RTR path can be done very efficiently, perform-
ing three intersection tests for translational and rotational sweep volumes.
These sweep volumes are bounded by linear and circular segments (such
objects are also called generalised polygons) and hence the intersection tests
can be done exactly and efficiently. Moreover, the intersection tests for the

Probabilistic Path Planning 275

rotational path segments can be eliminated by storing some extra informa-
tion in the graph nodes, hence reducing the collision check of a RTR path
to one single intersection test for a polygon.

The distance measure: We use a distance measure that is induced by the
RTR local planner, and can be regarded as an approximation of the (too
expensive) induced “sweep volume metric”, as described in Section 2.1. The
distance between two configurations is defined as the length (in workspace)
of the shortest RTR path connecting them. We refer to this distance mea-
sure as the RTR distance measure, and we denote it by DRTR.

The random walks in the query phase: Random walks, respecting the
car-like constraints, are required. The (maximal) number of these walks
(per query) and their (maximal) lengths are parameters of the method,
which we again denote by, respectively, NW and LW .
Let cs be the start configuration of a random walk. As actual length lW of
the walk we take a random value from [0, LW]. The random walk is now
performed in the following way: First, the robot is placed at configuration
cs, and a random steering angle ψ and random velocity v are chosen. Then,
the motion defined by (ψ, v) is performed until either a collision of the
robot with an obstacle occurs, or the total length of the random walk has
reached lW . In the former case, a new random control is picked, and the
process is repeated. In the latter case, the random walk ends.
Good values for NW and LW must be experimentally derived (the values
we use are given in the next section).

Node adding heuristics: We use the geometry of the workspace obstacles
to identify areas in which is advantageous to add some extra, geometri-
cally derived, non-random nodes. Particular obstacle edges and (convex)
obstacle corners define such geometric nodes (See [47] for more details).
Furthermore, as for free-flying robots, we use the (run-time) structure of
the graph G in order to guide the node generation.

Simulation results We have implemented the planner as described above,
and some simulation results are presented in this section. The planner was run
on a machine as described in Section 3. Again the presented scenes correspond
to the unit square with an obstacle boundary, and the chosen values for NW
and LW are, respectively, 10 and 0.05. The simulation results are presented in
the same form as for the holonomic robots in Section 3. That is, for different
roadmap construction times we count how often graphs are obtained that solve
particular, predefined, queries.

Figure 6 shows a relatively easy scene, together with the robot A positioned
at a set of configurations {a, b, c, d, e}. The topology is simple and there are only
a few narrow passages. We use {(a, b), (a, d), (b, e), (c, e), (d, e)} as query test
set TQ. (At the top-right of Figure 6 paths solving the queries (a, d) and (b, e),

276 P. Švestka and M. H. Overmars

smoothed in 1 second, are shown.) The minimal turning radius rmin used in
the experiments is 0.1, and the neighbourhood size maxdist is 0.5. We see that
after only 0.3 seconds of roadmap construction, the networks solve each of the
queries in most cases (but not all). Half a second of construction is sufficient
for solving each of the queries, in all 20 trials. The corresponding roadmaps
contain about 150 nodes.

a

b

c d

e

0.1 sec. 0.2 sec. 0.4 sec. 0.5 sec.0.3 sec.

(a,b)

(a,d)

(b,e)

(c,e)

(d,e)

20% 90%

35%

60% 90%

50%

55% 85%

15% 75%

100% 100%

95%85%

100%

95%

85%

100%

100% 100%

100%

100% 100%

100%

100%

Fig. 6. A simple scene. At the top right, two paths computed by the planner
and smoothed in 1 second are shown.

Figure 7 (again together with a robot A placed at different configurations
{a, b, c, d}), shows a completely different type of scene. It contains many (small)
obstacles and is not at all “corridor-like”. Although many individual path plan-
ning problems in this scene are quite simple, the topology of the free C-space
is quite complicated, and can only be captured well with relatively compli-
cated graphs. As query test set TQ we use {(a, b), (a, c), (a, d), (c, d)}. Further-
more, as in the previous scene, rmin = 0.1 and maxdist = 0.5. Again, we show
two (smoothed) paths computed by our planner (solving the queries (a, b) and
(c, d)). We see that about 2 seconds of construction are required to obtain

Probabilistic Path Planning 277

roadmaps that are (almost) guaranteed to solve each of the queries. Their
number of nodes is about 350.

a

b

c

d

(a,b)

(a,c)

(a,d)

(c,d)

75% 95%

70%

55% 75%

85% 95%

85% 95%

90% 90%

95%

100%

100%

100% 100%

100%

100% 100%

100%

30%

20%

35%

50%

0.5 sec. 0.75 sec. 1.5 sec. 2.0 sec.1.0 sec.0.25 sec.

Fig. 7. A more complicated scene, and its test configurations. At the top right,
two paths computed by the planner and smoothed in 1 second are shown.

4.4 Application to forward car-like robots

Forward car-like robots, as pointed out before, are not C-symmetric. Hence,
as explained in Section 2.3, directed instead of undirected graphs are used for
storing the roadmaps. For details regarding the exact definition of the roadmap
construction algorithm we refer to [32].

The robot specific components, such as the local planner, the metric, and
the random walks are quite similar to those used for general car-like robots, as
described in Section 4.3. The local planner constructs the shortest forward RTR
path connecting its argument configurations. A forward RTR path is defined
exactly as a normal RTR path, except that the rotational and translational
paths are required to describe forward robot motions. The distance between
two configurations is defined as the (workspace) length of the shortest forward
RTR path connecting them. A random walk is performed as for general car-
like robots, with the difference that the randomly picked velocity must be

278 P. Švestka and M. H. Overmars

positive, and that, when collision occurs, the random walk is resumed from a
random configuration on the previously followed trajectory (instead of from
the configuration where collision occurred).

Simulation results In Figure 8 we give some results for the same scene as
Figure 7. We see that the queries are most likely to be solved after 5 seconds
of roadmap construction, and (almost) surely after 7.5 seconds, by roadmaps
consisting of around 700 nodes. This means that about four times more time
is required than for general car-like robots.

a

d

c

b

(a; d)

(a; c)

(b; c)

(b; d)

2.0 sec. 3.0 sec. 5.0 sec. 7.5 sec.4.0 sec.1.0 sec.

70% 85%

40%

45% 45%

75% 90%

35% 55%

70% 90%

100%

90%

80%

100% 100%

100%

95% 100%

100%

30%

35%

20%

15%

Fig. 8. Motion planning for a forward car-like robot.

4.5 Application to tractor-trailer robots

As last example of nonholonomic robots, we now (briefly) consider tractor-
trailer robots, and well such that can drive both forwards and backwards.
These robots have symmetrical control systems and, hence, undirected under-
lying graphs are sufficient. We will not go into many details. We refer to [39,40]

Probabilistic Path Planning 279

for a more thorough discussion of the topic. We use a local planner, by Sekha-
vat and Laumond [38], that transforms its configuration coordinates into the
chained form, and uses sinusoidal inputs. We refer to it as the sinusoidal local
planner. This local planner verifies a local topological property that guarantees
probabilistic completeness of the global planner. As distance measure we use
(cheap) approximations of the workspace lengths of the local paths. The ran-
dom walks in the query phase are basically as those for general car-like robots,
except that the trailers orientation must be kept track of during each motion
of the tractor. This can be done using exact closed form solutions for the kine-
matic parameters of tractor-trailer robots under constant curvature motions of
the tractor [49]. If, during such a motion, the tractors orientation gets out of
bounds (relative to the orientation of the tractor), this is treated as a collision.

Simulation results See Figure 9 for two feasible paths computed by the
Probabilistic Path Planner. The computation time of the roadmap from which
the paths where retrieved took about 10 seconds (on the average).

Fig. 9. Two feasible paths for a tractor-trailer robot, obtained in 10 seconds.

5 On probabilistic completeness of probabilistic path
planning

In this section we discuss some aspects regarding probabilistic completeness of
PPP, and we prove this completeness for the specific planners described in this

280 P. Švestka and M. H. Overmars

chapter. We will assume a slightly simplified version of the planning scheme.
Instead of trying to connect the start configuration s and goal configuration
g to the graph with some graph retractions (as described in Section 2.2), we
simply add s and g to the graph as (initial) nodes. A query consists of just a
graph search. This simplification of the query phase is for ease of presentation.
All results presented in this section directly hold for the case where queries
are performed as described earlier (in Section 2.2), using graph retractions and
random walks.

A path planner is called probabilistically complete if, given any problem that
is solvable in the open free C-space, the probability that the planner solves the
problem goes to 1 as the running time goes to infinity. Hence, a probabilisti-
cally complete path planner is guaranteed to solve such a problem, provided
that it is executed for a sufficient amount of time. For ease of presentation we
introduce some shorthand notations. We denote the version of PPP using undi-
rected underlying graphs (respectively directed graphs) by PPPu (respectively
PPPd). The notation PPPu(L) (respectively PPPd(L)) is used for referring to
PPPu (respectively PPPd) with a specific local planner L. We say L is sym-
metric iff, for arbitrary configurations a and b, L(a, b) equals L(b, a) reversed.
Furthermore, we again denote the C-space, respectively the free C-space, by C,
respectively Cf .

We point out that with PPP one obtains a probabilistically complete plan-
ner for any robot that is locally controllable (see below), provided that one
defines the local planner properly. If, in addition to the local controllability,
the robot also has a symmetric control system then PPPu(L) is suitable, oth-
erwise PPPd(L) must be used. In Section 5.1 we define a general property
for local planners that is sufficient for probabilistic completeness of PPP , and
we point out that, given the local controllability of the robot, a local planner
satisfying this property always exists (but it must be found). We also men-
tion a relaxation of the property, that guarantees probabilistic completeness of
PPPu(L) as well, for locally controllable robots with symmetric control sys-
tems. All holonomic robots, as well as for example general car-like robots and
tractor-trailer robots, fall into this class. Forward car-like robots however are
not locally controllable (and neither symmetric). In Section 5.2 we show that
all the planners described in this chapter are probabilistically complete.

First we define the concept local controllability (in the literature also re-
ferred to as small-time local controllability or local-local controllability), adopt-
ing the terminology introduced by Sussman [43]. Given a robot A, let ΣA be
its control system. That is, ΣA describes the velocities that A can attain in
C-space. For a configuration c of a robot A, the set of configurations that A
can reach within time T is denoted by AΣA(≤ T, c). A is defined to be locally
controllable iff for any configuration c ∈ C AΣA(≤ T, c) contains a neighbour-
hood of c (or, equivalently, a ball centred at c) for all T > 0. It is a well-known

Probabilistic Path Planning 281

fact that, given a configuration c, the area a locally controllable robot A can
reach without leaving the ε-ball around c (for any ε > 0) is the entire open
ε-ball around c.

5.1 The general local topology property

We assume now that robot A is locally controllable. For probabilistic complete-
ness of PPP a local planner L is required that exploits the local controllability
of A. This will be the case if L has what we call the general local topologi-
cal property, or GLT-property, as defined in Definition 3 using the notion of
ε-reachability introduced in Definition 2. We denote the ball (in C-space) of
radius ε centred at configuration c by Bε(c).

Definition 2. Let L be a local planner for A. Furthermore let ε > 0 and c ∈ C
be given. The ε-reachable area of c by L, denoted by RL,ε(c), is defined by

RL,ε(c) = {c̃ ∈ Bε(c)|L(c, c̃) is entirely contained in Bε(c)}

Definition 3. Let L be a local planner for A. We say L has the GLT-property
iff

∀ε > 0 : ∃δ > 0 : ∀c ∈ C : Bδ(c) ⊂ RL,ε(c)

We refer to Bδ(c) as the ε-reachable δ-ball of c.

A local planner verifying the GLT-property, at least in theory, always ex-
ists, due to the robots local controllability. Theorem 5.1 now states that this
property is sufficient to guarantee probabilistic completeness of PPP. That is,
of PPPu(L) if L is symmetric, and of PPPd(L) otherwise.

Theorem 5.1. If L is a local planner verifying the GLT-property, then
PPP(L) is probabilistically complete.

Proof. The theorem can be proven quite straightforwardly (for both PPPu(L)
and PPPd(L)). Assume L verifies the GLT-property. Given two configurations
s and g, lying in the same connected component of the open free C-space, take
a path P that connects s and g and lies in the open free C-space as well. Let ε
be the C-space clearance of P (that is, the minimal distance between P and a
C-space obstacle), and take δ > 0 such that ∀c ∈ C : Bδ(c) ⊂ RL, 34 ε(c). Then,
consider a covering of P by balls B1, . . . , Bk of radius 1

4δ, such that balls Bi
and Bi+1, for i ∈ {1, . . . , k − 1}, partially overlap. Assume each such ball Bi
contains a node vi of G. Then, |vi − vi+1| ≤ δ, and each node vi has a C-space

282 P. Švestka and M. H. Overmars

clearance of at least ε− 1
4δ ≥

3
4ε (since δ ≤ ε). Hence, due to the definition of

δ, we have
L(vi, vi+1) ⊂ B 3

4 ε
(vi) ⊂ Cf

It follows that if all the balls B1, . . . , Bk contain a node of G, s and g will be
graph-connected. Since, due to the random node adding, this is guaranteed to
be the case within a finite amount of time, this concludes the proof. See also
Figure 10.

�

P

Cf

1

4
�

vi

vi+1

L(vi; vi+1)

3

4
�

�

�

P

Fig. 10. Path P has clearance ε > 0. If δ > 0 is chosen such that ∀c ∈ C :
Bδ(c) ⊂ RL, 34 ε(c), then we see that nodes in overlapping 1

4δ-balls, centred at
configurations of P , can always be connected by the local planner.

Clearly, given a locally controllable robot, the GLT-property is a proper
criterion for choosing the local planner (sufficient conditions for local control-
lability of a robot are given in, e.g., [44]). Path planning among obstacles for
car-like robots using local planners with the GLT-property has also been stud-
ied by Laumond [28,18].

For locally controllable robots with symmetric control systems, a weaker
property exists that guarantees probabilistic completeness as well. We refer to
this property as the LTP-property. The basic relaxation is that we no longer
require the ε-reachable δ-ball of a configuration a to be centred around c. We
do however make a certain requirement regarding the relationship between

Probabilistic Path Planning 283

configurations and the corresponding ε-reachable δ-balls. Namely, it must be
described by a Lipschitz continuous function. For a formal definition of the
LTP-property and a proof of probabilistic completeness with local planners
verifying it, we refer to [47].

5.2 Probabilistic completeness with the used local planners

The local planners used for holonomic robots, general car-like robots, forward
car-like robots, and tractor-trailer robots, as described earlier in this chapter,
guarantee probabilistic completeness.

Locally controllable robots The general holonomic local planner L for holo-
nomic robots constructs the straight line path (in C-space) connecting its ar-
gument configurations. It immediately follows that Rε,L(c) = Bε(c), for any
configuration c and any ε > 0. Hence, L verifies the GLT-property.

Theorem 5.2. PPPu(L), with L being the general holonomic local planner, is
probabilistically complete for all holonomic robots.

The planner for general car-like robots uses the RTR local planner. One can
prove that this planner verifies the LTP-property [47]. Again, as stated in the
following theorem, this guarantees probabilistic completeness.

Theorem 5.3. PPPu(L), with L being the RTR local planner, is probabilisti-
cally complete for general car-like robots.

Regarding tractor-trailer robots, Sekhavat and Laumond prove in [38] that
the sinusoidal local planner, used for the tractor-trailer robots, verifies the
GLT-property. Hence, for tractor-trailer robots we also have probabilistic com-
pleteness.

Theorem 5.4. PPPu(L), with L being the sinusoidal local planner, is proba-
bilistically complete for tractor-trailer robots (with arbitrary number of trailers).

Forward car-like robots As pointed out before, the theory of the previous
sections applies only to robots that are locally controllable. If a robot does
not have this property, a local planner verifying the GLT-property will not
exist. A local planner verifying the weaker LTP-property may exist, but this
planner will not be symmetric (this would imply the existence of a local planner
verifying GTP).

Forward car-like robots are not locally controllable. One can nevertheless
prove probabilistic completeness of PPPd(L), with L being the RTR forward
local planner. That is, one can prove that, given two configurations s and g

284 P. Švestka and M. H. Overmars

such that there exists a feasible path in the open free C-space connecting them,
PPPd(L) will surely solve the problem within finite time. The proof, which does
not directly generalise to other cases, uses a property of RTR forward paths
stated in Lemma 5.5.

Lemma 5.5. Let L be the RTR forward local planner, and let Q be a RTR
forward path connecting configurations a and b with a straight line path of non-
zero length and both arc paths of total curvature less than 1

2π. Then:

∀ε > 0 : ∃δ > 0 : ∀(ã, b̃) ∈ Bδ(a)×Bδ(b) : L(ã, b̃) lies within distance ε of Q 1

Theorem 5.6. PPPd(L), with L being the RTR forward local planner, is prob-
abilistically complete for forward car-like robots.

�

Cf

m1

m2

m3

m4

m5

m6

P2

mi

mi+1

�
�

a

b

L(a; b)

Fig. 11. This figure illustrates the proof of Theorem 5.6. P2 is a path, feasible
for a forward car-like robot, of clearance ε > 0. Centred at the configurations
mi are balls Bi of a radius δ > 0, such that any pair of configurations (a, b) ∈
Bi ×Bi+1 is connected by the RTR forward local planner L with a path lying
within distance ε of P2, and hence lying in Cf .

We give only a sketch of the proof here (See also Figure 11). Let L be
the RTR forward local planner. Assume P1 is a path in the open free C-space
connecting a (start) configuration s to a (goal) configuration g, that is feasible
for our forward car-like robotA. Then, one can prove, there exists also a feasible
path P2 in the open free C-space, connecting s to g, that consists of (a finite

Probabilistic Path Planning 285

number of) straight line segments and circular arcs, such that no two distinct
arcs are adjacent and each arc has a total curvature of less than 1

2π .
2

Assume k is the number of arcs in P2. Let m1 = s, mk = g, and {m2, . . . ,
mk−1} be points on P2 such that mi is the midpoint of the i-th arc of P2 (that
is, the unique point on the arc with equal distance to both end-points). Clearly,
mi is connected mi+1 by a forward RTR path with a straight line segment of
non-zero length and both arc paths of total curvature less than 1

2π (for all
j ∈ {1, . . . , k − 1}).

Let ε > 0 be the clearance of P2, and take δ > 0 such that, for all j ∈
{1, . . . , k − 1}:

∀(a, b) ∈ Bδ(mj)×Bδ(mj+1) : L(a, b) lies within distance ε of Q

It follows from Lemma 5.5 that such a δ > 0 always exists. When a node of G
is present in every ball Bδ(mj) for 2 ≤ j < k, G will contain a path connecting
s to g. We know, due to the probabilistic nature of the node adding, that the
probability of obtaining such a graph grows to 1 when the roadmap construction
time goes to infinity.

6 On the expected complexity of probabilistic path
planning

In the previous section we have formulated properties of local planners that
guarantee probabilistic completeness of PPP for locally controllable robots.
If these properties are satisfied, we know that as the running time of PPP
goes to infinity, the probability of solving any solvable problem goes to 1.
However, nothing formal has yet been said about (expected) convergence times
of the algorithm. In practice, one will not be satisfied with the guarantee that
“eventually a path will be found”. For real life applications, some estimate of
the running time beforehand is desirable.

Simulation results obtained by the application of PPP on certain “typical”
problems can increase our trust in the planners performance and robustness,
but they do not describe a formal relation between the probabilities of fail-
ure and running times in general, and neither do they provide a theoretical
explanation for the empirically observed success of the probabilistic planner.
Recently some first theoretical results on expected running times of probabilis-
tic planners have been obtained.

Kavraki et al. [22,20,3] show that, under certain geometric assumptions
about the free C-space Cf , it is possible to establish a relation between the
2 This does not necessarily hold if P1 consists of just one or two circular arcs of

maximal curvature. In this case however P1 can be found directly with the local
planner.

286 P. Švestka and M. H. Overmars

probability that probabilistic planners like PPP3 find paths solving particular
problems, and their running times. They suggest two such assumptions, i.e., the
visibility volume assumption and the path clearance assumption. We will discuss
these assumptions and present the main results obtained by Kavraki et al.. Also,
we will discuss to what extent these results hold for nonholonomic robots, and,
where possible, we will adapt them appropriately. Furthermore, we introduce
a new assumption on configuration space, the ε-complexity assumption, under
which it is possible to relate the success probabilities and running times of PPP
to the complexity of the problems that are to be solved.

Throughout this section we use the notations introduced in the previous
section, and, unless stated otherwise, we will assume that PPP with undirected
underlying graphs (i.e., PPPu) is used.

6.1 The visibility volume assumption

The visibility volume assumption uses a notion of “visibility” defined by the
used local planner. A free configuration a is said to “see” a free configuration
b if the local path L(a, b) lies entirely in Cf . The visibility volume assumption
now states that every free configuration “sees” a subset of Cf whose volume is
at least an ε fraction of the total volume of Cf . If this holds, Cf is called ε-good.

The analyses assumes a somewhat more complex planner than PPP as de-
fined in Section 2. It differs from PPP in that after a probabilistic roadmap
G = (V,E) has been constructed (by the roadmap construction algorithm in
Section 2.1), an extra post-processing step is performed, referred to by the au-
thors as Permeation. Permeation assumes the existence of a complete planner,
that is, a planner solving any solvable problem, and returning failure for any
non-solvable one. What permeation does, is invoking the complete planner for
certain pairs (a, b) ∈ V × V that are not graph connected. Planners based on
this scheme have been implemented by Kavraki et al. (E.g., [21]). However,
instead of a complete planner (which, in general, is not available) the poten-
tial field planner RPP has been utilised. Since RPP is only probabilistically
complete, the mentioned planners are merely approximations of the algorithm
sketched above.

Due to the assumed completeness of the invoked planner, provided that the
complete planner is invoked for enough pairs of nodes in V , permeation leads
to a roadmap where every connected component of Cf contains at most one
connected component of the roadmap G. For convenience, we will say that such
roadmaps have perfect connectivity.

Let us now assume that GP has such perfect connectivity. Then, if both s
and g “see” a node of GP , the planner will return a path solving this problem
3 Kavraki et al. refer to PPP by the name PRM (Probabilistic RoadMap planner).

Probabilistic Path Planning 287

if it is solvable, and return failure otherwise. In other words, on the portion
of Cf that “sees” some node of the roadmap, the planner is complete. Note
that during the permeation step, no nodes are added to G. Hence, the question
whether a solvable query will be answered correctly depends solely on the set
of nodes V in G. Theorem 6.1 addresses this question. V is called adequate
if the portion of Cf , not visible from any c ∈ V , has a volume of at most
1
2ε · Volume(Cf). The theorem gives a lower bound for the probability of V
being adequate.

Theorem 6.1. (Kavraki et al. [22], Barraquand et al. [3]) Assume G =
(V,E) is a roadmap generated by PPP in a free C-space that is ε-good. Let
β ∈ (0, 1] be a real constant, and let C be a positive constant large enough such
that ∀x ∈ (0, 1] : (1−x)(Cx log 1

x) ≤ xβ4 Now, if |V | ≥ C
ε log 1

ε , then V is adequate
with probability at least 1− β.

Regarding the complexity of the roadmap construction, one must estimate
the number of calls to the complete planner during the permeation step, re-
quired for obtaining a roadmap GP of perfect connectivity. Theorem 6.2 pro-
vides such an estimate.

Theorem 6.2. (Kavraki et al. [22], Barraquand et al. [3]) Let w1 ≥
w2 ≥ · · · ≥ wk be the sizes of the connected components of the roadmap G =
(V,E). There exists a (randomised) algorithm that extends G to a roadmap GP
of perfect connectivity, whose expected number of calls of the complete planner
is at most:

2
k∑
i=1

i · wi − |V | − k

Furthermore, with high probability, the number of calls is at most:

O

(
k∑
i=1

i · wi · log(|V |)

)

Symmetry of the local planner L is required and assumed in the above.
However, apart from this, the ε-goodness assumption is very general, and the
given analysis is not only valid for holonomic robots (on which the authors
focus), but also for nonholonomic ones.

However, the question arises in how far the theoretical results are “practical”
for nonholonomic robots, since the “visibility” induced by a nonholonomic local
planner will be a quite hard to grasp concept that can hardly be regarded as
a geometric property of Cf . There does not seem to be much hope that we
will ever be able to measure the ε-goodness of Cf for nonholonomic robots, in
non-trivial cases (insofar as there is such hope for holonomic ones).

288 P. Švestka and M. H. Overmars

6.2 The path clearance assumption

In the path clearance assumption, there exists a collision-free path P between
the start configuration s and goal configuration g, that has some clearance ε > 0
with the C-space obstacles. Throughout this section we denote the volume of
an object A by V(A). In [20], Kavraki et al. study the dependence of the failure
probability of PPP (the normal version) to connect s and g on (1) the length
of P, (2) the clearance ε, and (3) the number of nodes in the probabilistic
roadmap G. Their main result is described by the following theorem:

Theorem 6.3. (Kavraki et al. [20], Barraquand et al. [3]) Let A be a
holonomic robot, L be the general holonomic local planner (for A), and G =
(V,E) be a graph constructed by PPP(L). Assume configurations s and g are
connectable by a path P of length λ, that has a clearance ε > 0 with the (C-
space) obstacles. Let α ∈ (0, 1] be a real constant, and let a be the constant
1

2nV(B1)/V(Cf), where B1 denotes the unit ball in the C-space Rn. Now if |V |
is such that

2λ
ε

(1− aεn)|V | ≤ α

then, with probability at least 1− α, s and g will be graph-connected in G (See
also Figure 12).

g

Cf

P

s xj

xj+1

�

a
b

L(a; b) � B�(xj) � Cf

1

2
�

Fig. 12. We see that configuration s is connectable to configuration g by a P of
clearance ε. Let x0 = s, x1, . . . , xk = g be points on P , such that |xj − xj+1| ≤
1
2ε, for all j. If each ball B 1

2 ε
(xj) contains a node of G, then s and g will be

graph-connected.

Probabilistic Path Planning 289

The proof of this theorem is quite straightforward. Given a path P of clear-
ance ε > 0, one can consider a covering of P by balls of radius 1

2ε as shown
in Figure 12, and bound the probability that one of these balls contains no
node of G. Since, if each of these balls does contain a node, G is guaranteed to
contain a path connecting the start and goal configuration, this gives an upper
bound for the failure probability of PPP.

A number of important facts are implied by Theorem 6.3. E.g., the number
of nodes required to be generated, in order for the planner to succeed with
probability at least 1 − α, is logarithmic in 1

α and λ, and polynomial in 1
ε .

Furthermore, the failure probability α is linear in the path length λ.
The analyses assumes the use of the general holonomic local planner (as

described in Section 3.1). Hence it is assumed that the robot is holonomic. An
underlying assumption is namely that the ε-reachable area of any configuration
c consists of the entire ε-ball Bε(c), surrounding c. From theoretical point of
view, as pointed out in the previous section, for any locally controllable robot
a local planner exists for which the ε-reachable area of any configuration c con-
sists of the entire open ε-ball centred at c. Such a local planner would allow for
the result assuming the path clearance to be directly applied to such robots.
However, it is not realistic to assume the “ε-ball reachability” for a nonholo-
nomic local planner, since for most robots we are not able to construct such
local planners, and, if we could, they would probably be vastly outperformed
(in terms of computation time) by simple local planners verifying only weaker
(but sufficient) topological properties, such as those presented in the previ-
ous section. However, the analyses presented in [20] can be extended to the
case where the local planner verifies only the GLT-property. Through this, we
can give running time estimates for locally controllable nonholonomic robots
that are realistic in the sense that we can actually build the planners that we
analyse. Corollary 6.4 extends the result of Theorem 6.3 to locally controllable
nonholonomic robots with local planners verifying the GLT-property.

Corollary 6.4. Let A be a fully controllable robot, L be a local planner for A
verifying the GLT-property, and G = (V,E) be a graph constructed by PPP(L).
Assume configurations s and g are connectable by a path P of length λ, that
has a clearance ε > 0 with the (configuration space) obstacles. Take δ > 0 such
that

∀c ∈ C : Bδ(c) ⊂ RL, 34 ε(c)

Let α ∈ (0, 1] be a real constant, and V1 be the volume of the unit ball in the
C-space Rn. Now if |V | is such that

2λ
δ

(
1− V1

4nV(Cf)
δn
)|V |

≤ α

then, with probability at least 1− α, s and g will be graph-connected in G.

290 P. Švestka and M. H. Overmars

Since, by definition of the GLT-property, δ is a constant with respect to
ε, the dependencies implied by Theorem 6.3 hold for nonholonomic robots as
well.

6.3 The ε-complexity assumption

A drawback of Theorem 6.3 and the above corollary is that no relation is
established between the failure probability and the complexity of a particular
problem. In our opinion, to a considerable extent, the observed success of PPP
lies in the fact that not the complexity of the C-space, but the complexity of the
resulting path defines the (expected) running time of PPP. For example, assume
a particular problem is solvable by a path P of clearance ε > 0, consisting of
say 4 straight line segments. Consider three balls of radius ε, centred at the 3
inner nodes of P . Then, as is illustrated in Figure 13, it suffices that all the 3
balls contain a node of G to guarantee that the problem is solved. We see in
this example that the failure probability in no way relates to the length of the
path, and neither to the complexity of Cf . The only relevant factors are the
clearance and the complexity of the path. Definition 4 introduces the notion
of ε-complexity, which captures this measure of problem complexity. We refer
here to a path composed of k straight line segments as a piecewise linear path
of complexity k.

Definition 4. Given a holonomic robot and a particular path planning problem
(s, g), let P be the lowest complexity piecewise-linear path connecting s and g,
that has a C-space clearance of ε > 0. We define the ε-complexity of problem
(s, g) as the complexity of P .

Theorem 6.5 gives a result relating the failure probability of PPP to the
ε-complexity of the problem to be solved. It applies only to holonomic robots
and assumes the use of the general holonomic local planner.

Theorem 6.5. Let A be a holonomic robot, L be the general holonomic local
planner (for A), and G = (V,E) be a graph constructed by PPP(L). Assume
(s, g) is a problem of ε-complexity ζ. Let α ∈ (0, 1] be a real constant, and V1

be the volume of the unit ball in the C-space Rn. Now if |V | is such that

(ζ − 1)
(

1− V1

V(Cf)
εn
)|V |

≤ α

then, with probability at least 1− α, s and g will be graph-connected in G.

This theorem can be proven quite easily. Given a problem of ε-complexity
ζ, there exists a piecewise linear path P of complexity ζ and clearance ε > 0

Probabilistic Path Planning 291

�

Ps

g

Cf

a
b

L(a; b)

Fig. 13. We see that configuration s is connectable to configuration g by a
piecewise linear path P (dashed) of complexity 4 and clearance ε. If each of 3
dark grey balls (of radius ε, placed at the vertices of P) contains a node of G,
then the G contains a path, lying in the grey area, that connects s and g.

solving it. We can place balls of radius ε at the vertices of P , and bound the
probability the one of these balls contains no node of G. Since, if each of these
balls does contain a node,G is guaranteed to contain a path connecting the start
and goal configuration, this gives us an upper bound for the failure probability
of PPP.

So we now also have a linear dependence of the failure probability, and a
logarithmic dependence of |V |, on the complexity ζ of the path P , that is, on
the ε-complexity of the problem. We note that the existence of a path of a
certain clearance ε > 0 and implies the existence of a piecewise linear path of
a similar clearance.

7 A multi-robot extension

We conclude this chapter with an extension of PPP for solving multi-robot path
planning problems. That is, problems involving a number of robots, present in
the same workspace, that are to change their positions while avoiding (mu-
tual) collisions. Important contributions on multi-robot path planning include
[37,13,10,51,41,8,30,29,4,5,17,2,52]. For overviews we refer to [25] and [15].

Most previous successful planners fall into the class of decoupled planners,
that is, planners that first plan separate paths for the individual robots more
or less independently, and only in a later stage, in case of collisions, try to
adapt the paths locally to prevent the collisions. This however inherently leads
to planners that are not complete, that is, that can lead to deadlocks. To

292 P. Švestka and M. H. Overmars

obtain some form of completeness, one must consider the separate robots as one
composite system, and perform the planning for this entire system. However,
this tends to be very expensive, since the composite C-space is typically of high
dimension, and the constraints of all separate add up.

For example, multi-robot problems could be tackled by direct application
of PPP. The robot considered would be composed of the separate “simple”
robots, and the local planner would construct paths for this composite robot.
This is a very simple way of obtaining (probabilistically complete) multi-robot
planners. However, as mentioned above, a drawback is the high dimension of
the configuration space, which, in non-trivial scenes, will force PPP to construct
very large roadmaps for capturing the structure of Cf . Moreover, each local
path in such a roadmap will consists of a number of local paths for the simple
robots, causing the collision checking to be rather expensive.

In this section we describe a scheme where a roadmap for the composite
robot is constructed only after a discretisation step that allows for disregarding
the actual C-space of the composite robot. See Figure 14 for an example of a
multi-robot path planning problem, and a solution to it, computed by a planner
based on the scheme.

We will refer to the separate robots A1, . . . ,An as the simple robots. One
can also consider the simple robots together to be one robot (with many degrees
of freedom), the so-called composite robot. A feasible path for the composite
robot will be referred to as a coordinated path. We assume in this paper that
the simple robots are identical, although, with minor adaptions, the presented
concepts are applicable to problems involving non-identical robots as well.

A roadmap for the composite robot is constructed in two steps. First, a
simple roadmap is constructed for just one robot with PPP. Then n of such
roadmaps are combined into a roadmap for the composite robot (consisting of
n simple robots). We will refer to such a composite roadmap as a super-graph.
After such a super-graph has been constructed, which needs to be done just
once for a given static environment, it can be used for retrieval of coordinated
paths. We will present two super-graph structures: flat super-graphs and multi-
level super-graphs. The latter are a generalisation of flat super-graphs, that
consume much less memory for problems involving more than 3 robots.

The scheme is a flexible one, in the sense that it is easily applicable to
various robot types, provided that one is able to construct simple roadmaps
for one such robot. Furthermore, proper construction of the simple roadmaps
guarantees probabilistic completeness of the resulting multi-robot planners [46].
In this paper we apply the super-graph approach to car-like robots. We give
simulation results for problems involving up to 5 robots moving in the same
constrained environment.

Probabilistic Path Planning 293

Fig. 14. An example of a multi-robot path planning problem, with a solution
shown (generated by the multi-level super-graph planner). Five car-like robots
are in a narrow corridor, and they are to reverse their order.

7.1 Discretisation of the multi-robot planning problem

The first step of our multi-robot planning scheme consists of computing a simple
roadmap, that is, a roadmap for the simple robot A. We assume that this
roadmap is stored as a graph G = (V,E), with the nodes V corresponding to
collision-free configurations, and the edges E to feasible paths, also referred to
as local paths. We say a node blocks a local path, if the volume occupied by A
when placed at the node intersects the volume swept by A when moving along
the local path. Basically, any algorithm that constructs roadmaps can be used
in this phase. We will use PPP.

Given a graph G = (V,E) storing a simple roadmap for robot A, we are
interested in solving multi-robot problems using G. We assume here that the
start and goal configurations of the simple robots are present as nodes in G
(otherwise they can easily be added). The idea is that we seek paths in G along
which the robots can go from their start configurations to their goal configu-
rations, but we disallow simultaneous motions, and we also disallow motions
along local paths that are blocked by the nodes at which the other robots
are stationary. We refer to such paths as G-discretised coordinated paths (see
also Figure 15). It can be shown that solving G-discretised problems (instead
of continuous ones) is sufficient to guarantee probabilistic completeness of our
multi-robot planning scheme, if the simple roadmaps are computed with PPP
[46].

294 P. Švestka and M. H. Overmars

Fig. 15. A G-discretised coordinated path for 3 translating disc-robots.

7.2 The super-graph approach

The question now is, given a simple roadmap G = (V,E) for a robot A, how to
compute G-discretised coordinated paths for the composite robot (A1, . . . ,An)
(with ∀i : Ai = A). For this we introduce the notion of super-graphs, that is,
roadmaps for the composite robots obtained by combining n simple roadmaps
together. We discuss two types of such super-graphs. First, in Section 7.2, we
describe a fairly straightforward data-structure, which we refer to as flat super-
graphs. Its structure is simple, and its construction can be performed in a very
time-efficient manner. However, its memory consumption increases dramati-
cally as the number of robots goes up. For reducing this memory consumption
(and, through this, increasing the planners power), we generalise this “flat”
structure to a multi-level one, in Section 7.2. This results in what we refer to
as multi-level super-graphs.

Using flat super-graphs In a flat super-graph FnG, each node corresponds to
a feasible placement of the n simple robots at nodes of G, and each edge corre-
sponds to a motion of exactly one simple robot along a non-blocked local path
of G. So ((x1, . . . , xn), (y1, . . . , yn)), with all xi ∈ V and all yi ∈ V , is an edge
in FnG if and only if (1) xi 6= yi for exactly one i and (2) (xi, yi) is an edge in E
not blocked by any xj with j 6= i. FnG can be regarded as the Cartesian prod-
uct of n simple roadmaps. See Figure 16 for an example of a simple roadmap
with a corresponding flat super-graph. Any path in the G-induced super-graph
describes a G-discretised coordinated path (for the composite robot), and vice-
versa. Hence, the problem of finding G-discretised coordinated paths for our
composite robot reduces to graph searches in FnG. A drawback of flat super-
graphs is their size, which is exponential in n (the number of robots). For a
formal definition of the flat super-graph method we refer to [46].

Probabilistic Path Planning 295

c

a

b

d

G :

F
2

G :

ab ac bc

ad bd

ba ca cb

da db

Fig. 16. At the left we see a simple roadmap G for the shown rectangular robot
A (shown in white, placed at the graph nodes). We assume here that A is a
translational robot, and the areas swept by the local paths corresponding to
the edges of G are indicated in light grey. At the right, we see the flat super-
graph F2

G, induced by G for 2 robots. It consists of two separate connected
components.

Using multi-level super-graphs The multi-level super-graph method aims at
size reduction of the multi-robot data-structure, by combining multiple node-
tuples into single super-nodes. While a node in a flat super-graph corresponds
to a statement that each robot Ai is located at some particular node of G, a
node in a multi-level super-graph corresponds to a statement that each robot
Ai is located in some subgraph of G. But only subgraphs that do not interfere
with each other are combined. We say that a subgraph A interferes with a
subgraph B if a node of A blocks a local path in B, or vice versa. Due to space
limitations, we cannot go into much formal details regarding multi-level super-
graphs. Here we will just describe the main points. The two main questions are
how to obtain the subgraphs, and how to build a super-graph from these in a
proper way.

For obtaining suitable subgraphs, we compute a recursive subdivision of the
simple roadmap G = (V,E), a so-called G-subdivision tree T . Its nodes consist
of connected subgraphs of G, induced by certain subsets of V . The root of T
is the whole graph G. The children (Ṽ1, Ẽ1), . . . , (Ṽ1, Ẽ1) of each internal node
(Ṽ , Ẽ) are chosen such that Ṽ =

⋃
1≤i≤k Ṽi and

⋂
1≤i≤k Ṽi = ∅. Furthermore,

all leafs, consisting of one node and no edges, lie at the same level of the tree
T . This of course in no way defines a unique G-subdivision tree. We just give a
brief sketch of the algorithm that we use for their construction. After the root
r (=G) has been created, a number of its nodes are selected heuristically, and
subgraphs are grown around these “local roots”, until all nodes of r lie in some
subgraph. These subgraphs form the children of r, and the procedure is applied

296 P. Švestka and M. H. Overmars

recursively to each of these. The recursion stops at subgraphs consisting of just
one node, and care is taking to build a perfectly balanced tree.

For n robots, a simple roadmap G = (V,E) together with a G-subdivision
tree T uniquely defines a multi-level super-graphMn

GT . A n-tuple (X1, . . . , Xn)
of equal-level nodes of T is a node of Mn

GT if and only if all subgraphs
Xi in the tuple are mutually non-interfering. We define the edges in Mn

G,T
in terms of the flat super-graph FnG induced by G. A pair of super-nodes
((X1, . . . , Xn), (Y1, . . . , Yn)) forms an edge E inMn

G,T if and only if there exists
an edge e = ((x1, . . . , xn), (y1, . . . , yn)) in FnG with, for all i ∈ {1, . . . , n}, xi
being a node of Xi and yi being a node of Yi. We refer to e as the underlying
flat edge of E. Also, for the i ∈ {1, . . . , n} with xi 6= yi, we refer to the simple
robot Ai as the active robot of E (and to the others as the passive robots).

We want to stress here that the flat super-graph FnG, which can be enormous
for n > 3 (that is, more than 3 robots), is only used for definition purposes.
For the actual construction of our multi-level graphMn

GT we fortunately need
not to compute FnG.

Simulation results show that the size of multi-level super-graphs is consid-
erably smaller than that of equivalent flat super-graphs. Further size-reduction
can be achieved by using what we refer to as sieved multi-level super-graphs.
From experiments we have observed that the connectivity of the free configu-
rations space of the composite robot is typically captured by only a quite small
portion ofMn

GT , namely by that portion constructed from the relatively large
subgraphs in T . For this reason, we construct Mn

GT incrementally. We sort
the subgraphs in T by size, and pick them in reversed order of size. For each
such picked subgraph we extend the super-graph Mn

G,T accordingly. By keep-
ing track of the connected components inMn

GT we can determine the moment
at which the free space connectivity has been captured, and at this point the
super-graph construction is stopped.

7.3 Retrieving the coordinated paths

Paths from multi-level super-graphs do not directly describe coordinated paths
(as opposed to paths from flat super-graphs). For retrieving a coordinated
path from a multi-level super-graph Mn

GT , first the start and goal configura-
tions must be connected by coordinated paths to nodes X and Y of Mn

G,T .
Such retraction paths can be computed by probabilistic motions of the simple
robots. Then, a path PM, connecting X and Y in Mn

GT , must be found, and
transformed to a coordinated path P . For each edge E in PM, we do the fol-
lowing: First, we identify the underlying simple edge e = (a, b), and, within
its subgraph, we move the active robot to a. Then, we move all passive robots
to nodes within their subgraphs that do not block e. And finally we move the

Probabilistic Path Planning 297

active robot to b (again within its subgraph), over the local path correspond-
ing to e. Applied to all the consecutive edges of PM, this yields a coordinated
path that, after concatenation with the two retraction paths, solves the given
multi-robot path planning problem.

It follows rather easily from the definition of multi-level super-graphs that
the described transformation is always possible.

7.4 Application to car-like robots

We have applied both the flat super-graph method as well as the multi-level
super-graph method to car-like robots. We have implemented the planners in
C++, and tested them on a number of realistic problems, involving up to 5
car-like robots moving in the same environment. Below, we give simulation
results from experiments performed with the multi-level super-graph method,
for two different environments. The planner was again run on a Silicon Graphics
Indigo2 workstation with an R4400 processor running at 150 MHZ, rated with
96.5 SPECfp92 and 90.4 SPECint92 on the SPECMARKS benchmark.

For both scenes we have first constructed a simple roadmap with PPP. The
sizes and densities of the two constructed simple roadmaps are sufficient to allow
for the existence of G-discretised solutions to most non-pathetic problems in the
scenes. Then, we have constructed the multi-level super-graphs incrementally
by picking the subgraphs from the G-subdivision tree in order of decreasing
size, as described in Section 7.2. We stopped the construction at the point were
the multi-level super-graphs consisted of just one major component.

We report the sizes of the resulting super-graphs Mn
GT = (VM, EM) and

the time required for their construction. Also we give indications of the times
required for retrieving and smoothing coordinated paths from the resulting
super-graphs. Smoothing is quite essential for obtaining practical solutions,
because the coordinated paths retrieved directly are typically very long and
“ugly”. We use heuristic algorithms for reducing the lengths of the coordinated
paths (For details, see [46]).

The left half of Figure 17 shows the first scene, together with the simple
roadmap G, consisting of 132 nodes and 274 edges, constructed in about 14
seconds. In the table below we shown the sizes and the construction times of
the induced multi-level super-graphs, for 3, 4, and 5 robots. Retrieving and
smoothing coordinated paths required, roughly, something between 10 seconds
(for 3 robots) and 20 seconds (for 5 robots). See Figure 18 for a path retrieved
from the supergraph for 5 robots.

298 P. Švestka and M. H. Overmars

Fig. 17. Two scenes for the multi-robot path planner. Both scenes are shown
together with a simple roadmap G for the indicated rectangular car-like robot.
Not the edges, but the corresponding local paths are shown.

n |VM| |EM| Time
3 408 2532 18.5
4 2256 15216 18.8
5 7080 33120 23.3

The right half of Figure 17 shows the second scene on which we test the
multi-robot planner. In the table below, the sizes and the construction times
of the induced multi-level super-graphs, for 3 and 4 robots, are given. Here,
retrieving and smoothing coordinated paths required was easier. Roughly, it
took about 6 seconds for 3 robots and 8 seconds for 4 robots. See Figure 19 for
a path retrieved from the supergraph for 4 robots.

n |VM| |EM| Time
3 3018 15630 1.2
4 29712 152016 8.1

We see that the data-structures in the second scene are considerably larger
than those required for the first, although the first scene seems to be more
complex. The cause for this must be that the compact structure of the free
space in the second scene as well as the relatively large size of the robot cause
more subgraphs to interfere. Hence, in the second scene, subdivision into smaller
subgraphs is required.

Probabilistic Path Planning 299

1 2 3 4

8765

Fig. 18. Snapshots of a coordinated path in the first scene for 5 robots, retrieved
from the multi-level super-graph.

1 2 3 4

5 6 7 8

Fig. 19. Snapshots of a coordinated path in the second scene for 4 robots,
retrieved from the multi-level super-graph.

300 P. Švestka and M. H. Overmars

7.5 Discussion of the super-graph approach

The presented multi-robot path planning approach seems to be quite flexible,
as well as time and memory efficient. The power of the presented approach
lies in the fact that only self-collision avoidance is dealt with for the composite
robot, while all other (holonomic and nonholonomic) constraints are solved in
the C-spaces of the simple robots.

There remain many possibilities for future improvements. For example,
smarter ways of building the G-subdivision trees probably exist. For many ap-
plications, it even seems sensible to use characteristics of the workspace geom-
etry for determining the subgraphs in the G-subdivision tree. Also, techniques
for analysing the expected running times need to be developed.

We have seen that for up to 5 independent robots the method proves prac-
tical. However, in many applications one has to deal with much larger fleets of
mobile robots. Due to the enormous complexity of such systems, only decoupled
planners can be used here. Decoupled planners however can fall into deadlocks.
Centralised planners could be integrated into existing large scale decoupled
planners for resolving deadlock situations in specific (local) workspace areas
where these could arise. For example, if R is such an area, the global decoupled
planner could enforce a simple rule stating that, at any time instant, no more
than say 4 robots are allowed to be present in R. Path planning within R can
then be done by a centralised planner, like for example the planner presented
in this section.

8 Conclusions

In this chapter an overview has been given on a general probabilistic scheme
PPP for robot path planning. It consists of two phases. In the roadmap con-
struction phase a probabilistic roadmap is incrementally constructed, and can
subsequently, in the query phase, be used for solving individual path planning
problems in the given robot environment. So, unlike other probabilistically
complete methods, it is a learning approach. Experiments with applications of
PPP to a wide variety of path planning problems show that the method is very
powerful and fast. Another strong point of PPP is its flexibility. In order to
apply it to some particular robot type, it suffices to define (and implement)
a robot specific local planner and some (induced) metric. The performance of
the resulting path planner can, if desired, be further improved by tailoring
particular components of the algorithm to some specific robot type.

Important is that probabilistic completeness, for holonomic as well as non-
holonomic robots, can be obtained by the use of local planners that respect
certain general topological properties. Furthermore, there exist some recent re-
sults that, under certain geometric assumptions on the free C-space, link the

Probabilistic Path Planning 301

expected running time and failure probability of the planner to the size of the
roadmap and characteristics of paths solving the particular problem. For exam-
ple, under one such assumption, it can been shown that the expected size of a
probabilistic roadmap required for solving a problem grows only logarithmically
in the complexity of the problem.

Numerous extensions of the approach are possible. One such extension has
been described in this chapter, dealing with the multi-robot path planning
problem. Other possibilities include, for example, path planning in partially
unknown environments, path planning in dynamic environments (e.g., amidst
moving obstacles), and path planning in the presence of movable obstacles.

References

1. J.M. Ahuactzin. Le Fil d’Ariadne: Une Méthode de Planification Générale. Ap-
plication á la Planification Automatique de Trajectoires. PhD thesis, l’Institut
National Polytechnique de Grenoble, Grenoble, France, September 1994.

2. R. Alami, F. Robert, F. Ingrand, and S. Suzuki. Multi-robot cooperation through
incremental plan-merging. In Proc. IEEE Internat. Conf. on Robotics and Au-
tomation, pages 2573–2578, Nagoya, Japan, 1995.

3. J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, and P. Ragha-
van. A random sampling scheme for path planning. To appear in Intern. Journal
of Rob. Research.

4. J. Barraquand and J.-C. Latombe. A Monte-Carlo algorithm for path planning
with many degrees of freedom. In Proc. IEEE Intern. Conf. on Robotics and
Automation, pages 1712–1717, Cincinnati, OH, USA, 1990.

5. J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed repre-
sentation approach. Internat. Journal Robotics Research., 10(6):628–649, 1991.

6. J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles. Algorithmica,
10:121–155, 1993.

7. P. Bessière, J.M. Ahuactzin, E.-G. Talbi, and E. Mazer. The Ariadne’s clew
algorithm: Global planning with local methods. In Proc. The First Workshop on
the Algorithmic Foundations of Robotics, pages 39–47. A. K. Peters, Boston, MA,
1995.

8. S.J. Buckley. Fast motion planning for multiple moving robots. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages 322–326,
Scottsdale, Arizona, USA, 1989.

9. J.F. Canny. The Complexity of Robot Path Planning. MIT Press, Cambridge,
USA, 1988.

10. M. Erdmann and T. Lozano-Pérez. On multiple moving objects. In Proceedings
of the IEEE International Conference on Robotics and Automation, pages 1419–
1424, San Francisco, CA, USA, 1986.

11. P. Ferbach. A method of progressive constraints for nonholonomic motion plan-
ning. Technical report, Electricité de France. SDM Dept., Chatou, France,
September 1995.

302 P. Švestka and M. H. Overmars

12. C. Fernandes, L. Gurvits, and Z.X. Li. Optimal nonholonomic motion planning
for a falling cat. In Z. Li and J.F. Canny, editors, Nonholonomic Motion Planning,
Boston, USA, 1993. Kluwer Academic Publishers.

13. J. Hopcroft, J.T. Schwartz, and M. Sharir. On the complexity of motion plan-
ning for multiple independent objects; PSPACE-hardness of the warehouseman’s
problem. International Journal of Robotics Research, 3(4):76–88, 1984.

14. Th. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees of
freedom - random reflections at C-space obstacles. In Proc. IEEE Internat. Conf.
on Robotics and Automation, pages 3318–3323, San Diego, USA, 1994.

15. Y. Hwang and N. Ahuja. Gross motion planning—a survey. ACM Comput. Surv.,
24(3):219–291, 1992.

16. Y.K. Hwang and P.C. Chen. A heuristic and complete planner for the classical
mover’s problem. In Proc. IEEE Internat. Conf. on Robotics and Automation,
pages 729–736, Nagoya, Japan, 1995.

17. B. Langlois J. Barraquand and J.-C. Latombe. Numerical potential field tech-
niques for robot path planning. IEEE Trans. on Syst., Man., and Cybern.,
22(2):224–241, 1992.

18. P. Jacobs, J.-P. Laumond, and M. Täıx. A complete iterative motion planner for
a car-like robot. Journees Geometrie Algorithmique, 1990.

19. L. Kavraki. Random networks in configuration space for fast path planning. Ph.D.
thesis, Department of Computer Science, Stanford University, Stanford, Califor-
nia, USA, January 1995.

20. L. Kavraki, M.N. Kolountzakis, and J.-C. Latombe. Analysis of probabilistic
roadmaps for path planning. In IEEE International Conference on Robotics and
Automation, pages 3020–3026, Minneapolis, MN, USA, 1996.

21. L. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration space
for fast path planning. In Proc. IEEE Internat. Conf. on Robotics and Automa-
tion, pages 2138–2145, San Diego, USA, 1994.

22. L. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan. Randomized query
processing in robot path planning. In Proc. 27th Annual ACM Symp. on Theory
of Computing (STOC), pages 353–362, Las Vegas, NV, USA, 1995.

23. L. Kavraki, P. Švestka, J.-C. Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high dimensional configuration spaces. IEEE
Trans. Robot. Autom., 12:566–580, 1996.

24. F. Lamiraux and J.-P. Laumond. On the expected complexity of random path
planning. In Proc. IEEE Intern. Conf. on Robotics and Automation, pages 3014–
3019, Mineapolis, USA, 1996.

25. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
USA, 1991.

26. J.-P. Laumond, P.E. Jacobs, M. Täıx, and R.M. Murray. A motion planner for
nonholonomic mobile robots. IEEE Trans. Robot. Autom., 10(5), October 1994.

27. J.-P. Laumond, S. Sekhavat, and M. Vaisset. Collision-free motion planning for a
nonholonomic mobile robot with trailers. In 4th IFAC Symp. on Robot Control,
pages 171–177, Capri, Italy, September 1994.

28. J.-P. Laumond, M. Täıx, and P. Jacobs. A motion planner for car-like robots
based on a mixed global/local approach. In IEEE IROS, July 1990.

Probabilistic Path Planning 303

29. Y.H. Liu, S. Kuroda, T. Naniwa, H. Noborio, and S. Arimoto. A practical algo-
rithm for planning collision-free coordinated motion of multiple mobile robots. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 1427–1432, Scottsdale, Arizona, USA, 1989.

30. P.A. O’Donnell and T. Lozano-Pérez. Deadlock-free and collision-free coordina-
tion of two robotic manipulators. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, pages 484–489, Scottsdale, Arizona, USA,
1989.

31. M.H. Overmars. A random approach to motion planning. Technical Report RUU-
CS-92-32, Dept. Comput. Sci., Utrecht Univ., Utrecht, the Netherlands, October
1992.

32. M.H. Overmars and P. Švestka. A probabilistic learning approach to motion plan-
ning. In Proc. The First Workshop on the Algorithmic Foundations of Robotics,
pages 19–37. A. K. Peters, Boston, MA, 1994.

33. P. Pignon. Structuration de l’Espace pour une Planification Hiérarchisée des
Trajectoires de Robots Mobiles. Ph.D. thesis, LAAS-CNRS and Université Paul
Sabatier de Toulouse, Toulouse, France, 1993. Report LAAS No. 93395 (in
French).

34. J.A. Reeds and R.A. Shepp. Optimal paths for a car that goes both forward and
backward. Pacific Journal of Mathematics, 145(2):367–393, 1991.

35. J.H. Reif and M. Sharir. Motion planning in the presence of moving obstacles.
In Proc. 25th IEEE Symp. on Foundations of Computer Science, pages 144–154,
1985.

36. J.T. Schwartz and M. Sharir. Efficient motion planning algorithms in environ-
ments of bounded local complexity. Report 164, Dept. Comput. Sci., Courant
Inst. Math. Sci., New York Univ., New York, NY, 1985.

37. J.T. Schwartz and M. Sharir. On the ‘piano movers’ problem: III. coordinating
the motion of several independent bodies: The special case of circular bodies
moving amidst polygonal obstacles. International Journal of Robotics Research,
2(3):46–75, 1983.

38. S. Sekhavat and J.-P. Laumond. Topological property of trajectories computed
from sinusoidal inputs for nonholonomic chained form systems. In Proc. IEEE
Internat. Conf. on Robotics and Automation, pages 3383–3388, April 1996.

39. S. Sekhavat, P. Švestka, J.-P. Laumond, and M.H. Overmars. Probabilistic
path planning for tractor-trailer robots. Technical Report 96007, LAAS-CNRS,
Toulouse, France, 1995.

40. S. Sekhavat, P. Švestka, J.-P. Laumond, and M.H. Overmars. Multi-level path
planning for nonholonomic robots using semi-holonomic subsystems. To appear
in Intern. Journal of Rob Research.

41. M. Sharir and S. Sifrony. Coordinated motion planning for two independent
robots. In Proceedings of the Fourth ACM Symposium on Computational Geom-
etry, 1988.

42. P. Souères and J.-P. Laumond. Shortest paths synthesis for a car-like robot. IEEE
Trans. Automatic Control, 41:672–688, 1996.

43. H.J. Sussmann. Lie brackets, real analyticity and geometric control. In R.W.
Brockett, R.S. Millman, and H.J. Sussmann, editors, Differential Geometric Con-
trol Theory. Birkhauser, 1983.

304 P. Švestka and M. H. Overmars

44. H.J. Sussmann. A general theorem on local controllability. SIAM Journal on
Control and Optimization, 25(1):158–194, January 1987.

45. P. Švestka. A probabilistic approach to motion planning for car-like robots.
Technical Report RUU-CS-93-18, Dept. Comput. Sci., Utrecht Univ., Utrecht,
the Netherlands, April 1993.

46. P. Švestka and M.H. Overmars. Coordinated motion planning for multiple car-like
robots using probabilistic roadmaps. In Proc. IEEE Internat. Conf. on Robotics
and Automation, pages 1631–1636, Nagoya, Japan, 1995.

47. P. Švestka and M.H. Overmars. Motion planning for car-like robots using a
probabilistic learning approach. Intern. Journal of Rob Research, 16:119–143,
1995.

48. P. Švestka and M.H. Overmars. Multi-robot path planning with super-graphs.
In Proc. CESA’96 IMACS Multiconference, Lille, France, July 1996.

49. P. Švestka and J. Vleugels. Exact motion planning for tractor-trailer robots.
In Proc. IEEE Internat. Conf. on Robotics and Automation, pages 2445–2450,
Nagoya, Japan, 1995.

50. D. Tilbury, R. Murray, and S. Sastry. Trajectory generation for the n-trailer
problem using goursat normal form. In Proc. IEEE Internat. Conf. on Decision
and Control, San Antonio, Texas, 1993.

51. P. Tournassoud. A strategy for obstacle avoidance and its application to multi-
robot systems. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1224–1229, San Francisco, CA, USA, 1986.

52. S.M. La Valle and S.A. Hutchinson. Multiple-robot motion planning under inde-
pendent objectives. To appear in IEEE Trans. Robot. Autom..

53. F. van der Stappen. Motion Planning amidst Fat Obstacles. Ph.D. thesis, Dept.
Comput. Sci., Utrecht Univ., Utrecht, the Netherlands, October 1994.

54. F. van der Stappen, D. Halperin, and M.H. Overmars. The complexity of the free
space for a robot moving amidst fat obstacles. Comput. Geom. Theory Appl.,
3:353–373, 1993.

	Foreword
	Table of contents
	Introduction
	The Probabilistic Path Planner
	The roadmap construction phase
	The query phase
	Using a directed graph
	Smoothing the paths

	Application to holonomic robots
	Filling in the details
	Simulation results

	Application to nonholonomic robots
	Some previous work on nonholonomic motion planning
	Description of the car-like and tractor-trailer robots
	Application to general car-like robots
	Application to forward car-like robots
	Application to tractor-trailer robots

	On probabilistic completeness of probabilistic path planning
	The general local topology property
	Probabilistic completeness with the used local planners

	On the expected complexity of probabilistic path planning
	The visibility volume assumption
	The path clearance assumption
	The -complexity assumption

	A multi-robot extension
	Discretisation of the multi-robot planning problem
	The super-graph approach
	Retrieving the coordinated paths
	Application to car-like robots
	Discussion of the super-graph approach

	Conclusions

