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1 Introduction

The subject of this chapter is the control problem for nonholonomic wheeled
mobile robots moving on the plane, and in particular the use of feedback tech-
niques for achieving a given motion task.

In automatic control, feedback improves system performance by allowing the
successful completion of a task even in the presence of external disturbances
and/or initial errors. To this end, real-time sensor measurements are used to
reconstruct the robot state. Throughout this study, the latter is assumed to
be available at every instant, as provided by proprioceptive (e.g., odometry) or
exteroceptive (sonar, laser) sensors.

We will limit our analysis to the case of a robot workspace free of obstacles.
In fact, we implicitly consider the robot controller to be embedded in a hierar-
chical architecture in which a higher-level planner solves the obstacle avoidance
problem and provides a series of motion goals to the lower control layer. In this
perspective, the controller deals with the basic issue of converting ideal plans
into actual motion execution. Wherever appropriate, we shall highlight the in-
teractions between feedback control and motion planning primitives, such as
the generation of open-loop commands and the availability of a feasible smooth
path joining the current robot position to the destination.

The specific robotic system considered is a vehicle whose kinematic model
approximates the mobility of a car. The configuration of this robot is repre-
sented by the position and orientation of its main body in the plane, and by
the angle of the steering wheels. Two velocity inputs are available for motion
control. This situation covers in a realistic way many of the existing robotic
vehicles. Moreover, the car-like robot is the simplest nonholonomic vehicle that
displays the general characteristics and the difficult maneuverability of higher-
dimensional systems, e.g., of a car towing trailers. As a matter of fact, the
control results presented here can be directly extended to more general kine-
matics, namely to all mobile robots admitting a chained-form representation.
In particular, our choice encompasses the case of unicycle kinematics, another
ubiquitous model of wheeled mobile robot, for which simple but specific feed-
back control methods can also be derived.
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The nonholonomic nature of the car-like robot is related to the assump-
tion that the robot wheels roll without slipping. This implies the presence of
a nonintegrable set of first-order differential constraints on the configuration
variables. While these nonholonomic constraints reduce the instantaneous mo-
tions that the robot can perform, they still allow global controllability in the
configuration space. This unique feature leads to some challenging problems
in the synthesis of feedback controllers, which parallel the new research issues
arising in nonholonomic motion planning. Indeed, the wheeled mobile robot
application has triggered the search for innovative types of feedback controllers
that can be used also for more general nonlinear systems.

In the rest of this introduction, we present a classification of motion control
problems, discussing their intrinsic difficulty and pointing out the relationships
between planning and control aspects.

1.1 Problem classification

In order to derive the most suitable feedback controllers for each case, it is
convenient to classify the possible motion tasks as follows:

– Point-to-point motion: The robot must reach a desired goal configuration
starting from a given initial configuration.

– Path following: The robot must reach and follow a geometric path in the
cartesian space starting from a given initial configuration (on or off the
path).

– Trajectory tracking: The robot must reach and follow a trajectory in the
cartesian space (i.e., a geometric path with an associated timing law) start-
ing from a given initial configuration (on or off the trajectory).

The three tasks are sketched in Fig. 1, with reference to a car-like robot.
Using a more control-oriented terminology, the point-to-point motion task is

a stabilization problem for an (equilibrium) point in the robot state space. For a
car-like robot, two control inputs are available for adjusting four configuration
variables, namely the two cartesian coordinates characterizing the position of
a reference point on the vehicle, its orientation, and the steering wheels angle.
More in general, for a car-like robot towing N trailers, we have two inputs for
reconfiguring n = 4+N states. The error signal used in the feedback controller
is the difference between the current and the desired configuration.
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Fig. 1. Motion tasks: Point-to-point motion (a), Path following (b), Trajectory
tracking (c)
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In the path following task, the controller is given a geometric description of
the assigned cartesian path. This information is usually available in a param-
eterized form expressing the desired motion in terms of a path parameter σ,
which may be in particular the arc length along the path. For this task, time
dependence is not relevant because one is concerned only with the geometric
displacement between the robot and the path. In this context, the time evolu-
tion of the path parameter is usually free and, accordingly, the command inputs
can be arbitrarily scaled with respect to time without changing the resulting
robot path. It is then customary to set the robot forward velocity (one of the
two inputs) to an arbitrary constant or time-varying value, leaving the second
input available for control. The path following problem is thus rephrased as the
stabilization to zero of a suitable scalar path error function (the distance d to
the path in Fig. 1b) using only one control input. For the car-like robot, we shall
see that achieving d ≡ 0 implies the control of three configuration variables—
one less than the dimension of the configuration space—because higher-order
derivatives of the controlled output d are related to these variables. Similarly,
in the presence of N trailers, requiring d ≡ 0 involves the control of as many
as n− 1 = N + 3 coordinates using one input.

In the trajectory tracking task, the robot must follow the desired carte-
sian path with a specified timing law (equivalently, it must track a moving
reference robot). Although the trajectory can be split into a parameterized ge-
ometric path and a timing law for the parameter, such separation is not strictly
necessary. Often, it is simpler to specify the workspace trajectory as the de-
sired time evolution for the position of some representative point of the robot.
The trajectory tracking problem consists then in the stabilization to zero of
the two-dimensional cartesian error e (see Fig. 1c) using both control inputs.
For the car-like robot, imposing e ≡ 0 over time implies the control of all four
configuration variables. Similarly, in the presence of N trailers, we are actually
controlling n = N + 4 coordinates using two inputs.

The point stabilization problem can be formulated in a local or in a global
sense, the latter meaning that we allow for initial configurations that are arbi-
trarily far from the destination. The same is true also for path following and
trajectory tracking, although locality has two different meanings in these tasks.
For path following, a local solution means that the controller works properly
provided we start sufficiently close to the path; for trajectory tracking, close-
ness should be evaluated with respect to the current position of the reference
robot.

The amount of information that should be provided by a high-level motion
planner varies for each control task. In point-to-point motion, information is
reduced to a minimum (i.e., the goal configuration only) when a globally sta-
bilizing feedback control solution is available. However, if the initial error is
large, such a control may produce erratic behavior and/or large control effort
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which are unacceptable in practice. On the other hand, a local feedback solu-
tion requires the definition of intermediate subgoals at the task planning level
in order to get closer to the final desired configuration.

For the other two motion tasks, the planner should provide a path which
is kinematically feasible (namely, which complies with the nonholonomic con-
straints of the specific vehicle), so as to allow its perfect execution in nominal
conditions. While for an omnidirectional robot any path is feasible, some degree
of geometric smoothness is in general required for nonholonomic robots. Nev-
ertheless, the intrinsic feedback structure of the driving commands enables to
recover transient errors due to isolated path discontinuities. Note also that the
unfeasibility arising from a lack of continuity in some higher-order derivative of
the path may be overcome by appropriate motion timing. For example, paths
with discontinuous curvature (like the Reeds and Shepp optimal paths under
maximum curvature constraint) can be executed by the real axle midpoint of
a car-like vehicle provided that the robot is allowed to stop, whereas paths
with discontinuous tangent are not feasible. In this analysis, the selection of
the robot representative point for path/trajectory planning is critical.

The timing profile is the additional item needed in trajectory tracking con-
trol tasks. This information is seldom provided by current motion planners,
also because the actual dynamics of the specific robot are typically neglected
at this level. The above example suggests that it may be reasonable to enforce
already at the planning stage requirements such as ‘move slower where the path
curvature is higher’.

1.2 Control issues

From a control point of view, the previously described motion tasks are defined
for the nonlinear system

q̇ = G(q)v, (1)

representing the kinematic model of the robot. Here, q is the n-vector of robot
generalized coordinates, v is the m-vector of input velocities (m < n), and the
columns gi (i = 1, . . . ,m) of matrix G are smooth vector fields. For the car-like
robot, it is n = 4 and m = 2.

The above model can be directly derived from the nonintegrable rolling
constraints governing the system kinematic behavior. System (1) is driftless,
a characteristic of first-order kinematic models. Besides, its nonlinear nature
is intrinsically related to the nonholonomy of the original Pfaffian constraints.
In turn, it can be shown that this is equivalent to the global accessibility of
the n-dimensional robot configuration space—in spite of the reduced number
of inputs.
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Interestingly, the nonholonomy of system (1) reverses the usual order of dif-
ficulty of robot control tasks. For articulated manipulators, and in general for
all mechanical systems with as many control inputs as generalized coordinates,
stabilization to a fixed configuration is simpler than tracking a trajectory. In-
stead, stabilizing a wheeled mobile robot to a point is more difficult than path
following or trajectory tracking.

A simple way to appreciate such a difference follows from the general discus-
sion of the previous section. The point-to-point task is actually an input-state
problem with m = 2 inputs and n controlled states. The path following task
is an input-output problem with m = 1 input and p = 1 controlled output,
implying the indirect control of n − 1 states. The trajectory tracking task is
again an input-output problem with m = 2 inputs and p = 2 controlled out-
puts, implying the indirect control of n states. As a result, the point-to-point
motion task gives rise to the most difficult control problem, since we are try-
ing to control n independent variables using only two input commands. The
path following and trajectory tracking tasks have a similar level of difficulty,
being ‘square’ control problems (same number of control inputs and controlled
variables).

This conclusion can be supported by a more rigorous controllability analysis.
In particular, one can test whether the above problems admit an approximate
solution in terms of linear control design techniques. We shall see that if the
system (1) is linearized at a fixed configuration, the resulting linear system
is not controllable. On the other hand, the linearization of eq. (1) about a
smooth trajectory gives rise to a linear time-varying system that is controllable,
provided some persistency conditions are satisfied by the reference trajectory.

The search for a feedback solution to the point stabilization problem is
further complicated by a general theoretical obstruction. Although the kine-
matic model (1) can be shown to be controllable using nonlinear tools from
differential geometry, it fails to satisfy a necessary condition for stabilizabil-
ity via smooth time-invariant feedback (Brockett’s theorem). This means that
the class of stabilizing controllers should be suitably enlarged so as to include
nonsmooth and/or time-varying feedback control laws.

We finally point out that the design of feedback controllers for the path
following task can be tackled from two opposite directions. In fact, by separat-
ing the geometric and timing information of a trajectory, path following may
be seen as a subproblem of trajectory tracking. On the other hand, looking at
the problem from the point of view of controlled states (in the proper coordi-
nates), path following appears as part of a point stabilization task. The latter
philosophy will be adopted in this chapter.
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1.3 Open-loop vs. closed-loop control

Some comments are now appropriate concerning the relationships between the
planning and control phases in robot motion execution.

Essentially, we regard planning and open-loop (or feedforward) control as
synonyms, as opposed to feedback control. In a general setting, a closed-loop
controller results from the superposition of a feedback action to a coherent
feedforward term. The latter is determined based on a priori knowledge about
the motion task and the environment, which may have been previously acquired
by exteroceptive sensors. Feedback control is instead computed in real-time
based on external/internal sensor data.

However, the borderline between open-loop and closed-loop control solu-
tions may not be so sharp. In fact, we may use repeated open-loop phases,
replanned at higher rates using new sensor data to gather information on the
actual state. In the limit, continuous sensing and replanning leads to a feedback
solution. Although this scheme is conceptually simple, its convergence analysis
may not be easy. Thus, we prefer to consider the planning and control phases
separately.

For wheeled mobile robots, the usual output of the planning phase, which
takes into account the obstacle avoidance requirement, is a kinematically fea-
sible path with associated nominal open-loop commands. To guarantee fea-
sibility, the planner may either take directly into account the nonholonomic
constraints in the generation of a path, or create a preliminary holonomic path
with standard techniques and then approximate it with a concatenation of
feasible subpaths.

In the planning phase, it is also possible to include an optimality criterion
together with system state and input constraints. It is often possible to obtain
a solution by applying optimal (open-loop) control results. A typical cost cri-
terion for the car-like robot is the total length of the collision-free path joining
source to destination, while constraints include bounds on the steering angle
as well as on the linear and angular velocity. In any case, the resulting com-
mands are computed off-line. Hence, unmodeled events at running time, such as
occasional slipping of the wheels or erroneous initial localization, will prevent
the successful completion of a point-to-point motion or the correct tracing of a
desired path.

The well-known answer to such problems is resorting to a feedback con-
troller, driven by the current task error, so as to achieve some degree of ro-
bustness. However, this should by no means imply the abdication to the use
of the nominal open-loop command computed in the planning phase, which is
included as the feedforward term in the closed-loop controller. As soon as the
task error is zero, the feedback signal is not in action and the output command
of the controller coincides with the feedforward term.
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The path and trajectory tracking controllers presented in this chapter agree
with this combined approach. In fact, the feedforward represents the anticipa-
tive action needed to drive the robot along the desired nominal motion. We
point out that a shortcoming arises when the planner generates optimal feed-
forward commands that are at their saturation level, because this leaves no
room for the correcting feedback action. This is a common problem in open-
loop optimal control; unfortunately, optimal feedback control laws for nonlinear
systems are quite difficult to obtain in explicit form.

On the other hand, it follows from the discussion in Sect. 1.1 that no feedfor-
ward is required in principle for the point stabilization task, so that the executed
trajectory results from the feedback action alone. While this approach may be
satisfactory for fine motion tasks, in gross motion a pure feedback control may
drive the mobile robot toward the goal in an unpredictable way. In this case, a
closer integration of planning and control would certainly improve the overall
performance.

1.4 Organization of contents

We will present some of the most significant feedback control strategies for the
different robot motion tasks. For each method, we discuss the single design steps
and illustrate the typical performance by simulations. Results are presented in
a consistent way in order to allow for comparisons. The organization of the rest
of the chapter is as follows.

Section 2 is devoted to preliminary material. The kinematic model of the
car-like robot is introduced, stating the main assumptions and distinguishing
the cases of rear-wheel and front-wheel driving. We analyze the local control-
lability properties at a configuration and about a trajectory. Global controlla-
bility is proved in a nonlinear setting and a negative result concerning smooth
feedback stabilizability is recalled. This section is concluded by presenting the
chained-form transformation of the model and its essential features.

In Sect. 3 we address the trajectory tracking problem. The generation of
suitable feedforward commands for a given smooth trajectory is discussed. In
particular, we point out how geometric and timing information can be handled
separately. A simple linear controller is devised for the chained-form represen-
tation of the car-like robot, using the approximate system linearization around
the nominal trajectory. Then, we present two nonlinear controllers based on
exact feedback linearization. The first uses static feedback to achieve input-
output linearization for the original kinematic model of the car-like robot. The
second is a full-state linearizing dynamic feedback designed on the chained-form
representation. Both guarantee global tracking with prescribed linear error dy-
namics.
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In Sect. 4 two time-varying feedback control laws are presented, both solving
the point stabilization as well as the path following problem. The two controllers
are globally defined on chained-form representations. The first is a smooth
time-varying controller based on a Lyapunov analysis of skew-symmetric forms.
The second is a nonsmooth time-varying feedback controller inspired by the
backstepping approach. Convergence rates of the two methods are discussed
and illustrated by simulations.

Section 5 summarizes the obtained results and indicates some possible ex-
tensions of the control problem to address the limitations arising in real-world
problems.

In the exposition, we shall limit the references only to the basic sources from
which the presented material is drawn. In the concluding section, however, a
reasoned guide to further related literature is given.

2 Modeling and analysis of the car-like robot

In this section, we shall first derive the kinematic equations of a car-like robot
and then analyze the fundamental properties of the corresponding system from
a control viewpoint.

2.1 Kinematic modeling

The main feature of the kinematic model of wheeled mobile robots is the pres-
ence of nonholonomic constraints due to the rolling without slipping condition
between the wheels and the ground. The case of a single wheel is analyzed first.

Consider a wheel that rolls on a plane while keeping its body vertical,
as shown in Fig. 2. This kind of system is also referred to as a unicycle. Its
configuration can be described by a vector q of three generalized coordinates,
namely the position coordinates x, y of the point of contact with the ground
in a fixed frame and the angle θ measuring the wheel orientation with respect
to the x axis. The system generalized velocities q̇ cannot assume independent
values; in particular, they must satisfy the constraint

[
sin θ − cos θ 0

]  ẋẏ
θ̇

 = 0, (2)

entailing that the linear velocity of the wheel center lies in the body plane of
the wheel (zero lateral velocity).

Equation (2) is a typical example of Pfaffian constraint C(q)q̇ = 0, i.e.,
linear in the generalized velocities. As a consequence, all admissible generalized
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y
θ

Fig. 2. Generalized coordinates of a unicycle

velocities are contained in the null space of the constraint matrix C(q). In this
case, one obtains

q̇ =

 cos θ
sin θ

0

 v1 +

0
0
1

 v2, (3)

where v1 and v2 are respectively the linear velocity of the wheel and its angular
velocity around the vertical axis. As the choice of a basis for the null space of
matrix C is not unique, the components of v may also assume different mean-
ings. Moreover, they may have no direct relationship with the actual controls
available, that are in general forces or torques. For this reason, eq. (3) is called
the kinematic model of the unicycle.

Let us now turn to a robot having the same kinematics of an automobile, as
shown in Fig. 3. For simplicity, assume that the two wheels on each axle (front
and rear) collapse into a single wheel located at the midpoint of the axle (car-
like model). The front wheel can be steered while the rear wheel orientation
is fixed. The generalized coordinates are q = (x, y, θ, φ), where x, y are the
cartesian coordinates of the rear wheel, θ measures the orientation of the car
body with respect to the x axis, and φ is the steering angle.

The system is subject to two nonholonomic constraints, one for each wheel:

ẋf sin(θ + φ)− ẏf cos(θ + φ) = 0
ẋ sin θ − ẏ cos θ = 0,

with xf , yf denoting the cartesian coordinates of the front wheel. By using the
rigid-body constraint

xf = x+ ` cos θ
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Fig. 3. Generalized coordinates of a car-like robot

yf = y + ` sin θ,

where ` is the distance between the wheels, the first kinematic constraint be-
comes

ẋ sin(θ + φ)− ẏ cos(θ + φ)− θ̇ ` cosφ = 0.

The Pfaffian constraint matrix is

C(q) =
[

sin(θ + φ) − cos(θ + φ) −` cosφ 0
sin θ − cos θ 0 0

]
,

and has constant rank equal to 2.
If the car has rear-wheel driving, the kinematic model is derived as

ẋ
ẏ

θ̇

φ̇

 =


cos θ
sin θ

tanφ/`
0

 v1 +


0
0
0
1

 v2, (4)

where v1 and v2 are the driving and the steering velocity input, respectively.
There is a model singularity at φ = ±π/2, where the first vector field has a
discontinuity. This corresponds to the car becoming jammed when the front
wheel is normal to the longitudinal axis of the body. However, the importance
of this singularity is limited, due to the restricted range of the steering angle φ
in most practical cases.
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The model for front-wheel driving is obtained as


ẋ
ẏ

θ̇

φ̇

 =


cos θ cosφ
sin θ cosφ

sinφ/`
0

 v1 +


0
0
0
1

 v2,

where the driving velocity v1 refers now to the front wheel. Note that the
previous singularity does not occur in this model; in fact, at φ = ±π/2 the car
can still (in principle) pivot about its rear wheel.

An interesting format for the kinematic equations of a front-wheel drive
car can be obtained by means of a change of coordinates and an input trans-
formation. In particular, define the alternative set of generalized coordinates
(xf , yf , δ, θ), where δ = θ+ φ is the absolute steering angle with respect to the
x-axis (see Fig. 3). By using the input transformation

w1 = v1

w2 =
1
`

sin(δ − θ)v1 + v2,

it is easy to show that


ẋf
ẏf
δ̇

θ̇

 =


cos δ
sin δ

0
sin(δ − θ)/`

w1 +


0
0
1
0

w2.

Note that the first three equations are those of a unicycle. As a matter of fact,
the above model is equivalent to a unicycle with one trailer hooked at the center
of the wheel. Correspondingly, the new input w2 is the absolute (i.e., measured
w.r.t. the x axis) steering velocity of the front wheel. Other state and input
transformations of the car-like kinematics will be presented in Sect. 2.3.

Throughout the rest of this chapter, we shall be dealing with the rear-wheel
drive model (4). It has to be mentioned that a more complete kinematic model
should include also the rotation angles of each wheel as generalized coordinates,
in order to account for the presence of actuators and sensors on the wheel axis
as well as for typical nonidealities such as tire deformation. Nevertheless, our
model captures the essence of the vehicle kinematics and is well suited for
control purposes.



Feedback Control of a Nonholonomic Car-Like Robot 183

2.2 Controllability analysis

Equation (4) may be rewritten as

q̇ = g1(q)v1 + g2(q)v2, with g1 =


cos θ
sin θ

tanφ/`
0

 , g2 =


0
0
0
1

 . (5)

The above system is nonlinear, driftless (i.e., no motion takes place under zero
input) and there are less control inputs than generalized coordinates.

Although any driver’s experience indicates that a car-like robot should be
completely controllable, it is not trivial to establish such property on a math-
ematical basis. In particular, we shall see that an approximate linear analysis
is not sufficient in general to achieve this goal.

Controllability at a point As system (5) is driftless, any configuration qe
is an equilibrium point under zero input. The easiest way to investigate its
controllability at qe is to consider the corresponding linear approximation

˙̃q = g1(qe)v1 + g2(qe)v2 = G(qe)v,

where q̃ = q−qe. The rank of the controllability matrix G(qe) is two. Hence, the
linearized system is not controllable so that a linear controller will not work,
not even locally.

A useful tool that allows to test the controllability of driftless nonlinear
systems is the Lie Algebra rank condition [18]. In our case, this boils down to
check whether

rank [g1 g2 [g1, g2] [g1, [g1, g2]] [g2, [g1, g2]] . . . ] = 4.

For system (5), the first two Lie brackets are computed as

[g1, g2] =


0
0

−1/` cos2 φ
0

 , [g1, [g1, g2]] =


− sin θ/` cos2 φ
cos θ/` cos2 φ

0
0

 .
It is easy to verify that, away from the model singularity φ = ±π/2, the above
rank is 4, so that the car-like robot is certainly controllable whenever the steer-
ing angle is different from ±π/2. Using the fact that φ can be modified at
will through the control input v2, it can be shown that the system is actually
controllable everywhere.
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As for the stabilizability of system (5), the failure of the previous linear
analysis indicates that exponential stability in the sense of Lyapunov cannot
be achieved by smooth feedback [45]. However, things turn out to be even worse:
it is not possible to stabilize at all the system at qe by using a smooth (in fact,
continuous) time-invariant feedback law v = v(q). This negative result can be
readily established on the basis of Brockett’s theorem [6], which implies that a
necessary condition for smooth stabilizability of a driftless regular system (i.e.,
such that the input vector fields are linearly independent at qe) is that the
number of inputs equals the number of states. Since this is not the case, such
condition is violated.

The above limitation has a deep impact on the control design approach.
To obtain a point stabilizing controller it is either necessary to give up the
continuity requirement, or to resort to time-varying control laws v = v(q, t). In
Sect. 4 we shall pursue the latter approach.

Controllability about a trajectory Consider now a desired reference state
trajectory qd(t) = (xd(t), yd(t), θd(t), φd(t)) for the car-like robot. In order to be
feasible, this trajectory must satisfy the nonholonomic constraints on the vehi-
cle motion. The generation of such trajectories as well as of the corresponding
reference velocity inputs vd1 and vd2 will be addressed in Sect. 3.

Defining q̃(t) = q(t) − qd(t) and ṽ(t) = v(t) − vd(t), the approximate lin-
earization of system (5) about the reference trajectory is obtained as

˙̃q = A(t)q̃ +B(t)ṽ, (6)

with

A(t) =
2∑
i=1

vdi(t)
∂gi
∂q

∣∣∣∣
q=qd(t)

, B(t) = G(qd(t)).

Simple computations yield

A(t) =


0 0 − sin θd(t)vd1(t) 0
0 0 cos θd(t)vd1(t) 0
0 0 0 vd1(t)/` cos2 θd(t)
0 0 0 0

 , B(t) =


cos θd(t) 0
sin θd(t) 0

tan θd(t)/` 0
0 1

 .
Note that the linearized system is time-varying through the dependence on
time of the reference trajectory. As a consequence, the controllability analysis
is more involved than in the time-invariant case, and would consist in testing
whether the controllability Gramian is nonsingular [19].

For illustration, we consider the special case of a linear trajectory with
constant velocity, in which one falls upon a time-invariant system. In fact, in
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this situation we have vd1(t) ≡ vd1 (a constant nonzero value) and vd2(t) ≡ 0.
Besides, θd(t) ≡ θd(t0) and φ(t) ≡ 0. The controllability condition is

rank
[
B AB A2B A3B

]
= 4.

It is easy to verify that the controllability matrix has a single nonzero 4×4 minor
whose value is −u3

d1/`
2 cos4 θd. Therefore, the linearized system is controllable

as long as θd 6= ±π/2 and ud1 6= 0 (which is not unexpected, since for ud1 = 0
the trajectory would collapse to a point). This implies that system (5) can be
locally stabilized about the reference trajectory by a linear feedback.

Although the above analysis has been carried out for a linear reference
trajectory, we shall see in Sect. 3 that it is possible to design a locally stabilizing
linear feedback for arbitrary feasible trajectories provided they do not come to
a stop.

2.3 Chained forms

The existence of canonical forms for kinematic models of nonholonomic robots
is essential for the systematic development of both open-loop and closed-loop
control strategies. The most useful canonical structure is the chained form.

The two-input driftless control system

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

...
ẋn = xn−1u1,

(7)

is called (2, n) single-chain form [28]. The two-input case covers many of the
kinematic models of practical wheeled mobile robots. A more general study
would involve multiple chains, with rather straightforward extensions of the
results presented in this chapter.

The chained system (7), although nonlinear, has a strong underlying linear
structure. This clearly appears when u1 is assigned as a function of time, and
is no longer regarded as a control variable. In this case, eq. (7) becomes a
single-input, time-varying linear system.

The (2, n) chained form can be shown to be completely controllable by ap-
plication of the Lie Algebra rank condition. In performing this calculation, one
finds that all Lie brackets above a certain order (namely, n− 2) are identically
zero; this property of the system is called nilpotency.

Necessary and sufficient conditions have been given in [29] for the conversion
of a two-input system like (5) into chained form by means of (i) a change of
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coordinates x = φ(q), and (ii) an invertible input transformation v = β(q)u.
By applying these conditions, one can show that nonholonomic systems with
m = 2 inputs and n = 3 or 4 generalized coordinates can be always put in
chained form.

For example, consider the kinematic model (3) of a unicycle. By letting

x1 = −θ
x2 = x cos θ + y sin θ
x3 = −x sin θ + y cos θ,

and

v1 = x3u1 + u2 = (−x sin θ + y cos θ)u1 + u2

v2 = −u1,

it is easy to see that the transformed system is in (2,3) chained form. Besides,
both the coordinate and the input transformation are globally defined. Note
that the new variables x2 and x3 are simply the cartesian coordinates of the
unicycle evaluated in the mobile frame attached to the robot body and rotated
so as to align the x2 axis with the vehicle orientation.

Let us now consider the car-like robot model (5). Using the change of coor-
dinates

x1 = x
x2 = tanφ/` cos3 θ
x3 = tan θ
x4 = y,

(8)

together with the input transformation

v1 = u1/ cos θ
v2 = −3 sin θ sin2 φu1/` cos2 θ + ` cos3 θ cos2 φu2,

(9)

the system is in (2, 4) chained form

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

ẋ4 = x3u1.

(10)

In this case, the transformation (and thus, the obtained chained form) is only
locally defined in open connected domains which exclude the vehicle orienta-
tions θ = π/2 ± kπ, k ∈ IN . The structure of change of coordinates (8) is
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Fig. 4. Coordinate definition for a path following task

interesting because it can be generalized to nonholonomic systems of higher
dimension, such as the N -trailer robot [46]. In particular, the x1 and xn coor-
dinates can be always chosen as the x and y coordinates of the midpoint of the
last trailer wheel axle.

It is interesting to note that the (2, n) chained form can be also obtained
starting from a different point of view. In particular, assume that the car-like
robot must follow a given path which is parameterized by its arc length. With
reference to Fig. 4, let d be the distance between the rear axle midpoint and
the path, and s be the corresponding value of the path parameter. Denote by
θt the angle between the current tangent to the path and the x axis, and let
θp = θ − θt. The curvature along the path is defined as

c(s) =
dθt
ds
,

which implies

θ̇t = c(s)ṡ. (11)

In the following, we assume that c(·) ∈ C1 and that the path satisfies some
technical conditions (see [44] for details). It is easy to verify that

ṡ = v1 cos θp + θ̇t d (12)

ḋ = v1 sin θp. (13)
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Equations (12–13) may be combined with model (4) in order to derive the
kinematic equations in terms of path coordinates qp = (s, d, θp, φ):


ṡ

ḋ

θ̇p
φ̇

 =



cos θp
1− dc(s)

sin θp(
tanφ
`
− c(s) cos θp

1− dc(s)

)
0

 v1 +


0
0
0
1

 v2. (14)

The above model can be put in the (2, 4) chained form by using the change of
coordinates

x1 = s

x2 = −c′(s)d tan θp − c(s)(1− dc(s))
1 + sin2 θp

cos2 θp
+ (1− dc(s))2 tanφ

` cos3 θp
x3 = (1− dc(s)) tan θp
x4 = d,

(15)

together with the input transformation

v1 =
1− dc(s)

cos θp
u1

v2 = α2(qp)(u2 − α1(qp)u1).

In the above formulas, c′(s) denotes the derivative of c with respect to s, and
we have set

α1(qp) =
∂x2

∂s
+
∂x2

∂d
(1− dc(s)) tan θp +

∂x2

∂θp

(
tanφ (1− dc(s))

` cos θp
− c(s)

)
α2(qp) =

` cos3 θp cos2 φ

(1− dc(s))2
.

Also this chained-form transformation is locally defined in open connected do-
mains, because θp = π/2 ± kπ, k ∈ IN , must be excluded. Note that in the
particular case c(s) ≡ 0, one recovers the previous expressions (8) and (9). In
fact, in this situation the path may be taken as the x-axis of the world frame,
and (s, d, θp) become the coordinates (x, y, θ) of the vehicle.

We conclude this section by pointing out that there are other canonical
forms that can be successfully used in connection with nonholonomic systems,
namely the Čaplygin form and the power form. It is noteworthy that, for m = 2
inputs, the three canonical forms are mathematically equivalent, since there
exist global coordinate transformations that allow to convert one into the oth-
ers [21].
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3 Trajectory tracking

In this section, we consider the problem of tracking a given cartesian trajec-
tory with the car-like robot using feedback control. Both a local and a global
approach will be presented. In the first, we use a standard linear control design
and obtain convergence provided that the car starts sufficiently close to the
desired trajectory. In the second, we pursue a feedback linearization approach,
achieving asymptotic stability for arbitrary initial states via static as well as
dynamic nonlinear feedback.

In the following, extensive use is made of the chained-form representation.
Such system transformation is not strictly necessary, but simplifies considerably
the control design and provides at the same time a framework for the direct
extension of the controllers to vehicles with more complex kinematics. In any
case, the methods presented here can be applied to more general mobile robots,
even those which cannot be put in chained form.

Before moving to the control design, we discuss the problem of generating
state reference trajectories for the car-like robot, both in the original kinematic
description (5) and in the chained form (10).

3.1 Reference trajectory generation

Assume that a feasible and smooth desired output trajectory is given in terms
of the cartesian position of the car rear wheel, i.e.,

xd = xd(t), yd = yd(t), t ≥ t0. (16)

This natural way of specifying the motion of a car-like robot has an appealing
property. In fact, from this information we are able to derive the corresponding
time evolution of the remaining coordinates (state trajectory) as well as of the
associated input commands (input trajectory) as shown hereafter.

The desired output trajectory (16) is feasible when it can be obtained from
the evolution of a reference car-like robot

ẋd = cos θd vd1 (17)
ẏd = sin θd vd1 (18)
θ̇d = tanφd vd1/` (19)
φ̇d = vd2, (20)

for suitable initial conditions (xd(t0), yd(t0), θd(t0), φd(t0)) and piecewise-conti-
nuous inputs vd(t), for t ≥ t0.

Solving for vd1 from eqs. (17) and (18) gives for the first input

vd1(t) = ±
√
ẋ2
d(t) + ẏ2

d(t), (21)
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where the sign depends on the choice of executing the trajectory with forward
or backward car motion, respectively.

Dividing eq. (18) by (17), and keeping the sign of the linear velocity input
into account, we compute the desired orientation of the car as

θd(t) = ATAN2
{
ẏd(t)
vd1(t)

,
ẋd(t)
vd1(t)

}
, (22)

with codomain in all four quadrants.
Differentiating eqs. (17) and (18), and combining the results so as to elimi-

nate v̇d1, we obtain

θ̇d(t) =
ÿd(t)ẋd(t)− ẍd(t)ẏd(t)

v2
d1(t)

.

Plugging this into eq. (19) provides the desired steering angle

φd(t) = arctan
` [ÿd(t)ẋd(t)− ẍd(t)ẏd(t)]

v3
d1(t)

, (23)

which takes values in (−π/2, π/2).
Finally, differentiating (23) and substituting the result in eq. (20) yields the

second input

vd2(t) = `vd1
(˙̇ẏdẋd − ˙̇ẋdẏd) v2

d1 − 3 (ÿdẋd − ẍdẏd) (ẋdẍd + ẏdÿd)
v6
d1 + `2 (ÿdẋd − ẍdẏd)2 , (24)

where we dropped for compactness the time dependence in the right hand side.
Equations (21–24) provide the unique state and input trajectory (modulo

the choice of forward or backward motion) needed to reproduce the desired
output trajectory. These expressions depend only on the values of the output
trajectory (16) and its derivatives up to the third order. Therefore, in order
to guarantee its exact reproducibility, the cartesian trajectory should be three
times differentiable almost everywhere. This fact should be taken into account
at the motion planning level.

For illustration, consider a circular trajectory of radius R to be traced coun-
terclockwise at a constant linear velocity Rω, with the rear wheel of the car
located at the origin at time t0 = 0. We have

xd(t) = R sinωt, yd(t) = R(1− cosωt).

From the previous formulas, when the robot is required to move in the forward
direction, the nominal command inputs are computed as

vd1(t) = Rω, vd2(t) = 0,
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while the unique initial state enabling exact reproduction of the desired trajec-
tory is

xd(0) = 0, yd(0) = 0, θd(0) = 0, φd(0) = arctan
`

R
.

The only situation in which the reference signals (21–24) are not defined
is when vd1(t̄) = 0 for some t̄ ≥ t0. In this case, it is convenient to use a
parameterized trajectory in which the geometric path description is separated
from the timing information. Denoting by σ the path parameter (e.g., the arc
length s) and by σ = σ(t) the time history along the trajectory, one has

ẋd(t) =
d

dσ
xd(σ) · dσ

dt
= x′d(σ(t))σ̇(t)

and a similar expression for ẏd(t) (the prime denotes differentiation with re-
spect to the path parameter). We can then rewrite the linear pseudo-velocity
command at a given point on the path as

wd1(σ) = ±
√
x′d

2(σ) + y′d
2(σ). (25)

The actual linear velocity input is expressed as

vd1(t) = wd1(σ(t))σ̇(t).

The situation vd1(t̄) = 0 is then obtained by letting σ̇(t̄) = 0, with wd1(σ(t̄)) 6=
0.

The desired orientation is computed as

θd(σ) = ATAN2
{
y′d(σ)
wd1(σ)

,
x′d(σ)
wd1(σ)

}
,

which is now always well defined. By performing the time/space separation
also in eqs. (23) and (24), the zero-velocity singularity is similarly avoided,
because only curvature and higher-order information about the path appear in
the expressions of φd(σ) and wd2(σ), with vd2(t) = wd2(σ(t))σ̇(t). We have in
fact

φd(σ) = arctan
`
(
y
′′

d (σ)x
′

d(σ)− x′′d (σ)y
′

d(σ)
)

w3
d1(σ)

and

wd2(σ) =
`wd1

[(
y
′′′

d x
′

d − x
′′′

d y
′

d

)
− 3

(
y
′′

dx
′

d − x
′′

dy
′

d

)(
x
′

dx
′′

d + y
′

dy
′′

d

))
w6
d1 + `2

(
y
′′
dx
′
d − x

′′
dy
′
d

)2 ,
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where we dropped the dependence on σ for compactness.
The derivation of the reference inputs that generate a desired cartesian

trajectory of the car-like robot can also be performed for the (2, 4) chained
form. In fact, with the reference system given by

ẋd1 = ud1

ẋd2 = ud2

ẋd3 = xd2ud1

ẋd4 = xd3ud1,

(26)

from the output trajectory (16) and the change of coordinates (8) we easily
obtain

xd1(t) = xd(t)
xd2(t) = [ÿd(t)ẋd(t)− ẏd(t)ẍd(t)] /ẋ3

d(t)
xd3(t) = ẏd(t)/ẋd(t)
xd4(t) = yd(t),

and

ud1(t) = ẋd(t)
ud2(t) =

[
˙̇ẏd(t)ẋ2

d(t)− ˙̇ẋd(t)ẏd(t)ẋd(t)− 3ÿd(t)ẋd(t)ẍd(t) + 3ẏd(t)ẍ2
d(t)

]
/ẋ4

d(t).

To work out an example for this case, consider a sinusoidal trajectory
stretching along the x axis and starting from the origin at time t0 = 0

xd(t) = t, yd(t) = A sinωt. (27)

The feedforward commands for the chained-form representation are given by

ud1(t) = 1, ud2(t) = −Aω3 cosωt,

while its initial state should be set at

xd1(0) = 0, xd2(0) = 0, xd3(0) = Aω, xd4(0) = 0.

We note that, if the change of coordinates (8) is used, there is an ‘asym-
metric’ singularity in the state and input trajectory when ẋd(t̄) = 0, for some
t̄ > t0. This coincides with the situation θd(t̄) = π/2, where the chained-form
transformation is not defined.

On the other hand, if the chained form comes from the model in path vari-
ables (14) through the change of coordinates (15), the state and input trajectory
needed to track the reference output trajectory s = sd(t), d = dd(t) = 0, t ≥ t0,
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are simply obtained as

xd1(t) = sd(t)
xd2(t) = 0
xd3(t) = 0
xd4(t) = 0

and

ud1(t) = ṡd(t)
ud2(t) = 0,

without any singularity.
Similar developments can be repeated more in general, e.g., for the case of

a nonholonomic mobile robot with N trailers. In fact, once the position of the
last trailer is taken as the system output, it is possible to compute the evolution
of the remaining state variables as well as of the system inputs as functions of
the output trajectory (i.e., of the output and its derivatives up to a certain
order). Not surprisingly, the same is true for the chained form (7) by defining
(x1, xn) as system outputs.

The above property has been also referred to as differential flatness [36],
and is mathematically equivalent to the existence of a dynamic state feedback
transformation that puts the system into a linear and decoupled form consisting
of input-output chains of integrators. The algorithmic implementation of the
latter idea will be shown in Sect. 3.3.

3.2 Control via approximate linearization

We now present a feedback controller for trajectory tracking based on standard
linear control theory. The design makes use of the approximate linearization of
the system equations about the desired trajectory, a procedure that leads to a
time-varying system as seen in Sect. 2.2. A remarkable feature of this approach
in the present case is the possibility of assigning a time-invariant eigenstructure
to the closed-loop error dynamics.

In order to have a systematic procedure that can be easily extended to
higher-dimensional wheeled robots (i.e., n > 4), the method is illustrated for
the chained form case. However, similar design steps for a mobile robot in
original coordinates can be found in [42].

For the chained-form representation (10), denote the desired state and input
trajectory computed in correspondence to the reference cartesian trajectory
as in Sect. 3.1 by (xd1(t), xd2(t), xd3(t), xd4(t)) and ud(t) = (ud1(t), ud2(t)) .
Denote the state and input errors respectively as

x̃i = xdi − xi, i = 1, . . . , 4, ũj = udj − uj , j = 1, 2.
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The nonlinear error equations are

˙̃x1 = ũ1

˙̃x2 = ũ2

˙̃x3 = xd2ud1 − x2u1

˙̃x4 = xd3ud1 − x3u1.

Linearizing about the desired trajectory yields the following linear time-varying
system

˙̃x =


0 0 0 0
0 0 0 0
0 ud1(t) 0 0
0 0 ud1(t) 0

 x̃+


1 0
0 1

xd2(t) 0
xd3(t) 0

 ũ = A(t)x̃+B(t)ũ.

This system shares the same controllability properties of eq. (6), which was
obtained by linearizing the original robot equations (5) about the desired tra-
jectory. For example, it is easily verified that the controllability rank condition
is satisfied along a linear trajectory with constant velocity, which is obtained
for ud1(t) ≡ ud1 (a constant nonzero value) and ud2(t) ≡ 0, implying xd2(t) ≡ 0
and xd3(t) ≡ xd3(t0).

Define the feedback term ũ as the following linear time-varying law

ũ1 = −k1x̃1 (28)

ũ2 = −k2x̃2 −
k3

ud1
x̃3 −

k4

u2
d1

x̃4, (29)

with k1 positive, and k2, k3, k4 such that

λ3 + k2λ
2 + k3λ+ k4

is a Hurwitz polynomial. With this choice, the closed-loop system matrix

Acl(t) =


−k1 0 0 0

0 −k2 −k3/ud1(t) −k4/u
2
d1(t)

−k1xd2(t) ud1(t) 0 0
−k1xd3(t) 0 ud1(t) 0


has constant eigenvalues with negative real part. In itself, this does not guar-
antee the asymptotic stability of de closed-loop time-varying system [20]. As
a matter of fact, a general stability analysis for control law (28-29) is lacking.
However, for specific choices of ud1(t) (bounded away from zero) and ud2(t),
it is possible to use results on slowly-varying linear systems in order to prove
asymptotic stability.
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The location of the closed-loop eigenvalues in the open left half-plane may
be chosen according to the general principle of obtaining fast convergence to
zero of the tracking error with a reasonable control effort. For example, in
order to assign two real negative eigenvalues in −λ1 and −λ2 and two complex
eigenvalues with negative real part, modulus ωn and damping coefficient ζ
(0 < ζ ≤ 1), the gains ki should be selected as

k1 = λ1, k2 = λ2 + 2ζωn, k3 = ω2
n + 2ζωnλ2, k4 = ω2

nλ2.

Note that the overall control input to the chained-form representation is

u = ud + ũ,

with a feedforward and a feedback component. In order to compute the actual
input commands v for the car-like robot, one should use the input transforma-
tion (9). As a result, the driving and steering velocity inputs are expressed as
nonlinear (and for v2, also time-varying) feedback laws.

The choice (29) for the second control input requires ud1 6= 0. Intuitively,
placing the eigenvalues at a constant location will require larger gains as the
desired motion of the variable x1 is coming to a stop. One way to overcome this
limitation is to assign the eigenvalues as functions of the input ud1. For example,
imposing (beside the eigenvalue in −λ1) three coincident real eigenvalues in
−α|ud1|, with α > 0, we obtain

ũ2 = −3α|ud1|x̃2 − 3α2ud1x̃3 − α3|ud1|x̃4, (30)

in place of eq. (29). With this input scaling procedure, the second control input
simply goes to zero when the desired trajectory xd1 stops. We point out that
a rigorous Lyapunov-based proof can be derived for the asymptotic stability of
the control law given by eqs. (28) and (30). This kind of procedure will be also
used in Sect. 4.1.

Simulation results The simple controller (28-29) has been simulated for a
car-like robot with ` = 1 m tracking the sinusoidal trajectory (27), where A = 1
and ω = π. The state at t0 = 0 is

x1(0) = −2, x2(0) = 0, x3(0) = Aω, x4(0) = −1,

so that the car-like robot is initially off the desired trajectory. We have cho-
sen λ1 = λ2 = ωn = 5 and ζ = 1, resulting in four coincident closed-loop
eigenvalues located at −5.

The obtained results are shown in Figs. 5–7 in terms of tracking errors on
the original states x, y, θ and φ, and of actual control inputs v1 and v2 to the
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car-like robot. Once convergence is achieved (approximately, after 2.5 sec), the
control inputs virtually coincide with the feedforward commands associated to
the nominal sinusoidal trajectory, as computed from eqs. (21) and (24).

Since the control design is based on approximate linearization, the con-
trolled system is only locally asymptotically stable. However, extensive simula-
tion shows that, also in view of the chained-form transformation, the region of
asymptotic stability is quite large—although its accurate determination may be
difficult. As a consequence, the car-like robot converges to the desired trajectory
even for large initial errors. The transient behavior, however, may deteriorate
in an unacceptable way.



Feedback Control of a Nonholonomic Car-Like Robot 197

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 5. Tracking a sinusoid with approximate linearization: x (—), y (−−)
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Fig. 6. Tracking a sinusoid with approximate linearization: θ (—), φ (−−)
errors (rad) vs. time (sec)
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Fig. 7. Tracking a sinusoid with approximate linearization: v1 (—) (m/sec), v2

(−−) (rad/sec) vs. time (sec)
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3.3 Control via exact feedback linearization

We now turn to the use of nonlinear feedback design for achieving global sta-
bilization of the trajectory tracking error to zero.

It is well known in robotics that, if the number of generalized coordinates
equals the number of input commands, one can use a nonlinear static (i.e.,
memoryless) state feedback law in order to transform exactly the nonlinear
robot kinematics and/or dynamics into a linear system. In general, the linearity
of the system equations is displayed only after a coordinate transformation in
the state space. On the linear side of the problem, it is rather straightforward
to complete the synthesis of a stabilizing controller. For example, this is the
principle of the computed torque control method for articulated manipulators.

Actually, two types of exact linearization problems can be considered for
a nonlinear system with outputs. Beside the possibility of transforming via
feedback the whole set of differential equations into a linear system (full-state
linearization), one may seek a weaker result in which only the input-output
differential map is made linear (input-output linearization). Necessary and suf-
ficient conditions exist for the solvability of both problems via static feedback,
while only sufficient (but constructive) conditions can be given for the dynamic
feedback case [18].

Consider a generic nonlinear system

ẋ = f(x) +G(x)u, z = h(x), (31)

where x is the system state, u is the input, and z is the output to which we
wish to assign a desired behavior (e.g., track a given trajectory). Assume the
system is square, i.e., the number of inputs equals the number of outputs.

The input-output linearization problem via static feedback consists in look-
ing for a control law of the form

u = a(x) +B(x)r, (32)

with B(x) nonsingular and r an external auxiliary input of the same dimension
as u, in such a way that the input-output response of the closed-loop system
(i.e., between the new inputs r and the outputs z) is linear. In the multi-input
multi-output case, the solution to this problem automatically yields input-
output decoupling, namely, each component of the output z will depend only
on a single component of the input r.

In general, a nonlinear internal dynamics which does not affect the input-
output behavior may be left in the closed-loop system. This internal dynamics
reduces to the so-called clamped dynamics when the output z is constrained to
follow a desired trajectory zd(t). In the absence of internal dynamics, full-state
linearization is achieved. Conversely, when only input-output linearization is
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obtained, the boundedness/stability of the internal dynamics should be ana-
lyzed in order to guarantee a feasible output tracking.

If static feedback does not allow to solve the problem, one can try to obtain
the same results by means of a dynamic feedback compensator of the form

u = a(x, ξ) +B(x, ξ)r
ξ̇ = c(x, ξ) +D(x, ξ)r,

(33)

where ξ is the compensator state of appropriate dimension. Again, the closed-
loop system may or may not contain internal dynamics.

In its simplest form, which is suitable for the current application, the lin-
earization algorithm proceeds by differentiating all system outputs until some
of the inputs appear explicitly. At this point, one tries to invert the differential
map in order to solve for the inputs. If the Jacobian of this map—referred to
as the decoupling matrix of the system—is nonsingular, this procedure gives a
static feedback law of the form (32) that solves the input-output linearization
and decoupling problem.

If the decoupling matrix is singular, making it impossible to solve for all the
inputs at the same time, one proceeds by adding integrators on a subset of the
input channels. This operation, called dynamic extension, converts a system
input into a state of a dynamic compensator, which is driven in turn by a new
input. Differentiation of the outputs continues then until either it is possible to
solve for the new inputs or the dynamic extension process has to be repeated.
At the end, the number of added integrators will give the dimension of the
state ξ of the nonlinear dynamic controller (33). The algorithm will terminate
after a finite number of iterations if the system is invertible from the chosen
outputs.

In any case, if the sum of the relative degrees (the order of differentiation
of the outputs) equals the dimension of the (original or extended) state space,
there is no internal dynamics and the same (static or dynamic, respectively)
control law yields full-state linearization. In the following, we present both a
static and a dynamic feedback controller for trajectory tracking.

Input-output linearization via static feedback For the car-like robot
model (5), the natural output choice for the trajectory tracking task is

z =
[
x
y

]
.

The linearization algorithm begins by computing

ż =
[

cos θ 0
sin θ 0

]
v = A(θ)v. (34)
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Fig. 8. Alternative output definition for a car-like robot

At least one input appears in both components of ż, so that A(θ) is the actual
decoupling matrix of the system. Since this matrix is singular, static feedback
fails to solve the input-output linearization and decoupling problem.

A possible way to circumvent this problem is to redefine the system output
as

z =
[
x+ ` cos θ +∆ cos(θ + φ)
y + ` sin θ +∆ sin(θ + φ)

]
, (35)

with ∆ 6= 0. This choice corresponds to selecting the representative point of
the robot as P in Fig. 8, in place of the midpoint of the rear axle.

Differentiation of this new output gives

ż =
[

cos θ − tanφ(sin θ +∆ sin(θ + φ)/`) −∆ sin(θ + φ)
sin θ + tanφ(cos θ +∆ cos(θ + φ)/`) ∆ cos(θ + φ)

]
v = A(θ, φ)v.

Since detA(θ, φ) = ∆/ cosφ 6= 0, we can set ż = r (an auxiliary input value)
and solve for the inputs v as

v = A−1(θ, φ)r.

In the globally defined transformed coordinates (z1, z2, θ, φ), the closed-loop
system becomes

ż1 = r1

ż2 = r2
(36)

θ̇ = sinφ [cos(θ + φ)r1 + sin(θ + φ)r2] /`
φ̇ = − [cos(θ + φ) sinφ/`+ sin(θ + φ)/∆] r1 (37)
− [sin(θ + φ) sinφ/`− cos(θ + φ)/∆] r2,
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which is input-output linear and decoupled (one integrator on each channel).
We note that there exists a two-dimensional internal dynamics expressed by
the differential equations for θ and φ.

In order to solve the trajectory tracking problem, we choose then

ri = żdi + kpi(zdi − zi), kpi > 0, i = 1, 2, (38)

obtaining exponential convergence of the output tracking error to zero, for any
initial condition (z1(t0), z2(t0), θ(t0), φ(t0)). A series of remarks is now in order.

– While the two output variables converge to their reference trajectory with
arbitrary exponential rate (depending on the choice of the kpi’s in eq. (38)),
the behavior of the variables θ and φ cannot be specified at will because it
follows from the last two equations of (36).

– A complete analysis would require the study of the stability of the time-
varying closed-loop system (36), with r given by eq. (38). In practice, one is
interested in the boundedness of θ and φ along the nominal output trajec-
tory. This study may not be trivial for higher-dimensional wheeled mobile
robots, where the internal dynamics has dimension n− 2.

– Having redefined the system outputs as in eq. (35), one has two options
for generating the reference output trajectory. The simplest choice is to
directly plan a cartesian motion to be executed by the point P . On the
other hand, if the planner generates a desired motion xd(t), yd(t) for the
rear axle midpoint (with associated vd1(t), vd2(t) computed from eqs. (21)
and (24)), this must be converted into a reference motion for P by forward
integration of the car-like equations, with v = vd(t) and use of the output
equation (35). In both cases, there is no smoothness requirement for zd(t)
which may contain also discontinuities in the path tangent.

– The output choice (35) is not the only one leading to input-output lin-
earization and decoupling by static feedback. As a matter of fact, the first
two variables of the chained-form transformation (8) are another example
of linearizing outputs, with static feedback given by (9).

Full-state linearization via dynamic feedback In order to design a track-
ing controller directly for the cartesian outputs (x, y) of the car-like robot,
dynamic extension is required in order to overcome the singularity of the de-
coupling matrix in eq. (34). Although the linearization procedure can be con-
tinued using the original kinematic description (5), we will apply it here to
the chained-form representation (10) as a first step toward the extension to
higher-dimensional systems.

In accordance with the task definition, choose the two system outputs as

z =
[
x1

x4

]
,
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namely the x and y coordinates of the robot. Differentiating z with respect to
time gives

ż =
[
ẋ1

ẋ4

]
=
[

1 0
x3 0

]
u,

where the input u2 does not appear, so that the decoupling matrix is singular.
In order to proceed with the differentiation, an integrator (with state denoted
by ξ1) is added on the first input

u1 = ξ1, ξ̇1 = u′1, (39)

with u′1 a new auxiliary input. Using eq. (39), we can rewrite the first derivative
of the output as

ż =
[
ξ1
ξ1x3

]
,

which is independent from the inputs u′1 and u2 of the extended system. In this
way, differentiation of the original input signal at the next step of the procedure
is avoided. We have

z̈ =
[

ξ̇1
ẋ3ξ1 + x3ξ̇1

]
=
[

0
x2ξ

2
1

]
+
[

1 0
x3 0

] [
u′1
u2

]
.

As u2 does not appear yet, we add another integrator (with state denoted by
ξ2) on the input u′1

u′1 = ξ2, ξ̇2 = u′′1 , (40)

obtaining

z̈ =
[

ξ2
x2ξ

2
1 + x3ξ2

]
.

Finally, the last differentiation gives

˙̇ż =
[

0
3x2ξ1ξ2

]
+
[

1 0
x3 ξ

2
1

] [
u′′1
u2

]
. (41)

The matrix weighting the inputs is nonsingular provided that ξ1 6= 0. Under
such assumption—on which we will come back later—we set ˙̇ż = r (an auxiliary
input value) and solve eq. (41) for[

u′′1
u2

]
=
[

r1

(r2 − x3r1 − 3x2ξ1ξ2)/ξ2
1

]
. (42)
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Putting together the dynamic extensions (39) and (40) with eq. (42), the
resulting nonlinear dynamic feedback controller

u1 = ξ1
u2 = (r2 − x3r1 − 3x2ξ1ξ2)/ξ2

1

ξ̇1 = ξ2
ξ̇2 = r1

(43)

transforms the original system into two decoupled chains of three input-output
integrators

˙̇ż1 = r1

˙̇ż2 = r2.

The original system in chained form had four states, whereas the dynamic
controller has two additional states. All these six states are found in the above
input-output description, and hence there is no internal dynamics left. Thus,
full-state linearization has been obtained.

On the linear and decoupled system, it is easy to complete the control design
with a globally stabilizing feedback for the desired trajectory (independently
on each integrator chain). To this end, let

ri = ˙̇żdi + kai(z̈di − z̈i) + kvi(żdi − żi) + kpi(zdi − zi), i = 1, 2, (44)

where the feedback gains are such that the polynomials

λ3 + kaiλ
2 + kviλ+ kpi, i = 1, 2,

are Hurwitz, and z, ż, z̈ are computed from the intermediate steps of the
dynamic extension algorithm as

z =
[
x1

x4

]
ż =

[
ξ1
x3ξ1

]
(45)

z̈ =
[

ξ2
x2ξ

2
1 + x3ξ2

]
.

In order to initialize the chained-form system and the associated dynamic
controller for exact reproduction of the desired output trajectory, we can set
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z = zd(t) and solve eqs. (45) at time t = t0:

x1(t0) = zd1(t0) (= xd(t0))
x2(t0) = [żd1(t0)z̈d2(t0)− z̈d1(t0)żd2(t0)] /ż3

d1(t0)
x3(t0) = żd2(t0)/żd1(t0)
x4(t0) = zd2(t0) (= yd(t0))
ξ1(t0) = żd1(t0)
ξ2(t0) = z̈d1(t0).

Any other initialization of the robot and/or the dynamic controller will pro-
duce a transient state error that converges exponentially to zero, with the rate
specified by the chosen gains in eq. (44).

As mentioned in Sect. 3.1, only trajectories zd(t) = (xd(t), yd(t)) with con-
tinuous second time derivatives are exactly reproducible. In the presence of
lesser smoothness, the car-like robot will deviate from the desired trajectory.
Nonetheless, after the occurrence of isolated discontinuities, the feedback con-
troller (43–44) will be able to drive the vehicle back to the remaining part of
the smooth trajectory at an exponential rate.

The above approach can be easily extended to the general case of the (2, n)
chained form (7). In fact, such representation can be fully transformed via
dynamic feedback into decoupled strings of input-output integrators by defin-
ing the system output as (x1, xn). This result is summarized in the following
proposition.

Proposition 3.1. Consider the (2, n) chained-form system (7) and define its
output as

z =
[
x1

xn

]
. (46)

By using a nonlinear dynamic feedback controller of dimension n−2, the system
can be fully transformed into a linear one consisting of two decoupled chains of
n− 1 integrators, provided that u1 6= 0.

Proof We will provide a constructive solution. Let the dynamic extension be
composed of n− 2 integrators added on input u1

u
(n−2)
1 = ū1, (47)
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with the input u2 unchanged. Denote the states of these integrators by
ξ1, . . . , ξn−2, so that a state-space representation of eq. (47) is

u1 = ξ1

ξ̇1 = ξ2

ξ̇2 = ξ3 (48)
...

ξ̇n−2 = ū1.

The extended system consisting of eqs. (7) and (48) is

ẋ1 = ξ1
ẋ2 = u2

ẋ3 = x2ξ1
ẋ4 = x3ξ1

...
ẋn−1 = xn−2ξ1
ẋn = xn−1ξ1
ξ̇1 = ξ2
ξ̇2 = ξ3

...
ξ̇n−3 = ξn−2

ξ̇n−2 = ū1.

(49)

By applying the linearization algorithm, we have for the first few derivatives of
the output (46):

ż =
[

ξ1
xn−1ξ1

]
z̈ =

[
ξ2

xn−2ξ
2
1 + xn−1ξ2

]
˙̇ż =

[
ξ3

xn−3ξ
3
1 + xn−1ξ3 + 3ξ1ξ2xn−2

]
z(4) =

[
ξ4

xn−4ξ
4
1 + xn−1ξ4 + (6ξ2

1ξ2xn−3 + 4ξ1ξ3xn−2 + 3ξ2
2xn−2)

]
,

...

so that the structure of the (n− 2)-th derivative is

z(n−2) =
[

ξn−2

x2ξ
n−2
1 + xn−1ξn−2 + f(ξ1, ξ2, . . . , ξn−3, x3, x4, . . . , xn−2)

]
,
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where f is a polynomial function of its arguments. The expressions of the
output (46) together with its derivatives up to the (n − 2)-th order induce a
diffeomorphism between (x1, . . . , xn, ξ1, . . . , ξn−2) and (z, ż, . . . , z(n−2)), which
is globally defined except for the manifold ξ1 = 0.

We obtain finally

z(n−1) =
[

0
g(ξ1, ξ2, . . . , ξn−2, x2, x3, . . . , xn−2)

]
+
[

1 0
xn−1 ξ

n−2
1

] [
ū1

u2

]
, (50)

where g is a polynomial function of its arguments. The decoupling matrix of
the extended system is nonsingular provided that ξ1 6= 0 or, equivalently, that
u1 6= 0. Under this assumption, we can set z(n−1) = r and solve eq. (50) for
(ū1, u2). Reorganizing with eq. (48), we conclude that the following nonlinear
dynamic controller of dimension n− 2

u1 = ξ1
u2 =

[
r2 − xn−1r1 − g(ξ1, ξ2, . . . , ξn−2, x2, x3, . . . , xn−2)

]
/ξn−2

1

ξ̇1 = ξ2
...

ξ̇n−3 = ξn−2

ξ̇n−2 = r1

(51)

transforms the original chained-form system (7) with output (46) into the input-
output linear and decoupled system

z(n−1) =

[
x

(n−1)
1

x
(n−1)
n

]
=
[
r1

r2

]
= r.

Since the number of the input-output integrators (2(n− 1)) equals the number
of states of the extended system (n+ (n− 2)), there is no internal dynamics in
the closed-loop system and thus we have obtained full-state linearization and
input-output decoupling.

The above result indicates that dynamic feedback linearization offers a vi-
able control design tool for trajectory tracking, even for higher-dimensional
kinematic models of wheeled mobile robots (e.g., the N -trailer system). The
same dynamic extension technique can be directly applied to the original kine-
matic equations of the wheeled mobile robot, without resorting to the chained-
form transformation. In particular, for the car-like robot (5), similar computa-
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tions show that the dynamic controller takes the form:

v1 = ξ1
v2 = −3ξ2 cos2 φ tanφ/ξ1 − `r1 cos2 φ sin θ/ξ2

1 + `r2 cos2 φ cos θ/ξ2
1

ξ̇1 = ξ2
ξ̇2 = ξ3

1 tan2 φ/`2 + r1 cos θ + r2 sin θ.

(52)

The external inputs r1 and r2 are chosen as in (44), with the values of z, ż and
z̈ given by

z =
[
x
y

]
ż =

[
ξ1 cos θ
ξ1 sin θ

]
(53)

z̈ =
[
−ξ2

1 tanφ sin θ/`+ ξ2 cos θ
ξ2
1 tanφ cos θ/`+ ξ2 sin θ

]
.

The derivation of the initial conditions on (x, y, θ, φ) and (ξ1, ξ2) allowing for
exact reproduction of a smooth trajectory is straightforward using eqs. (53).

The main limitation of the dynamic feedback linearization approach is the
requirement that the compensator state variable ξ1 (which corresponds to v1

if linearization is performed on the original car-like equations, or to u1 if it is
performed on its chained-form representation) should never be zero. In fact,
in this case the second control input (i.e., v2 in eq. (52) and u2 in eq. (43)
or, more in general, in eq. (51)) could diverge. It has been shown that the
occurrence of this singularity in the dynamic extension process is structural for
nonholonomic systems [14]. Therefore, this approach as such is feasible only for
trajectory tracking.

In addition, we note the following facts with specific reference to the con-
troller (52–53) for the car-like robot.

– If the desired trajectory is smooth and persistent, the nominal control input
vd1 does not decay to zero. As the robot is guaranteed to converge exponen-
tially to the desired trajectory, also the actual command v1 will eventually
be bounded away from zero. On the other hand, exact reproduction of
trajectories with linear velocity vanishing to zero (e.g., trajectories with
cusps, where the robot should stop and reverse the direction of motion) is
not allowed with this control scheme.

– Even for smooth persistent trajectories, problems may arise if the command
v1 crosses zero during an initial transient. However, this situation can be
avoided by suitably choosing the initialization of the dynamic controller
(i.e., the states ξ1 and ξ2), which is in practice an additional degree of
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freedom in the design. As a matter of fact, a simple way to keep the actual
commands bounded is to reset the state ξ1 whenever its value falls below a
given threshold. Note that this would result in an input command v that
is discontinuous with respect to time.

The problem of tracking a trajectory starting (or ending) with zero lin-
ear velocity using the above approach can be solved by separating geometric
from timing information in the control law, along the same lines indicated in
Sect. 3.1. Suppose that a smooth path of finite length L has to be tracked
starting and ending with zero velocity, and let σ be the path parameter. The
timing law σ(t) can be any increasing function such that

σ(0) = 0, σ(T ) = L, σ̇(0) = σ̇(T ) = 0,

where T is the final time at which the motion ends. The car-like equations can
be rewritten in the path parameter domain as

x′ = cos θ w1

y′ = sin θ w1

θ′ = tanφw1/`
φ′ = w2,

(54)

with the actual velocity commands vi related to the new inputs wi by

vi(t) = wi(σ(t))σ̇(t), i = 1, 2.

For system (54), one can design a dynamic feedback achieving full-state lin-
earization as before. In this case, tracking errors will converge exponentially
to zero in the σ-domain (instead of the t-domain). Moreover, the control law
is always well-defined since it is possible to show that in the denominator of
w2 only the linear pseudovelocity w1 appears, a geometric quantity which is
always nonzero being related to the path tangent.

Simulation results In order to compare the performance of linear and non-
linear control design, the nonlinear dynamic controller (43-44) computed for
the chained-form representation has been used to track the same sinusoidal
trajectory (27) of Sect. 3.2. The initial condition at t0 = 0 of the car-like robot
(of length ` = 1 m) is the same as before (off the trajectory)

x1(0) = −2, x2(0) = 0, x3(0) = Aω, x4(0) = −1,

with the initial state of the dynamic compensator set at

ξ1(0) = 1, ξ2(0) = 0.
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As for the stabilizing part of the controller, we have chosen the same gains
for both input-output channels, with three coincident closed-loop eigenvalues
located at −5 (kai = 15, kvi = 75, kpi = 125, i = 1, 2).

The results are shown in Figs. 9–11, again in terms of errors on the original
states x, y, θ and φ, and of the actual control inputs v1, v2 for the car-like
robot. A comparison with the analogous plots in Figs. 5–7 shows that the peaks
of the transient errors are approximately halved in this particular case. Also,
the control effort on the linear velocity v1 in Fig. 11 does not reach the large
initial value of Fig. 7, while the control input v2 has a lower average value.
After achieving convergence, the input commands of the nonlinear dynamic
controller are identical to those of the linear one, for they both reduce to the
nominal feedforward needed to execute the desired trajectory. Moreover, as a
result of the imposed linear dynamics of the feedback controlled system, the
transient behavior of the errors is globally exponentially converging to zero, i.e.,
for any initial conditions of the car-like robot and of the dynamic compensator.

We have also simulated the dynamic feedback controller (52–53) designed
directly on the car-like model. Results for a circular and an eight-shaped tra-
jectory are reported in Figs. 12–19, assuming a length ` = 0.1 m for the car.
Note that the small peak of the x error in Fig. 13 is only due to an initial mis-
match of the robot state with respect to the value specified by the higher-order
derivatives of xd(t) (in particular, of ẋd(0)). In fact, in view of the decoupling
property induced by the controller, the value of the initial error along each
cartesian direction does not affect the error behavior and the control action in
the other direction.
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Fig. 9. Tracking a sinusoid with dynamic feedback linearization: x (—), y (−−)
errors (m) vs. time (sec)
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Fig. 10. Tracking a sinusoid with dynamic feedback linearization: θ (—), φ
(−−) errors (rad) vs. time (sec)
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Fig. 11. Tracking a sinusoid with dynamic feedback linearization: v1 (—)
(m/sec), v2 (−−) (rad/sec) vs. time (sec)
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Fig. 12. Tracking a circle with dynamic feedback linearization: stroboscopic
view of the cartesian motion
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Fig. 13. Tracking a circle with dynamic feedback linearization: x (—), y (−−)
errors (m) vs. time (sec)
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Fig. 14. Tracking a circle with dynamic feedback linearization: θ (—), φ (−−)
(rad) vs. time (sec)
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Fig. 15. Tracking a circle with dynamic feedback linearization: v1 (—) (m/sec),
v2 (−−) (rad/sec) vs. time (sec)
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Fig. 16. Tracking an eight figure with dynamic feedback linearization: strobo-
scopic view of the cartesian motion
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Fig. 17. Tracking an eight figure with dynamic feedback linearization: x (—),
y (−−) errors (m) vs. time (sec)
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Fig. 18. Tracking an eight figure with a dynamic feedback linearization: θ (—),
φ (−−) (rad) vs. time (sec)
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Fig. 19. Tracking an eight figure with a dynamic feedback linearization: v1 (—)
(m/sec), v2 (−−) (rad/sec) vs. time (sec)

4 Path following and point stabilization

In this section, we address the problem of driving the car-like robot to a desired,
fixed configuration by using only the current error information, without the
need of planning a trajectory joining the initial point to the final destination.
In doing this, a control solution for the path following task is obtained as an
intermediate step.

As shown in Sect. 2, for nonholonomic mobile robots the point stabiliza-
tion problem is considerably more difficult than trajectory tracking and path
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following. In particular, smooth pure state feedback does not solve the prob-
lem. Recently, the idea of including an exogenous time-varying signal in the
controller has proven to be successful for achieving asymptotic stability [38].
Roughly speaking, the underlying logic is that such a signal allows all compo-
nents of the configuration error to be reflected on the control inputs, so that
the error itself can be asymptotically reduced to zero.

Some physical insight on the role of time-varying feedback can be gained by
thinking about a parallel parking maneuver of a real car. We can reasonably
assume that a human driver controls the vehicle through a front wheel steering
command and a linear velocity command. In order to bring to zero the error
in the lateral direction—along which the car cannot move directly—experience
indicates that an approximately periodic forward/backward motion should be
imposed to the car. This motion is somewhat independent from the lateral
position error with respect to the goal and is used only to sustain the generation
of a net side motion through the combined action of the steering command,
which is instead a function of the position error.

Although natural, this strategy is hard to generalize to more complex vehi-
cle kinematics, whose maneuverability is less intuitive. For this reason, we have
chosen to present here two methods of wide applicability that are designed on
the chained-form representation of the system. In order to emphasize the gener-
ality of the controller design, the case of an n-dimensional system is considered.
We give, however, some details for the case n = 4.

Both the presented feedback laws are time-varying, but they differ in their
dependence from the current state as well as in some methodological aspects.
The first control is either smooth or at least continuous with respect to the
robot state. The second is nonsmooth, in the sense that the state is mea-
sured and fed back only at discrete instants of time. Nevertheless, discarding
this time-discretization aspect, it is also basically continuous with respect to
the state at the desired configuration, contrary to other time-invariant discon-
tinuous feedback laws (see Sect. 6). Both controllers provide inputs that are
continuous with respect to time and are globally defined on the chained-form
representation.

Throughout this section, it will be assumed without loss of generality that
the desired configuration coincides with the origin of the state space.

4.1 Control via smooth time-varying feedback

The smooth feedback stabilization method presented here was proposed in [44].
It exploits the internal structure of chained systems in order to decompose the
solution approach in two design phases. In the first phase, it is assumed that
one control input is given and satisfies some general requirements. The other
control is then designed for achieving stabilization of an (n − 1)-dimensional
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subvector of the system state. At this stage, a solution to the path following
problem has already been obtained. In the second phase, the design is completed
by specifying the first control so as to guarantee convergence of the remaining
variable while preserving the overall closed-loop stability.

As a preliminary step, reorder for convenience the variables of the chained
form by letting

X = (χ1, χ2, . . . , χn−1, χn) = (x1, xn, . . . , x3, x2).

As a consequence, the chained form system (7) becomes

χ̇1 = u1

χ̇2 = χ3u1

χ̇3 = χ4u1

...
χ̇n−1 = χnu1

χ̇n = u2,

(55)

or equivalently

Ẋ = h1(X )u1 + h2u2, h1(X ) =



1
χ3

χ4

...
χn
0


, h2 =



0
0
0
...
0
1


. (56)

For the car-like robot, the above reordering is simply an exchange between the
second and fourth coordinates. Therefore, the cartesian position of the rear
wheel is (χ1, χ2). Analogously, for an N -trailer robot, χ1 and χ2 represent the
cartesian coordinates of the midpoint of the last trailer axle.

Let X = (χ1,X2), with X2 = (χ2, χ3, . . . , χn). In the following, we shall first
pursue the stabilization of X2 to zero, and then the complete stabilization of
X to the origin.
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Path following via input scaling When u1 is assigned as a function of time,
the chained system (56) can be written as

˙̃χ1 = 0

Ẋ2 =



0 u1(t) 0 · · · · · · 0
0 0 u1(t) 0 · · · 0
...

...
0 · · · · · · · · · u1(t) 0
0 · · · · · · · · · 0 u1(t)
0 0 · · · · · · · · · 0


X2 +



0
0
...
0
0
1


u2,

(57)

having set

χ̃1 = χ1 −
∫ t

0

u1(τ)dτ.

The first equation in (57) clearly shows that, when the input u1 is a pri-
ori assigned, the system is no more controllable. However, the structure of the
differential equations for X2 is reminiscent of the controllable canonical form
for linear systems. In particular, when u1 is constant and nonzero, system (57)
becomes time-invariant and its second part is clearly controllable. As a matter
of fact, controllability holds whenever u1(t) is a piecewise-continuous, bounded,
and strictly positive (or negative) function. Under these assumptions, x1 varies
monotonically with time and differentiation with respect to time can be re-
placed by differentiation with respect to χ1, being

d

dt
=

d

dχ1
χ̇1 =

d

dχ1
u1,

and thus

sign(u1)
d

dχ1
=

1
|u1|
· d
dt
.

This change of variable is equivalent to an input scaling procedure (see
Sect. 3.2). Then, the second part of the system may be rewritten as

χ
[1]
2 = sign(u1)χ3

χ
[1]
3 = sign(u1)χ4

...
χ

[1]
n−1 = sign(u1)χn
χ

[1]
n = sign(u1)u′2,

(58)
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with the definitions

χ
[j]
i = sign(u1)

djχi

dχj1
and u′2 =

u2

u1
.

Equation (58) is a linear time-invariant system, an equivalent input-output
representation of which is

χ
[n−1]
2 = sign(u1)n−1u′2.

Such system is controllable and admits an exponentially stable linear feedback
in the form

u′2(X2) = −sign(u1)n−1
n−1∑
i=1

kiχ
[i−1]
2 , (59)

where the gains ki > 0 are chosen so as to satisfy the Hurwitz stability criterion.
Hence, the time-varying control

u2(X2, t) = u1(t)u′2(X2) (60)

globally asymptotically stabilizes the origin X2 = 0.
The above approach provides a solution to the path following problem.

Consider in particular the case of a car-like robot. We have seen at the end of
Sect. 2.3 that the system equations (14) in path coordinates can be transformed
in chained form. By reordering the variables as in eq. (55), χ1 represents the
arc length s along the path, χ2 is the distance d between the car and the path,
while χ3 and χ4 are related to the car steering angle φ and to the relative
orientation θp between the path and the car. Path following requires zeroing
the χ2, χ3 and χ4 variables (i.e., X2 = 0), independently from χ1. Then, for any
piecewise-continuous, bounded, and strictly positive (or negative) u1, eq. (59)
is particularized as

u′2(χ2, χ3, χ4) = −sign(u1)[k1χ2 + k2 sign(u1)χ3 + k3χ4].

Using eq. (60), the path following feedback control law is

u2(χ2, χ3, χ4, t) = −k1|u1(t)|χ2 − k2u1(t)χ3 − k3|u1(t)|χ4,

which can be compared with eq. (30) to appreciate the analogy. Such an ap-
proach was originally proposed in [42] for the path following of a unicycle. From
the above developments, it is clear that it can be applied to any mobile robot
which can be converted into chained form.
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Skew-symmetric chained forms and Lyapunov control design We show
now, by introducing a modified chained form, that it is possible to stabilize
globally the origin X2 = 0 under more general hypotheses, namely that |u1(t)|,
|u̇1(t)| are bounded and u1(t) does not asymptotically tend to zero. An impor-
tant difference with respect to the previous analysis is that u1(t) is allowed to
pass through zero. From there, it will be relatively simple to derive a class of
smooth time-varying feedback laws which stabilize globally the origin X = 0
of the complete system (point stabilization).

Consider the following change of coordinates

z1 = χ1

z2 = χ2

z3 = χ3

zj+3 = kjzj+1 + Lh1zj+2, j = 1, . . . , n− 3,

(61)

where kj (j = 1, . . . , n − 3) is a real positive number and Lh1zj = ∂zj
∂X h1(X )

is the Lie derivative of zj along the vector field h1. One easily verifies that
eq. (61) is a linear, invertible change of coordinates, since the associated Jaco-
bian matrix is of full rank. In particular, X = 0 and X2 = 0 are respectively
equivalent to Z = 0 and Z2 = 0, having set Z = (z1, Z2), Z2 = (z2, z3, . . . , zn).
Moreover, it is Lh2zi = 0 (i = 1, . . . , n− 1) and Lh2zn = 1.

Taking the time derivative of zj+3 and using eq. (56) gives

żj+3 =
∂zj+3

∂X
Ẋ = (Lh1zj+3)u1 + (Lh2zj+3)u2,

and from eq. (61)

Lh1zj+3 = −kj+1zj+2 + zj+4.

As a result, we obtain

żj+3 = (−kj+1zj+2 + zj+4)u1 j = 0, . . . , n− 4

and for the last differential equation

żn = Lh1znu1 + u2.

The original chained system (55) has thus been converted into the following
skew-symmetric chained form

ż1 = u1

ż2 = u1z3

żj+3 = −kj+1u1zj+2 + u1zj+4, j = 0, . . . , n− 4,
żn = −kn−2u1zn−1 + w2,

(62)
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where it was convenient to define the new input signal

w2 = (kn−2zn−1 + Lh1zn)u1 + u2. (63)

The skew-symmetric structure of the above form is clear when writing the
system as follows

ż1 = u1

Ż2 = diag{1, k1, k1k2, . . . ,
n−2∏
j=1

kj} · (S(u1)Z2 + bw2) ,

where

S(u1) =



0 u1

−u1 0 u1
k1

−u1
k1

0 u1
k1k2

− u1
k1k2

0
· · ·

0 u1
n−3∏
j=1

kj

− u1
n−3∏
j=1

kj

0



, b =



0
0
...
...
0
1

n−2∏
j=1

kj


.

The interest of the skew-symmetric form is that it is naturally suited for a
Lyapunov-like analysis, as illustrated by the following result.

Proposition 4.1. Assume that |u1(t)| and |u̇1(t)| are bounded, and let

w2 = −kw2(u1)zn, (64)

where kw2(·) is a continuous application strictly positive on IR − {0}. If this
control law is applied to system (62), the positive function

V (Z2) =
1
2

(
z2

2 +
1
k1
z2

3 +
1

k1k2
z2

4 + · · ·+ 1∏n−2
j=1 kj

z2
n

)

is nonincreasing along the closed-loop system solutions and asymptotically con-
verges to a limit value Vlim which depends on the initial conditions. Moreover, if
u1(t) does not asymptotically tend to zero, it is Vlim = 0 and the origin Z2 = 0
is globally asymptotically stable.
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Proof Computing the time derivative of V , using the last n−1 equations in (62)
and the skew-symmetry of the system matrix, one obtains:

V̇ =
∂V

∂Z2
Ż2 = ZT2 [S(u1)Z2 + bw2] =

1∏n−2
j=1 kj

znw2.

Hence, using the control law (64)

V̇ = − kw2(u1)∏n−2
j=1 kj

z2
n ≤ 0, (65)

which shows that the Lyapunov-like function V is nonincreasing. This in turn
implies that ‖Z2‖ is bounded uniformly with respect to the initial conditions.
Existence and uniqueness of the system solutions also follows.

Since V is nonincreasing and bounded below, it converges to a non-negative
limit value Vlim. Also, kw2(u1) is uniformly continuous as a function of time
because kw2(·) is continuous and |u1(t)|, |u̇1(t)| are bounded. Hence, the right-
hand side of eq. (65) is uniformly continuous along any system solution and,
by application of Barbalat’s lemma [20], V̇ tends to zero. Therefore, kw2(u1)zn
tends to zero. This in turn implies, using the properties of the function kw2(·)
and the boundedness of |u1(t)| and |zn(t)|, that u1(t)zn(t) tends to zero.

We can now proceed in a recursive fashion, exploiting the structure of
eq. (62). Taking the time derivative of u2

1zn, and using the convergence of
u1zn to zero, one gets

d

dt
(u2

1zn) = −kn−2u
3
1zn−1 + o(t), with lim

t→+∞
o(t) = 0. (66)

The function u3
1zn−1 is uniformly continuous along any system solution be-

cause its time derivative is bounded. Therefore, in view of eq. (66) and since
u2

1zn tends to zero, d(u2
1zn)/dt also tends to zero (by application of a slightly

generalized version of Barbalat’s lemma). Hence, both u3
1zn−1 and u1zn−1 tend

to zero. Taking the time derivative of u2
1zj and repeating the above procedure,

one concludes that u1zj tends to zero for j = 2, . . . , n. Through the system
equations, this in turn implies the convergence of Ż2 to zero.

Summing up the squared values of u1zj for j = 2, . . . , n, it is clear that also
u2

1V tends to zero, together with u1V . From the already established convergence
of V (t) to Vlim, we have also that u1Vlim tends to zero, implying Vlim = 0 if
u1(t) does not asymptotically tend to zero.

Once a signal u1(t) satisfying the hypotheses of Prop. 4.1 has been chosen,
we must design a suitable function kw2(u1) and select the constants kj (j =
1, . . . , n−2) appearing in the definition (61) of the skew-symmetric coordinates
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zi (i = 4, . . . , n) and in the control signal (63). As it is often the case, tuning
several control parameters may be rather delicate. However, it is easily verified
that, with the particular choice

kw2(u1) = k′w2
|u1|, k′w2

> 0, (67)

the control u2 given by eqs. (63) and (64) coincides with the eigenvalue as-
signment control (60) associated with the linear time-invariant system (58).
More precisely, there is a one-to-one correspondence between the parameters
of the two control laws. One can thus apply classical linear control methods
to determine these parameters in order to optimize the performance near the
point Z2 = 0, as will be illustrated in Sect. 4.1 in the application to the car-like
robot.

According to Prop. 4.1, any sufficiently regular input u1(t) can be used for
the regulation of Z2 to zero, as long as it does not asymptotically tend to zero.
This leaves the designer with some degrees of freedom in the choice of this
input when addressing a path following problem. For instance, uniform expo-
nential convergence of ‖Z2‖ to zero is obtained when |u1| remains larger than
some positive number. Other sufficient conditions for exponential convergence
of ‖Z2‖ to zero, which do not require u1 to have always the same sign, may
also be derived. For example, if |u̇1| is bounded, then it is sufficient to have |u1|
periodically larger than some positive number.

Finally, we note that the requirement that the signal u1(t) does not asymp-
totically tend to zero can be relaxed. In fact, non-convergence of u1(t) to zero
under the assumption that |u̇1| is bounded implies that

∫ t
0
|u1(τ)|dτ tends to

infinity with t. When using the control (64) with the choice (67), divergence of
this integral is the actual necessary condition for the asymptotic convergence
of ‖Z2‖ to zero. This appears when the control (64) is interpreted as a stabiliz-
ing linear control for the time-invariant system (58) obtained by replacing the
time variable by the aforementioned integral. However, this integral may still
diverge when u1(t) tends to zero ‘slowly enough’ (like t−

1
2 , for example). This

indicates that ‖Z2‖ may converge to zero even when u1 does, a fact that will
be exploited next.

Point stabilization via smooth time-varying feedback Proposition 4.1
suggests a simple way of determining a smooth time-varying feedback law which
globally asymptotically stabilizes the origin Z = 0 of the whole system. In this
case, the role of the control u1 is to complement the action of the control w2

(or, through eq. (63), u2) in order to guarantee asymptotic convergence of z1

to zero as well.

Proposition 4.2. Consider the same control of Prop. 4.1

w2 = −kw2(u1)zn,
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complemented with the following time-varying control

u1 = −ku1z1 + η(Z2, t), ku1 > 0, (68)

where η(Z2, t) is a uniformly bounded and class Cp+1 function (p ≥ 1) with
respect to time, with all successive partial derivatives also uniformly bounded
with respect to time, and such that:

C1: η(0, t) = 0, ∀t;
C2: There exist a time-diverging sequence {ti} (i = 1, 2, . . . ) and a positive

continuous function α(·) such that

‖Z2‖ ≥ l > 0 =⇒
p∑
j=1

(
∂jη

∂tj
(Z2, ti)

)2

≥ α(l) > 0, ∀i.

Under the above controls, the origin Z = 0 is globally asymptotically stable.

Proof It has already been shown that the positive function V (Z2) used in
Prop. 4.1 is nonincreasing along the closed-loop system solutions, implying
that ‖Z2‖ is bounded uniformly with respect to initial conditions.

The first equation of the controlled system is

ż1 = −ku1z1 + η(Z2, t). (69)

This is the equation of a stable linear system subject to the bounded additive
perturbation η(Z2, t). Therefore, existence and uniqueness of the solutions is
ensured, and |z1| is bounded uniformly with respect to initial conditions.

From the expression of u1, and using the regularity properties of η(Z2, t),
it is found that u1 is bounded along the solutions of the closed-loop system,
together with its first derivative. Therefore, Prop. 4.1 applies; in particular,
V (Z2) tends to some positive limit value Vlim, ‖Ż2(t)‖ tends to zero, and Z2(t)
tends to zero if u1(t) does not.

We proceed now by contradiction. Assume that u1(t) does not tend to zero.
Then, ‖Z2(t)‖ tends to zero. By uniform continuity, and in view of condition
C1, η(Z2, t) also tends to zero. Equation (69) becomes then a stable linear
system subject to an additive perturbation which asymptotically vanishes. As
a consequence, z1(t) tends to zero implying, by the expression of u1, that so
does also u1(t), yielding a contradiction. Therefore, u1(t) must asymptotically
tend to zero.

Differentiating the expression of u1 with respect to time, and using the
convergence of u1(t) and ‖Ż2(t)‖ to zero, we get

u̇1(t) =
∂η

∂t
(Z2(t), t) + o(t), with lim

t→+∞
o(t) = 0.
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Since (∂η/∂t)(Z2, t) is uniformly continuous (its time derivative is bounded),
both u̇1(t) and (∂η/∂t)(Z2, t) converge to zero (Barbalat’s lemma). By us-
ing similar arguments, one can also show that the total time derivative of
(∂η/∂t)(Z2(t), t) and (∂2η/∂t2)(Z2(t), t) tend to zero. By repeating the same
procedure as many times as necessary, one obtains that (∂jη/∂tj)(Z2, t) (j =
1, . . . , p) tends to zero. Hence,

lim
t→∞

p∑
j=1

(
∂jη

∂tj
(Z2(t), t)

)2

= 0. (70)

Assume now that Vlim is different from zero. This would imply that ‖Z2(t)‖
remains larger that some positive real number l (which can be calculated from
Vlim). Eq. (70) is then incompatible with the condition C2 imposed on the
function η(Z2, t). Hence, Vlim is equal to zero and Z2 asymptotically converges
to zero. Then, by uniform continuity and using condition C1, η(Z2, t) also tends
to zero. Finally, in view of the expression of u1, asymptotic convergence of z1

to zero follows immediately.

We point out that controls u1 and u2 resulting from Prop. 4.2 are smooth
with respect to the state provided that the functions η(Z2, t) and kw2(u1) are
themselves smooth. On the other hand, if kw2(u1) is chosen as in eq. (67), u2

is only continuous.
In the overall controller, the choices related to u2 (or w2) can be made

along the same lines indicated at the end of Sect. 4.1. In particular, the same
control law (60) based on input scaling can be used. As for u1, the gain ku1 is
typically chosen on the basis of an approximate linearization at the origin. Its
second component η(Z2, t), which introduces an explicit time dependence, is
referred to as the heat function in order to establish a parallel with probabilistic
global minimization methods. The role of η(Z2, t) in the control strategy is
fundamental, for it ‘forces motion’ until the system has not reached the desired
configuration, thus preventing the state from converging to other equilibrium
points.

The conditions imposed by Prop. 4.2 on the heat function η can be easily
met. For example, the three following functions

η1(Z2, t) = ‖Z2‖2 sin t (71)

η2(Z2, t) =
n−2∑
j=0

aj sin(βjt) z2+j (72)

η3(Z2, t) =
n−2∑
j=0

aj
exp(bjz2+j)− 1
exp(bjz2+j) + 1

sin(βjt), (73)
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satisfy the conditions whenever aj 6= 0, bj 6= 0, βj 6= 0, and βi 6= βj for
i 6= j. For the first function, this is obvious. For the second function, the proof
can be found in [43]. The same proof basically applies to the third function,
which has the additional feature of being uniformly bounded with respect to
all its arguments. It should be noted that it is not strictly necessary to use
time-periodic functions.

The choice of a suitable heat function is critical for the overall control
performance. In general, it is observed that functions (72) and (73) behave
better than (71) with respect to the induced asymptotic convergence rate. For
the last two functions, the parameters aj and bj (which characterize the ‘slope’
of η2(Z2, t) and η3(Z2, t) near the origin Z2 = 0) have much influence on the
transient time needed for the solutions to converge to zero.

Application to the car-like robot For the (2, 4) chained form (10) that per-
tains to the car-like robot, the non-trivial part of the change of coordinates (61)
is defined by

z4 = k1χ2 + χ4,

since we have from eq. (56)

Lh1z3 = Lh1χ3 = χ4.

The skew-symmetric form (62) becomes in this case

ż1 = u1

ż2 = u1z3

ż3 = −k1u1z2 + u1z4

ż4 = −k2u1z3 + w2,

with

w2 = (k1 + k2)u1z3 + u2.

In view of Prop. 4.1 and eq. (67), the control input u2 for the skew-symmetric
form is chosen as

u2 = −k′w2
|u1|z4 − (k1 + k2)u1z3

= −k1k
′
w2
|u1|χ2 − (k1 + k2)u1χ3 − k′w2

|u1|χ4. (74)

The value of the three gains k1, k2, and k′w2
can be selected on the basis of

the aforementioned correspondence between the structure of eq. (74) and the
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eigenvalue assignment control (60). In particular, by comparing the expression
of u2 with the input-scaled version (30) of the linear tracking controller, which
assigns three coincident eigenvalues in −α|u1| (with α > 0), we can solve for
the three gains as

k1 = α2/3, k2 = 8α2/3, k′w2
= 3α.

In this association, one should remember that χ2 = x4, χ3 = x3, and χ4 = x2.
In particular, the following gain parameters have been used

k1 = 1/3, k2 = 8/3, kw2 = 3,

corresponding to three eigenvalues in −1 for the input-scaled linear approxi-
mation.

As for the control input u1, which is given by eq. (68), we have set ku1 = 10,
corresponding to an eigenvalue in −10 for the linear approximation of the x-
error dynamics, and we have used the heat function η2 with the following
parameters

a0 = 40, a1 = 20, a2 = 20,
β0 = 1, β1 = 2, β2 = 3.

The above controller has been simulated for a car-like robot with ` = 1 m
executing a parallel parking maneuver. The desired configuration is the origin
of the state space, while the initial configuration at t0 = 0 is

x(0) = 0, y(0) = −5, θ(0) = 0, φ(0) = 0.

Figures 20–26 show respectively the cartesian motion of the vehicle, the time
evolution of x, y, θ and φ, and the actual commands v1 and v2 applied to the
car-like robot, obtained from u1 and u2 via the chained-form input transfor-
mation (9).

After performing several other numerical tests, we can conclude that:

– The motion is quite natural in the first phase of approaching.
– For any stabilization task, the final part of the motion resembles a parallel

parking maneuver.
– Basically, the larger are the aj parameters of the heat function η2, the

shorter is the transient time. On the other hand, more control effort is
required far from the goal.

– The final convergence close to the goal is rather slow.

In order to achieve practical convergence to a small ball around the origin
in finite time, a simpler, discontinuous heat function can be used. For example,
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we have chosen

η4(z2, z3, z4, t) =

{
kη sin t ifz2

2 + z2
3 + z2

4 ≥ ε
0 ifz2

2 + z2
3 + z2

4 < ε,

with ε = 10−3, kη = 20, and modified one of the previous gains by setting
ku1 = 5. The obtained results are illustrated in Figs. 27–33. The norm of the
final cartesian error is equal to 3.35 · 10−2 m (only due to the y-coordinate),
while the final values of θ and φ are 2.5·10−3 rad and 5.5·10−3 rad, respectively.
This condition is reached in about 17 sec.
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Fig. 20. Point stabilization with time-varying feedback and heat function η2:
cartesian motion
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Fig. 21. Point stabilization with time-varying feedback and heat function η2:
x (m) vs. time (sec)
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Fig. 22. Point stabilization with time-varying feedback and heat function η2:
y (m) vs. time (sec)
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Fig. 23. Point stabilization with time-varying feedback and heat function η2:
θ (rad) vs. time (sec)
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Fig. 24. Point stabilization with time-varying feedback and heat function η2:
φ (rad) vs. time (sec)
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Fig. 25. Point stabilization with time-varying feedback and heat function η2:
v1 (m/sec) vs. time (sec)
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Fig. 26. Point stabilization with time-varying feedback and heat function η2:
v2 (rad/sec) vs. time (sec)
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Fig. 27. Point stabilization with time-varying feedback and heat function η4:
cartesian motion

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 28. Point stabilization with time-varying feedback and heat function η4:
x (m) vs. time (sec)
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Fig. 29. Point stabilization with time-varying feedback and heat function η4:
y (m) vs. time (sec)
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Fig. 30. Point stabilization with time-varying feedback and heat function η4:
θ (rad) vs. time (sec)
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Fig. 31. Point stabilization with time-varying feedback and heat function η4:
φ (rad) vs. time (sec)
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Fig. 32. Point stabilization with time-varying feedback and heat function η4:
v1 (m/sec) vs. time (sec)

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3

4

5

Fig. 33. Point stabilization with time-varying feedback and heat function η4:
v2 (rad/sec) vs. time (sec)
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4.2 Control via nonsmooth time-varying feedback

We present next the design of a nonsmooth time-varying feedback controller
that stabilizes the chained form to the origin. The contents of this section are
based on [48] and [49]. The idea of decomposing the system into two parts and
sequentially defining the two control inputs is very similar to the one pursued
in Sect. 4.1. In fact, also this technique provides as a byproduct a solution
to the path following problem. The fundamental difference here is that the
feedback control law will depend, in addition to the exogenous time variable,
on a piecewise-constant function of the state. Moreover, the actual construction
of the control law for a subvector of dimension n − 1 of the state is based on
the so-called backstepping method.

Preliminaries We begin with two definitions.

Definition 1 A function h : IR+ 7→ IR+ is said to be of class K if it is
strictly increasing and such that h(0) = 0. /

Definition 2 For a nonlinear time-varying system

ẋ = f(x, t), x ∈ Q ⊂ IRn, t ≥ t0, (75)

the equilibrium point xe is globally K-exponentially stable if there exists a
positive constant λ (independent of t0) and a function h(·) of class K such that
all solutions x(t) of eq. (75) satisfy

‖x(t)− xe‖ ≤ h(‖x(t0)− xe‖) e−λ(t−t0), ∀x(t0) ∈ Q, ∀t ≥ t0. /

We note that a K-exponentially stable system is uniformly asymptotically
stable and, in addition, has an exponential rate of convergence. However, expo-
nential stability in the sense of Lyapunov is stronger than the above property,
because it involves a special function of class K which is linear, i.e.,

h(‖x(t0)− xe‖) = h̄‖x(t0)− xe‖,

with h̄ > 0 independent from t0 and x(t0). Nevertheless, the two properties are
equivalent with respect to the rate of convergence, once the initial condition
x(t0) is given.

The following technical lemma establishes sufficient conditions for obtaining
exponential convergence in a time-varying system. Its proof can be found in [48].

Lemma 4.3. Consider a scalar nonlinear time-varying system

ẋ = −a(x, t)x+ d(x, t), t ≥ t0, (76)

under the following assumptions:



Feedback Control of a Nonholonomic Car-Like Robot 233

− there exists a solution x(t) of eq. (76) for any x(t0) and t ≥ t0;
− a(x, t) is such that for all x(t)∣∣∣∣∫ t

t0

(a(x(τ), τ)− µ) dτ
∣∣∣∣ ≤ P, ∀t ≥ t0,

where µ and P are some positive constants;
− d(x, t) is bounded for all x(t) as

|d(x(τ), τ)| ≤ De−γ(t−t0), ∀t ≥ t0,

for some positive constants D and γ.

Then,

|x(t)| ≤ c (|x(t0)|+D)e−(β−ε)(t−t0), ∀ε > 0,

where β = min{µ, γ} > 0 and c = max{eP , e2P/ε}.

Backstepping control design For convenience, we rewrite here the chained
system (7)

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

...
ẋn = xn−1u1,

(77)

and partition its state as X = (x1, X2), with X2 = (x2, x3, . . . , xn).
As previously noted, when u1 is a predefined function of time, X2 satisfies

a linear time-varying equation driven by the input u2. In the following, we will
assume that a structure is assigned for the signal u1(t) and address the design
of a feedback control law for u2 so as to make X2 = 0 a K-exponentially stable
equilibrium point. Later, we will add the variable x1 to the picture and choose
the specific form of control u1 so as to obtain K-exponential stability of X = 0
for the complete system.

The structure of u1 is chosen by combining the simplicity of an open-loop
command, which is updated as a function of the state only at discrete time
instants, with the benefits of adding a time-varying exogenous signal. In par-
ticular, let a sequence of equidistant time instants {t0, t1, t2, . . . } be defined
as

th = hT, T = th+1 − th > 0,
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and define the control u1 as

u1(t) = k(X(th))f(t), for t ∈ [th, th+1). (78)

This structure implies that the input is a function of the state X at time t = th,
while during the interval (th, th+1) it is defined in an open-loop fashion. For
the time being, no restrictions are put on the form of the function k(·) beside
its boundedness. On the other hand, some assumptions are needed for function
f(t).

A1: f(t) ∈ C∞;
A2: 0 ≤ f(t) ≤ 1, ∀t ≥ t0;
A3: f(th) = 0, ∀th ∈ {t0, t1, . . . };

A4:
∣∣∣∣∫ t

th

(
f2(j−2)+1(τ)− µj

)
dτ

∣∣∣∣ ≤ Pj , ∀j ∈ {3, . . . , n}, ∀th ∈ {t0, t1, . . . },
where µj and Pj are positive constants.

Assumption A3 implies that u1(th) = 0 for all th ∈ {t0, t1, . . . }, and thus
guarantees continuity of u1(t) with respect to time, even if function k is nons-
mooth with respect to the state. Assumption A4 is more technical and is used to
guarantee controllability of the linear time-varying subsystem and for proving
exponential convergence of X2 to zero by means of Lemma 4.3.

A simple periodic function satisfying the above assumptions is

f(t) =
1− cosωt

2
, ω =

2π
T
. (79)

This function has a nonzero mean value, a fact which turns out to be important
in order to have some ‘control energy’ sustaining the robot motion as long as
an error is present, i.e., X 6= 0 (see the related remarks in Sect 4.1). However,
f(t) is not restricted to be periodic.

Using eq. (78), the lower part of system (77) becomes

Ẋ2 =


ẋ2

ẋ3

...
ẋn−1

ẋn

 =


u2

k(X(th))f(t)x2

...
k(X(th))f(t)xn−2

k(X(th))f(t)xn−1

 , t ∈ [th, th+1), h = 0, 1, . . . . (80)

In the following, we will often write k = k(X(th)) for compactness.
A feedback law for u2 that renders X2 = 0 exponentially convergent to

zero (in fact, K-exponentially stable) is now derived based on a backstepping
method—a general technique for controlling systems in cascaded form [22].
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Take the last equation in (80) and regard the variable xn−1 as a ‘dummy’
input to be used for driving exponentially the state xn to its target xdn = 0. To
this end, xn−1 should behave as a desired reference signal xdn−1 which is chosen
to satisfy

kf(t)xdn−1 = −λnf2(n−2)+1(t)xn,

with arbitrary λn > 0, or equivalently

xdn−1 = −λn
k
f2(n−2)(t)xn. (81)

This choice is convenient because, if xn−1 = xdn−1, the last equation in (80)
becomes

ẋn = −λnf2(n−2)+1(t)xn.

By virtue of assumption A4, we may use Lemma 4.3 (with a(t) =
λnf

2(n−2)+1(t) and d(t) = 0) to infer that, at least with the nominal dummy
input, xn exponentially converges to zero. The convergence rate depends on
the choice of the parameter λn.

During a transient phase, we will actually have a difference x̃n−1 = xn−1 −
xdn−1 6= 0 leading to

ẋn = kf(t)xdn−1 + kf(t)x̃n−1 = −λnf2(n−2)+1(t)xn + kf(t)x̃n−1.

We can use again Lemma 4.3 (with a(t) = λnf
2(n−2)+1(t) and d(t) =

kf(t)x̃n−1) to conclude that xn exponentially converges to zero, provided that
|kf(t)x̃n−1| is exponentially converging to zero as well. This will be guaranteed
by the remaining steps of the recursive procedure.

Consider now the next to last equation in (80) and regard the variable xn−2

as the new dummy input, to be used for driving the state xn−1 to its target
xdn−1 specified by eq. (81). To obtain exponential convergence of x̃n−1 to zero,
xn−2 should behave as a desired reference xdn−2 which is chosen to satisfy

kf(t)xdn−2 = −λn−1f
2(n−3)+1(t)(xn−1 − xdn−1) + ẋdn−1,

with arbitrary λn−1 > 0. In fact, if xn−2 = xdn−2, the next to last equation
in (80) gives

˙̃xn−1 = −λn−1f
2(n−3)+1(t)x̃n−1,

and we can use again Lemma 4.3 to show that x̃n−1 exponentially converges to
zero, with rate depending on the parameter λn−1. This holds also when x̃n−2 =
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xn−2 − xdn−2 6= 0, provided that |kf(t)x̃n−2| is itself converging exponentially
to zero.

Backstepping further, xn−3 will be regarded as the dummy input in the
second to last equation in (80), and the same control design is repeated until
we reach the top equation, in which the true input command u2 is present. In
this last step, the control input will be defined as

u2 = −λ2(x2 − xd2) + ẋd2. (82)

With this choice, one can show (under additional assumptions on the function
k(·) to be detailed later) that x2 will converge exponentially to xd2, which in
turn implies that x3 converges exponentially to xd3, and so on until it is proven
that xn converges exponentially to xdn = 0.

At the end of this procedure, a reference value has been defined for each
state component of X2, namely

xdn = 0
xdj−1k(X(th))f(t) = −λjf2j−3(t)(xj − xdj ) + ẋdj , λj > 0, j = 3, . . . , n.

(83)

By expanding the time derivatives in eq. (83), the above reference values be-
come a combination, weighted by powers of f(t), of the state components in
X2. For example, in the case of the (2,4) chained form pertaining to a car-like
robot we would obtain:

xd4 = 0
xd3 = −λ4f

4(t)x4/k(X(th))
xd2 =

[
−λ3f

3(t)(x3 − xd3)/k(X(th)) + ẋd3/k(X(th))
]
/f(t)

= −
[(
λ3f

2(t) + λ4f
4(t)

)
/k(X(th))

]
x3

−
[(
λ3λ4f

6(t) + 4λ4f
2(t)

)
/k2(X(th))

]
x4.

Note that the order of the exponent of function f(t) in eq. (81) has been
chosen large enough to guarantee that f(t) = 0 implies all xdi = 0. This choice
forces the car-like robot to align its orientation and steering angle with the
x-axis whenever it performs a cusp during the motion. In fact, the control u1

may change sign only in correspondence to instants t in which f(t) = 0.
In order to obtain a compact expression for the control input u2, the refer-

ence values (83) can be reorganized and written as

xdi = f2(i−1)(t)
n∑

j=i+1

gij
kj−i(X(th))

xj , i = 2, . . . , n− 1,

xdn = 0,

(84)
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where the functions gij = gij(f, ḟ , . . . , f (j−i−1)) are smooth with respect to
their arguments and are defined recursively by

gn−1,n = −λn
gi−1,j = gij

[
λif

2(i−1) + 2(i− 1)ḟ
]

+ f(ġij + gi,j+1f)
gi−1,i = −λi + f2gi,i+1

gip = 0, if p ≤ i or p = n+ 1,

(85)

for i, j = 2, . . . , n, being

ġij =
j−i−1∑
m=0

∂gij
∂f (m)

f (m+1).

Summarizing eqs. (78), (82), (84), and (85), the following control structure
is obtained

u1 = k(X(th))f(t) (86)
u2 = ΓT (k(X(th)), t)X2, (87)

with

ΓT (k, t) = [Γ2(k, t) . . . Γn(k, t)]

and

Γ2(k, t) = −λ2 + f3g23

Γj(k, t) =
f(λ2fg2j+2ḟg2j+fġ2j+f

2g2,j+1)
kj−2(X(th)) , j = 3, . . . , n.

Convergence results The main convergence results for the above controller
are now presented. We start by providing conditions on k(·) so as to guarantee
exponential convergence to zero of the state X2 in eq. (80), a result which
provides a solution for the path following problem.

Proposition 4.4. Consider system (80), where u2 is given by eq. (87) and
f(t) has the properties A1–A4. Assume further that:

− k(0) = 0;
− X2 6= 0 implies k(X) 6= 0;
− there exists a constant K such that |k(X)| ≤ K, ∀X ∈ IRn;
− whenever |k(X(th))| < K, it is

|k(X(th))| ≥ κj |x̃j(t)|
1

2(n−2) , ∀j = 3, . . . , n, (88)

where x̃j = xj − xdj and κj is a positive constant.
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Then, X2 = 0 is K-exponentially stable, i.e., there exist a constant λX2 > 0
and a function hX2(·, T ) of class K such that

‖X2(t)‖ ≤ hX2(‖X2(t)‖, T )e−λX2 (t−t0), ∀X2(t0) ∈ IRn−1, ∀t ≥ t0.

Proof (sketch of) The first three assumptions are used to prove that the ‘error’
variables x̃2, . . . , x̃n converge to zero, i.e., each xi (i = 2, . . . , n) converges to
its reference value xdi defined by eq. (83). Lemma 4.3 is the main tool in this
analysis, resulting in an exponential rate of convergence which can also be
estimated. Then, one can show that the original states xj (j = 2, . . . , n) can
be expressed as a weighted sum of the error variables x̃r (r = j + 1, . . . , n),
essentially by reversing the construction of the xdi in eq. (84). Finally, by using
eq. (88), K-exponential stability of X2 = 0 is obtained.

A function k(·) satisfying the assumptions of the above proposition is given
by

k(X) = sat (−β [x1 + sgn(x1)G (‖X2‖)] ,K) , (89)

where

sat(z,K) =

{
z if|z| ≤ K,
Ksgn(z) if|z| > K,

and

sgn(z) =

{
1 if z ≥ 0,
−1, if z < 0,

G (‖X2‖) = κ ‖X2||
1

2(n−2) ,

β = 1/
∫ th+1

th

f(τ)dτ,

with κ a positive constant.
By using Prop. 4.4, one can finally establish global K-exponential stability

of the origin X = 0 of the total system in chained form (77), thus solving the
point stabilization problem. We give this result without the proof, which is
rather long and can be found in [49].

Proposition 4.5. Consider system (77), where u1 is given by eq. (86), with
k(X) chosen as in eq. (89) and f(t) satisfying assumptions A1–A4, and u2 is
given by eq. (87). Then, X = 0 is K-exponentially stable, i.e., there exist a
constant λX > 0 and a function hX(·, T ) of class K such that

‖X(t)‖ ≤ hX(‖X(t0)‖, T )e−λX(t−t0), ∀X(t0) ∈ IRn, ∀t ≥ t0.
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Note the following facts.

– It can be shown that the class K-function hX(·, T ) is not Lipschitz around
the origin. In particular, its derivative tends to infinity when ‖X(t0)‖ ap-
proaches zero.

– The exponential convergence rate λX in Prop. 4.5 can be made arbitrarily
fast by choosing β in eq. (89) and λ2, . . . , λn in eq. (85) large enough. How-
ever, the time needed to drive x1 to an arbitrarily small neighborhood of
zero cannot be less than T . As a consequence, the class K-function hX(·, T )
increases exponentially with the ‘period’ T . On the other hand, reducing
T may result in a large control effort for some initial conditions.

– In the generic time interval [th, th+1), the control input u1 is essentially
open-loop being only a function of the state at time th, whereas the con-
trol input u2 is a true feedback, for it depends continuously on the state
variables X2.

Application to the car-like robot For the car-like robot in (2, 4) chained
form, we present here explicit formulas for generating u2 according to eq. (87).
Let λ2, λ3, and λ4 be three positive constants. Choose f(t) as in eq. (79) and
k(X) as in eq. (89). We have

th+1 − th = T =
2π
ω

and β =
1∫ th+1

th
f(τ)dτ

=
ω

π
, ∀h.

Equations (85) give

g23 = −λ3 − λ4f
2

ġ23 = −2λ4fḟ

g24 = −λ4(λ3f
4 + 4ḟ)

ġ24 = −4λ3λ4f
3ḟ − 4λ4f̈

g25 = 0,

to be used in

Γ2 = −λ2 + f3g23

Γ3 = f
[
λ2fg23 + 2ḟg23 + fġ23 + f2g24

]
/k(X(th))

Γ4 = f
[
λ2fg24 + 2ḟg24 + fġ24 + f2g25

]
/k2(X(th)).

The control input u1 is provided by eq. (86).
The following parameters have been used in the various functions that define

the control laws (86) and (87):

K = 2, ω = 1, κ = 3, λ2 = λ3 = λ4 = 1.
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Note that the first control input may switch only every 2π sec, i.e., at t ∈
{0, 2π, 4π, . . . }.

The above controller has been simulated for a car-like robot with ` = 1 m
executing a parking maneuver. The desired configuration is the origin of the
state space, while the initial configuration at t0 = 0 is

x(0) = −1, y(0) = −1, θ(0) = −π/4, φ(0) = 0. (I)

Figures 34–40 show respectively the cartesian motion of the vehicle, the time
evolution of x, y, θ and φ, and the actual commands v1 and v2 applied to
the car-like robot, obtained from u1 and u2 through the chained-form input
transformation (9). Similarly to the smooth time-varying controller of Sect. 4.1,
the generated cartesian motion is natural and resembles a parallel parking
maneuver in the final phase. Convergence to the desired configuration appears
to be faster; however, x = x1 converges much slower than the other variables y,
θ and φ, which are related to X2 = (x2, x3, x4). This behavior can be predicted
by using Lemma 4.3.

These observations have been confirmed also by other simulations. For ex-
ample, Figs. 41–47 show the results obtained by using the same controller in
order to execute a reorientation maneuver. The desired configuration is again
the origin of the state space, while the initial configuration is

x(0) = 0, y(0) = 0, θ(0) = π/6, φ(0) = 0. (II)
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Fig. 34. Point stabilization with nonsmooth time-varying feedback (I): carte-
sian motion
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Fig. 35. Point stabilization with nonsmooth time-varying feedback (I): x (m)
vs. time (sec)
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Fig. 36. Point stabilization with nonsmooth time-varying feedback (I): y (m)
vs. time (sec)
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Fig. 37. Point stabilization with nonsmooth time-varying feedback (I): θ (rad)
vs. time (sec)
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Fig. 38. Point stabilization with nonsmooth time-varying feedback (I): φ (rad)
vs. time (sec)
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Fig. 39. Point stabilization with nonsmooth time-varying feedback (I): v1

(m/sec) vs. time (sec)
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Fig. 40. Point stabilization with nonsmooth time-varying feedback (I): v2

(rad/sec) vs. time (sec)
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Fig. 41. Point stabilization with nonsmooth time-varying feedback (II): carte-
sian motion
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Fig. 42. Point stabilization with nonsmooth time-varying feedback (II): x (m)
vs. time (sec)
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Fig. 43. Point stabilization with nonsmooth time-varying feedback (II): y (m)
vs. time (sec)
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Fig. 44. Point stabilization with nonsmooth time-varying feedback (II): θ (rad)
vs. time (sec)
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Fig. 45. Point stabilization with nonsmooth time-varying feedback (II): φ (rad)
vs. time (sec)
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Fig. 46. Point stabilization with nonsmooth time-varying feedback (II): v1

(m/sec) vs. time (sec)

0 20 40 60 80 100 120
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 47. Point stabilization with nonsmooth time-varying feedback (II): v2

(rad/sec) vs. time (sec)
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4.3 About exponential convergence

The peculiar convergence behavior of both presented stabilizing methods de-
serves some comments. We have already pointed out in Sect. 2.2 that the failure
of the linear controllability test for the car-like robot indicates that smooth ex-
ponential stability in the sense of Lyapunov cannot be obtained. Recall that
(local) exponential stability means that the system trajectories X(t) satisfy the
following inequality

‖X(t)‖ ≤ K‖X(t0)‖e−λ(t−t0), ∀X(t0) ∈ B, ∀t ≥ t0, (90)

with K, λ positive real numbers and B a neighborhood of the origin. The prac-
tical significance of this relationship is twofold: (i) small initial errors cannot
produce arbitrarily large transient deviations since ‖X(t)‖ ≤ K‖X(t0)‖, and
(ii) all solutions converge to zero exponentially.

While it is still unclear whether both properties can be simultaneously
achieved for nonholonomic systems, one can still design a control law that
guarantees at least one of the two. In the case of smooth time-varying feedback
laws, such as the one presented in Sect. 4.1, it may be easily verified that

‖X(t)‖ ≤ K‖X(t0)‖, ∀X(t0), ∀t ≥ t0, (91)

holds for some positive constant K. However, when using the control law w2 of
Prop. 4.2, convergence to zero of ‖Z‖ (and hence, of ‖X‖) cannot be exponen-
tial. In fact, if this were the case, u1 would itself converge to zero exponentially,
and thus the integral

∫ t
0
|u1(τ)|dτ would not diverge. This is in contradiction

with the fact that divergence of this integral is necessary for the asymptotic
convergence of ‖Z2‖ to zero. As a matter of fact, it is only possible to show
that

‖X(t)‖ ≤ K‖X(t0)‖ρ(t), with ρ(0) = 1, lim
t→∞

ρ(t) = 0, (92)

where ρ(t) is a decreasing function whose convergence rate is strictly less than
exponential. This theoretical expectation is confirmed by the simulations results
of Sect. 4.1. In particular, it has been observed [41] that smooth time-varying
feedback control applied to a unicycle yields a convergence rate slower than
t−1/2 for most initial configurations, a fact that can be proven using center
manifold theory.

On the other hand, existing nonsmooth feedback laws for nonholonomic
systems do not guarantee uniform boundedness of the transient error ratio
‖X(t)‖/‖X(t0)‖. For example, the piecewise-continuous time-invariant feed-
back law proposed in [8] for the stabilization of a unicycle yields

‖X(t)‖ ≤ (K1 +K2‖X(t0)‖)e−λ(t−t0), ∀X(t0), ∀t ≥ t0, (93)
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with K1, K2 positive real numbers. All solutions converge to zero exponentially,
but a small initial error or perturbation may produce transient deviations whose
size is larger than some constant.

Similarly, we have seen that the nonsmooth time-varying feedback of
Sect. 4.2 guarantees K-exponential stability for general chained-form systems.
Even if all solutions converge to zero exponentially, this type of asymptotic
stability is weaker than property (90), in the sense that small initial errors or
perturbations can produce transient deviations of much larger amplitude. Nev-
ertheless, it is stronger than (93), for such deviations are not bounded below
by some positive constant.

The above discussion may suggest that smooth time-varying feedback laws
are somewhat less sensitive to initial errors than nonsmooth feedback laws.
This degree of robustness is paid in terms of the asymptotic rate of conver-
gence, which is not exponential. However, smooth time-varying feedback may
be modified to achieve practical exponential stability, in the sense that the sys-
tem state may be steered to any desired small neighborhood of the origin in
arbitrary time. This fact is illustrated by the simulation results obtained with
the heat function η4 in Sect. 4.1.

5 Conclusions

We have presented and compared several feedback solutions for point stabiliza-
tion, path following and trajectory tracking control tasks executed by a mobile
robot with car-like kinematics.

The problem of accurate tracking of a persistent trajectory can be solved
using either linear control synthesis, based on the approximate linearization
of the system around the nominal trajectory, or nonlinear (static or dynamic)
control synthesis, achieving exact linearization of the (input-output or full-
state) closed-loop equations. Local exponential convergence to zero tracking
error is obtained in the linear case, while global exponential convergence with
prescribed error dynamics is guaranteed in the nonlinear case. In both ap-
proaches, the closed-loop controller consists of a nominal feedforward term and
of an error feedback action.

For the stabilization to a fixed configuration, the use of new classes of time-
varying nonlinear controllers has proven to be effective. From a theoretical point
of view, time-varying feedback overcomes the obstruction on the existence of
smooth time-invariant stabilizing control laws for nonholonomic systems. Two
types of time-varying control laws were presented, respectively expressed by a
smooth and a nonsmooth function of the robot state. In both cases, we have
recognized that path following can be formulated as a subproblem of point
stabilization. The asymptotic rate of convergence of the smooth controller is
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lower than the exponential one obtained in the nonsmooth case. However, it
may be questioned whether the theoretical convergence rate alone is a good
measure of the overall control performance. In practice, what really matters is
a rapid initial decay of the error to a small neighborhood of zero under realistic
experimental conditions.

The reported numerical simulations have shown the benefit of feedback
control in recovering from initial errors with respect to the desired fixed or
moving target. In order to fully appreciate these results, we remark that errors
(at the initial time or later) can be interpreted as the effect of an instantaneous
disturbance acting on the system. Therefore, the robot motion under feedback
control is robust with respect to such non-persistent disturbances.

Most of the results have been presented using a canonical transformation of
the system into chained form. Although the use of chained forms is not needed
in principle, it allows to obtain systematic results that can be extended beyond
the considered case study of a car-like mobile robot. For example, the control
results hold true also for a car towing N trailers, each attached at the midpoint
of the rear axle of the previous one (zero hooking). On the other hand, the
control problem for the general case of N trailers with nonzero hooking is still
open, because a chained-form transformation is not available for this system.

Throughout this study, we have dealt with a first-order kinematic model
of the mobile robot, in which velocities were assumed to be the control in-
puts. Extension to second-order kinematics, with accelerations as inputs, and
inclusion of vehicle dynamics, with generalized forces as inputs, are possible.
In particular, we point out that the nominal dynamics of the vehicle can be
completely canceled by means of a nonlinear state feedback so as to obtain a
second-order, purely kinematic problem.

Concerning the application of the proposed feedback controllers to real mo-
bile robot systems, there are several non-ideal conditions that may affect the
actual behavior of the controlled robot, notably: uncertain kinematic parame-
ters of the vehicle (including, e.g., the wheels’ radius); mechanical limitations
such as backlash at the steering wheels and limited range of the steering an-
gle; actuator saturation and dead-zone; noise and biases in the transformation
from physical sensor data to the robot state; quantization errors in a digital
implementation. Control robustness with respect to these kinds of uncertainties
and/or disturbances is an open and challenging subject of research. For linear as
well as nonlinear systems, Lyapunov exponential stability implies some degree
of robustness with respect to perturbations. However, since this kind of stability
has not been demonstrated for the point stabilization problem of nonholonomic
systems, the connection between robustness properties and asymptotic (even
exponential) rate of convergence is not yet well understood.

It should also be noted that perturbations acting on nonholonomic mobile
robots are not of equal importance, depending on which component of the state
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is primarily affected. A deviation in a direction compatible with the vehicle
mobility (e.g., sliding of the wheels on the ground) is clearly not as severe
as a deviation which violates the kinematic constraints of the system (e.g.,
lateral skidding of the car-like robot). In any case, proprioceptive sensors may
not reveal these perturbing actions and all the controllers presented in this
chapter—which assume that the exact robot state is available—would fail in
completing their task. A possible solution would be to close the feedback loop
using exteroceptive sensor measurements, which provide absolute information
about the robot location in its workspace. Currently, it is not clear whether the
best solution would be to estimate the robot state from these measurements
and then use the previous controllers, or to design new control laws aimed at
zeroing the task error directly at the sensor-space level.

6 Further reading

In addition to the references cited to support the results so far presented, many
other related works have appeared in the literature. Hereafter, we mention some
of the most significant ones.

A detailed reference on the kinematics of wheeled mobile robots is [2]. The
dynamics of general nonholonomic systems was thoroughly analyzed in [31]. A
controllability study for kinematic models of car-like robots with trailers was
presented in [24], while stabilizability results for both kinematic and dynamic
models of nonholonomic systems were given in [5,7].

The problem of designing input commands that drive a nonholonomic
mobile robot to a desired configuration has been first addressed through
open-loop techniques. Purely differential-geometric approaches were followed
in [23,50], while the most effective solutions have been obtained by resort-
ing to chained-form transformations and sinusoidal steering [28], or by using
piecewise-constant functions as control inputs [26]. In [36] it was shown how
the existence of differentially flat outputs can be exploited in order to design
efficiently open-loop controls.

A number of works have dealt with the problem of controlling via feedback
the motion of a unicycle. In fact, both discontinuous and time-varying feedback
controllers were first proposed and analyzed for this specific kinematics. The
trajectory tracking problem was solved in [39] by means of a local feedback
action. Use of dynamic feedback linearization was proposed in [14]. A piecewise-
continuous feedback with an exponential rate of convergence was presented
in [8] for the point stabilization task, and later extended to the path following
problem in [47]. Another piecewise-continuous controller, obtained through an
appropriate switching sequence, was devised in [5]. The explicit inclusion of
the exogenous time variable in a smooth feedback law was proposed in [38].
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In [34], a hybrid stabilization strategy was introduced that makes use of a
time-invariant feedback law far from the destination and of a time-varying law
in its vicinity. The use of a discontinuous transformation in polar coordinates
allowing to overcome the limitation of Brockett’s theorem was independently
proposed in [1] and [3] for the point stabilization problem; strictly speaking,
these schemes are not proven to be stable in the sense of Lyapunov, for they
only ensure exponential convergence of the error to zero. A survey of control
techniques for the unicycle can be found in [9].

For car-like robots, the trajectory tracking problem was also addressed
in [13] through the use of dynamic feedback linearization, and in [16] via flat
outputs design and time-scaling. Path following via input scaling was proposed
in [15,37]. As for the point stabilization problem, the successful application of
time-varying feedback to the case of car-like robots [43] has subsequently moti-
vated basic research work aimed at exploring the potentialities of this approach.
In particular, results have been obtained for the whole class of controllable drift-
less nonlinear systems in [11,12], while general synthesis procedures were given
in [33] for chained-form systems and in [35] for power-form systems; in the lat-
ter, the use of a nonsmooth but continuous time-varying feedback guarantees
exponential convergence to the desired equilibrium point. Using an analysis
based on homogeneous norms, similar results were obtained for driftless sys-
tems in [30], and for chained-form systems in [27] by means of a backstepping
technique. Other related works include [17] and [51]. In the first, the problem
of approximating a holonomic path via a nonholonomic one is solved by using
time-periodic feedback control. In the second, the open-loop sinusoidal steer-
ing method is converted to a stabilization strategy, by adding to the nominal
command a mixed discontinuous/time-varying feedback action.

Very few papers have explicitly addressed robustness issues in the control
of nonholonomic systems. The robustness of a particular class of nonsmooth
controllers based on invariant manifolds was analyzed in [10]. Robust stabiliza-
tion of car-like robots in chained form was obtained in [4] and [25] by applying
iteratively a contracting open-loop controller; exponential convergence to the
desired equilibrium is obtained for small model perturbations. Another possible
approach to the design of effective control laws in the presence of nonidealities
and uncertainties is represented by learning control, as shown in [32].

Finally, the design of sensor-level controllers for nonholonomic mobile robots
is at the beginning stage. The general concept of task-driven feedback control
for holonomic manipulators is described in [40]. A first attempt to extend this
idea to the point stabilization problem of a mobile robotic system can be found
in [52].
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1522, 1993.



Feedback Control of a Nonholonomic Car-Like Robot 253

37. M. Sampei, T. Tamura, T. Itoh, and M. Nakamichi, “Path tracking control of
trailer-like mobile robot,” 1991 IEEE/RSJ Int. Work. on Intelligent Robots and
Systems, Osaka, J, pp. 193–198, 1991.

38. C. Samson, “Velocity and torque feedback control of a nonholonomic cart,” in
Advanced Robot Control, C. Canudas de Wit (Ed.), Birkhäuser, Boston, MA,
pp. 125–151, 1991.

39. C. Samson and K. Ait-Abderrahim, “Feedback control of a nonholonomic wheeled
cart in cartesian space,” 1991 IEEE Int. Conf. on Robotics and Automation,
Sacramento, CA, pp. 1136-1141, 1991.

40. C. Samson, M. Le Borgne, B. Espiau, Robot Control: The Task Function Ap-
proach,” Oxford Science Publications, Oxford, UK, 1991.

41. C. Samson and K. Ait-Abderrahim, “Feedback stabilization of a nonholonomic
wheeled mobile robot, 1991 IEEE/RSJ Int. Work. on Intelligent Robots and Sys-
tems,” Osaka, J, pp. 1242-1247, 1991.

42. C. Samson, “Path following and time-varying feedback stabilization of a wheeled
mobile robot,” 2nd Int. Conf. on Automation, Robotics and Computer Vision,
Singapore, 1992.

43. C. Samson, “Time-varying feedback stabilization of car-like wheeled mobile
robots,” Int. J. of Robotics Research, vol. 12, no. 1, pp. 55–64, 1993.

44. C. Samson, “Control of chained systems. Application to path following and time-
varying point-stabilization of mobile robots,” IEEE Trans. on Automatic Control,
vol. 40, no. 1, pp. 64–77, 1995.

45. E. D. Sontag, “Feedback stabilization of nonlinear systems,” in Robust Control
of Linear Systems and Nonlinear Control, M. A. Kaashoek, J. H. van Schuppen,
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