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1 Introduction

From a kinematic point of view, the main characteristic of wheeled robots is
the nonholonomic rolling without slipping constraint of the wheels on the floor,
which forces the vehicle to move tangentially to its main axis. This reduction
of the set of accessible velocities at each time makes the path planning problem
particularly difficult. Among the different methods devoted to solve this prob-
lem we want to focus on those based on the characterization of shortest paths
or time-optimal paths, which turn out to be particularly efficient. Indeed, the
knowledge of an optimal strategy for linking any two configurations allows to
determine simple canonical paths and provides a topological modeling of the
problem by defining a new “distance function” taking into account the non-
holonomic nature of the system. Unfortunately, the characterization of optimal
paths for this class of nonlinear systems is not an easy task.

The works presented in this chapter are based on Pontryagin’s Maximum
Principle (PMP) which constitutes a generalization of Lagrange’s problem of
the calculus of variation. PMP is a local reasoning based on the comparison of
trajectories corresponding to infinitesimally close control laws. It provides nec-
essary conditions for paths to be optimal. Nevertheless, though this condition
brings a very strong information about the nature of optimal paths for certain
kind of systems, it turns out to be insufficient to solve the optimal control
problems we are interested on.

Indeed, on the one hand the nonlinear nature of these systems makes the
adjoint differential equations seldom integrable. Therefore, in the most part of
cases, the necessary condition of PMP only provides a local characterization of
optimal trajectories. On the other hand, the study of such systems has shown
that the set of accessible configurations at each time, is neither smooth nor
convex. More precisely, it appears that the boundary of this set is made up by
several smooth pieces corresponding to the propagation of several wave fronts.
This is due at one and the same time to the difficulty of moving sideways and
the natural symmetries of the problem.
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For these latter reasons, the local nature of PMP cannot provide a tool to
compare the cost of trajectories corresponding to different wave fronts. There-
fore, this local information needs to be completed with a global study.

By combining these two approaches it is sometimes possible to get a better
characterization of the solution. In this way, a first interesting result is the
determination of a sufficient family of trajectories i.e. a family of trajectories
containing an optimal solution for linking any two configurations. Whenever
this family is small enough and sufficiently well specified it is possible to com-
pare the cost of trajectories by means of a numerical method. Nevertheless, the
ultimate goal one wants to reach is to achieve the determination of an optimal
control law for steering the representative point from any point of the phase
space to a given target set, i.e. to solve the synthesis problem.

Four works are presented in this chapter, devoted to the search of optimal
paths for various models of wheeled robots. These problems are stated in the
free phase space i.e. without obstacles. We have been able to solve the syn-
thesis problem for only two of these models. The two other works provide an
incomplete characterization of optimal solutions, bringing to the fore various
kind of difficulties that can be encountered in studying such problems.

The paper is organized as follows: The models of wheeled robots and their
related optimization problems are presented in section 2. The third section
constitutes a survey of the definitions and results from optimal control theory
which have been useful for these different works: Fillipov’s existence theorem,
Pontryagin’s Maximum Principle (PMP) and Boltianskii’s sufficient optimality
condition. In particular, we give a geometric description of PMP in order to
point out the local nature of this reasoning. The last four sections present
successively the works related to each model.

2 Models and optimization problems

The aim of the works presented in this chapter is to characterize optimal tra-
jectories verifying the nonholonomic constraints of mobile robots. Therefore, in
order to get the simplest expression of the problem, we consider mathematical
models defined upon the kinematic constraints inherent in these wheeled vehi-
cles, without taking into account their dynamics. Classically, these models are
described by differential autonomous1 systems such as:

dxi

dt
= f i(x1, x2, . . . , xn, u1, u2, . . . , um) (1)

1 The function f does not depend explicitly on time.
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where the xi characterize the robot’s coordinates in the phase space and
the control parameters ui express the existence of “rudders” such as the steer-
ing wheel or the brake-accelerator function. Once the control parameters are
defined as time-varying functions uj = uj(t), j = 1, . . . ,m, the correspond-
ing trajectory solution of (1) is uniquely determined by the choice of initial
conditions xi(t0) = xi0, i = 1, . . . , n.

2.1 Dubins’ and Reeds-Shepp’s car

The model of a car-like robot considered here, describes the two principal kine-
matic constraints of an usual car. The first one is the rolling without slipping
constraint which obliges the vehicle to move tangentially to its main axis. The
second constraint is due to the bound on the turning wheels’ angle and pre-
vents the car from moving on trajectories whose radius of curvature is lower
than a given threshold R. A configuration of the car is represented by a triple
(x, y, θ) ∈ R2 × S1, where (x, y) are the coordinates of a reference point of the
robot with respect to a Cartesian frame, and θ is the angle between the positive
x-axis and the robot’s main axis, see figure (1). With this modeling, the rolling
without slipping constraint is expressed by the following equation:

ẏ cos θ − ẋ sin θ = 0

For our purpose, the direction of front wheels is not relevant, we only need to
consider that the bound on the angle of steer φ induces an upper bound on the
trajectories’ curvature.

Therefore, the kinematics of the vehicle is described by the differential sys-
tem (2) involving two control parameters u1 and u2 which represent respectively
the algebraic value of the linear and angular velocities.

 ẋ
ẏ

θ̇

 =

 cos θ
sin θ

0

 u1 +

 0
0
1
R

 u2 (2)

This kinematic model was introduced by Dubins in 1957 [16] who set the
problem of characterizing the shortest paths for a particle moving forward in
the plane with a constant linear velocity (u1 = k). Later, Reeds and Shepp [31]
considered the same problem, when backwards motions are allowed (|u1| = k).
In both cases, as the modulus of the linear velocity keeps constant, the shortest
path problem is equivalent to the minimum-time problem.

In the sequel without lost of generality we will fix the value of the constants:
R = 1 and k = 1.
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Fig. 1. The car-like model

2.2 Dubins’ car with inertial angular velocity

As we will see later in detail, the optimal solutions of Dubins’ problem are
sequences of line segments and arcs of circle of minimal radius. Therefore, the
curvature along the trajectory does not vary continuously. As a consequence,
any real robot following such a trajectory would be constrained to stop at each
curvature discontinuity.

In order to avoid this problem, Boissonnat, Cerezo and Leblond [3] have
proposed a dynamic extension of Dubins’ problem by controlling the angular
acceleration of the car instead of its angular velocity. The curvature κ is now
considered as a new phase variable, and the angular acceleration v is bounded
inside a compact interval [−B,B].


ẋ
ẏ

θ̇
κ̇

 =


cos θ
sin θ
κ
0

 +


0
0
0
1

 v (3)

For this problem, as for Dubins problem, minimizing the time comes to the
same as minimizing the length.

2.3 The robot HILARE

The locomotion system of Hilare the robot of LAAS-CNRS consists of two
parallel independently driven wheels and four slave castors. The velocities vr
and vl of the right and left driven wheels are considered as phase variables and



Optimal Trajectories for Nonholonomic Mobile Robots 97

a configuration of the robot is a 5-uple (x, y, θ, vr, vl). The accelerations ar and
al of each driven wheel are the inputs to the following control system:


ẋ
ẏ

θ̇
v̇r
v̇l

 =


vr+vl

2 cos θ
vr+vl

2 sin θ
vr−vl
d
0
0

 +


0
0
0
1
0

 ar +


0
0
0
0
1

 al (4)

where ar, al ∈ [−amax, amax], and d > 0 is the distance between the wheels.
In this case the trajectories’ curvature is not bounded and the robot can turn
about its reference point.

For this model, we consider the problem of characterizing minimum-time
trajectories linking any pair of configurations where the robot is at rest i.e
verifying vr = vl = 0.

3 Some results from Optimal Control Theory

3.1 Definitions

Let us now define the notion of dynamical system in a more precise way. Let M
be a n-dimensional manifold, and U a subspace of Rm. We study the motion of a
representative point x(t) = (x1(t), . . . , xn(t)) in the phase space M , depending
on the control law u(t) = (u1(t), . . . , um(t)) taking its values in the control set
U . In this chapter, we define the set of admissible control laws as the class of
measurable functions from the real time interval [t0, t1] to U . As we said in
the previous section, the motion of the representative point is described by an
autonomous differential system of the form:

dxi

dt
= f i(x(t), u(t)) i = 1, . . . , n (5)

We consider now a function L(x, u) defined on the product M ×U , contin-
uously differentiable with respect to its arguments. Given any two points x0

and x1 in the phase space M , we want to characterize, among all the control
laws steering the representative point from x0 to x1, one (if exists) minimizing
the functional:

J =
∫ t1

t0

L(x(τ, u), u(τ))dτ
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Remark 1. The initial and final time t0 and t1 are not fixed a priori, they
depend on the control law u(t).

Definition 1. Two trajectories are said to be equivalent for transferring the
representative point from x0 to x1 if they their respective costs are equal.

In the sequel we restrict our study to the minimum-time problem. In this
case L(x, u) ≡ 1 and J = t1 − t0.

In chapter 1 it has been shown that the models described in the previ-
ous section are fully controllable in their phase space M , i.e. given any two
configurations x0 and x1 in M there always exists a trajectory, solution of
(5), linking x0 to x1. Nevertheless it is not possible to deduce from this result
whether a minimum-time feasible path from x0 to x1 exists or not. This last
question constitutes an important field of interest of optimal control theory
(cf [13] for a detailed survey). In particular, there exist some general theorems
due to Fillipov, ensuring the existence of optimal paths under some convexity
hypotheses. The next subsection presents two theorems that will be sufficient
for our purpose.

3.2 Existence of optimal paths

Let M be an open subset of Rn or a n-dimensional smooth manifold, and U a
subset of Rm.

Theorem 1. (Fillipov’s general theorem for minimum-time problems)
Let x0, x1 be two points in M . Under the following hypotheses there exists

a time-optimal trajectory solution of (5) linking x0 to x1.

H1 - f is a continuous function of t, u, x and a continuously differentiable
function of x.

H2 - the control set U is a compact subset of Rm. Furthermore, when u
varies in U , the image set F(t,x) described by f(x(t), u(t)) is convex for
all t, x ∈ [t0, t1]×M .

H3 - there exists a constant C such that for all (t, x) ∈ [t0, t1]×M :
< x, f(t, x, u) > ≤ C (1 + |x|2)

H4 - there exists an admissible trajectory from x0 to x1

Remark 2. - The hypothesis H3 prevents from a finite escape time of the phase
variable x for any admissible control law u(.).

When f is a linear function of the control parameters ui of the form:

f(x, u) = g1(x) u1 + . . .+ gm(x) um, (6)

there exists a simpler version of this result given by the next theorem.
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Theorem 2. Let x0 and x1 be two points in M . Under the following hypothe-
ses there exists an optimal trajectory solution of (6) linking x0 to x1.

H1 - the gi are locally lipschitzian functions of x.
H2 - the control set U is a compact convex subset of Rm

H3 - there exists an admissible trajectory from x0 to x1

H4 - The system is complete, in the sense that given any point x0 ∈M , and any
admissible control law u(.), there exists a corresponding trajectory x(t, u)
defined on the whole time interval [t0, t1] and verifying x(t0, u) = x0.

3.3 Necessary conditions: Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle (PMP) provides a method for studying vari-
ational problems in a more general way than the classical calculus of variation
does. Indeed, when the control set U is a closed subset of Rm, the Weierstrass’
condition characterizing the minimum of the cost functional is no more valid.
The case of closed control set is yet the most interesting one for modeling con-
crete optimal control problems. PMP provides a necessary condition for the
solutions of a general control systems to be optimal for various kind of cost
functional. In this chapter we restrict our statement of PMP to minimum-time
problems.

We consider the dynamical system (5) where x belongs to an open subset
Ω ⊂ Rn or a smooth n-dimensional manifold M .

Definition 2.
- Let ψ be a n-dimensional real vector, we define the Hamiltonian of system

(5) as the R-valued function H defined on the set Rn
∗ ×Ω × U by:

H(ψ, x, u) =< ψ, f(x, u) > (7)

where Rn
∗ = Rn \ {0}, and < ., . > is the usual inner product of Rn.

- If u(.) : [t0, t1] → U is an admissible control law and x(t) : [t0, t1] → Ω
the corresponding trajectory, we define the adjoint vector for the pair (x, u) as
the absolutely continuous vector function ψ defined on [t0, t1], taking its values
in Rn

∗ which verifies the following adjoint equation at each time t ∈ [t0, t1]:

ψ̇(t) = −∂H
∂x

(ψ(t), x(t), u(t)) (8)

Remark 3. As H is a linear function of ψ, ψ̇ is also a linear function of ψ.
Therefore, either ψ(t) 6= 0 ∀t ∈ [t0, t1], or ψ(t) ≡ 0 on the whole interval [t0, t1];
in the latter case, the vector ψ is said to be trivial.
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Theorem 3. (Pontryagin’s Maximum Principle) Let u(.) be an admissible con-
trol law defined on the closed interval [t0, t1] and x(t) the corresponding tra-
jectory. A necessary condition for x(t) to be time-optimal is that there exists
an absolutely continuous non trivial adjoint vector ψ(t) associated to the pair
(x, y), and a constant ψ0 ≤ 0 such that ∀t ∈ [t0, t1]:

H(ψ(t), x(t), u(t)) = max
v∈U

(H(ψ(t), x(t), v(t)) = −ψ0 (9)

Definition 3.
- A control law u(t) satisfying the necessary condition of PMP is called an

extremal control law. Let x(t, u) be the corresponding trajectory and ψ(t) the
adjoint vector corresponding to the pair (x, u); the triple (x, u, ψ) is also called
extremal.

- To study the variations of the Hamiltonian H = Σi ẋi(t) ψi(t) one can
rewrite H in the form: H = Σiφi(t) ui(t) where the φi, called switching func-
tions determine the sign changes of ui.

Sometimes the maximization of the function H does not define a unique
control law. In that case the corresponding control is called singular:

Definition 4. A control u(t) is singular if there exists a nonempty subset W ⊂
U and a non empty interval I ⊂ [t0, t1] such that ∀t ∈ I, ∀w(t) ∈W :

H(ψ(t), x(t), u(t)) = H(ψ(t), x(t), w(t))

In particular, when a switching function vanishes over a non empty open
interval of time, the corresponding control law comes singular. In that case,
all the derivatives of the switching function also vanish on this time interval,
providing a sequence of equations. From these relations, it is sometimes possible
to characterize the value of the corresponding singular control.

The following theorem allows to compute easily those derivatives in terms
of Lie brackets.

Theorem 4. Let Z be a smooth vector field defined on the manifold M and
(x, u, ψ) an extremal triple for the system (6).

The derivative of the function φZ(.) : t −→ < ψ(t), Z(x(t)) > is defined
by:

φ̇Z(t) =
r∑
i=1

< ψ, [gi, Z]x(t) > .ui

Let us now define the notion of reachable set:
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Definition 5. - We denote by R(x0, T ), and we call set of accessibility from
x0 in time T , the set of points x ∈M such that there exists a trajectory solution
of (5) transferring the representative point from x0 to x in a time t ≤ T .

- The set R(x0) =
⋃

0≤T≤∞R(x0, T ) is called set of accessibility from x0.

When the system is fully controllable (controllable from any point) the set
of accessibility R(x0) from any point x0 is equal to the whole manifold M .
Otherwise, R(x0) is restricted to a closed subset of M . In this latter case there
exists another version of PMP.

Theorem 5. (PMP for boundary trajectories) Let u(.) : [t0, t1] → U be an
admissible control law, and x(t) the corresponding trajectory transferring the
representative point from x0 to a point x1 belonging to the boundary ∂R(x0)
of the set R(x0). A necessary condition for the trajectory x(t, u) to be time-
optimal, is that there exists a non-trivial adjoint vector ψ verifying relation (9)
with ψ0 = 0

Definition 6. An extremal triple (x, u, ψ) such that ψ0 = 0 is called abnormal
.

Commentary about PMP: It is often difficult to extract a precise information
from PMP. Indeed, it is seldom possible to integrate the adjoint equations or to
characterize the singular control laws. Furthermore, one can never be sure to
have got all the information it was possible to deduce from PMP. Sometimes,
the information obtained is very poor, and the set of potential solutions too
large.

An interesting expected result is the characterization of a sufficient fam-
ily of trajectory i.e. a family of trajectory containing an optimal solution for
linking any pair of points (x0, x1) ∈ M . When this family is small enough,
and sufficiently well specified the optimal path may be selected by means of a
numerical test.

Nevertheless, the ultimate goal one wants to reach is the exact characteri-
zation of the optimal control law allowing to steer the point between any two
states of M . However, though it is possible to deduce directly the structure of
minimum-time trajectories from PMP for linear systems, the local information
is generally insufficient to conclude the study in the case of nonlinear systems.
As we will see in the sequel, it is yet sometimes possible to complete the local
information provided by PMP by making a geometric study of the problem.
When the characterization of optimal path is complete, a synthetic way of rep-
resenting the solution is to describe a network of optimal paths linking any
point of the state space to a given target point. The following definition due to
Pontryagin states this concept in a more precise way.
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Definition 7. For a given optimization problem, we call synthesis function, a
function v(x) (if it exists) defined in the phase space M and taking its values
in the control set U , such that the solutions of the equation:

dx

dt
= f(x, v(x))

are optimal trajectories linking any point of M to the origin. The problem
of characterizing a synthesis function is called synthesis problem and the cor-
responding network of optimal paths is called a synthesis of optimal paths on
M .

A geometric illustration of PMP: In the statement of PMP, optimal control
laws are specified by the maximization of the inner product of two vectors.
In the rest of this section, drawing our inspiration from a work by H. Halkin
[21], we try to give a geometric interpretation of this idea by pointing out the
analogy between optimal control and propagation phenomena. In this, we want
to focus on the local character of PMP in order to point out its insufficiency
for achieving the characterization of shortest paths for nonholonomic problems.
This remark emphasizes the necessity to complete the local reasoning by making
use of global arguments.

At the basis of the mathematical theory of optimal process stands the prin-
ciple of optimal evolution which can be stated as follows:

“ If x(t, u) is an optimal trajectory starting from x0 at time t0, then at each
time t ≥ t0 the representative point must belong to the boundary ∂R(x0, t) of
the set R(x0, t)”

For some physical propagation phenomena, such as the isotropic propaga-
tion of a punctual perturbation on the surface of water, the wavefront associated
with the propagation coincides at each time with the boundary of the set of
accessibility. Let us consider first the simple propagation of a signal starting at
a point x0 such that the set of accessibility R(x0, t) at each time t be smooth
and convex with a unique tangent hyperplane defined at each boundary point.

As in geometrical optics, at each time t and at each boundary point x, we
can define the wavefront velocity as a nonzero vector V (x, t) = V (x, t) k(x, t)
where V (x, t) is a R-valued function of x and t, and k(x, t) a unit vector
outward normal to the hyperplane tangent to R(x0, t) at x. Now, according to
the principle of optimal evolution, if x(t, u) is an optimal trajectory starting at
x0, the following two conditions must be verified:

– For any admissible motion, corresponding to a control w(t), the projection
of the representative point velocity ẋ(t, w) = f(x,w) on the line passing
through x(t, w) and whose direction is given by the vector k(x, t), is at most
equal to the wavefront speed V (x, t).
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< f(x(t), w(t)), k(x, t) > ≤ V (x, t) (10)

– With the optimal control u, the representative point must keep up with the
wavefront ∂R(x0, t) i.e. the projection of the representative point’s velocity
on the normal vector k(x, t) determines the wavefront velocity.

< f(x(t), u(t)), k(x, t) > = V (x, t) (11)

Now, by identifying the adjoint vector ψ(x, t) with V (x, t) we can make
a link between relations (10, 11) and the maximization of the Hamiltonian
defined by (9).

Though this analogy with propagation phenomena provides a good ge-
ometric meaning of this principle of optimization, it is not easy to gener-
alize this idea to any dynamical system. Indeed, for a general system, the
set R(x0, t) is not necessarily convex and its boundaries are not necessar-
ily smooth. In order to get a geometric meaning of Pontryagin’s result in
the general case, it is convenient to consider the cost functional J as a new
phase variable x0, and to manage our reasoning in the augmented phase space
R×Ω ⊂ Rn+1. Therefore, at each time, the velocity vector of the representa-
tive point X = (x0, x) = (x0, x1, . . . .xn) corresponding to the control law u(.)
is given by f̂(X,u) = (L(x, u), f1(x, u), . . . , fn(x, u)). With this representation
the optimization problem becomes:

“Let D be the line passing through (0, x1) parallel to the x0-axis. Among
all the trajectories starting at X0 = (0, x0) and reaching D, find one, if ex-
ists, which minimizes the first coordinate x0 of the point of intersection X1 =
(x0, x1) with D.”

As before we define the set of accessibility R(X0, t) from X0 in the aug-
mented phase space. Now, it is easy to prove that any optimal path must verify
the principle of optimality. Indeed, if the point X1 of D, reached at time t1
with control u, lies in the interior of R(X0, t1), there exists necessarily a neigh-
bourhood of X1 containing a point of D located “under” X1 and the control u
cannot be optimal. Furthermore, due to the smoothness properties of the func-
tion f̂ , if the point X, reached at time τ ∈ [t0, t1] with u, is in the interior of
R(X0, τ), then for all t ≥ τ the representative point will belong to the interior
of R(X0, t).

Now, let X(t, u) be a trajectory starting at X0, optimal for reaching the
line D. In order to use the same reasoning as before, Pontryagin’s et al have
proven that it is still possible to construct a separating hyperplane by using the
following idea: By replacing u(.) by other admissible control laws on “small”
time intervals they define new admissible control laws ũ infinitesimaly close to
u. Then, a part of their proof consists in showing that the set of point X(t, ũ)
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reached at each time t by the “perturbed” trajectories constitutes a convex cone
C with vertex X(t, u), contained in R(X0, t). This cone locally approximates
the set R(X0, t) and does not contain the half-line D− starting at X(t, u) in
the direction of the decreasing x0. It is then possible to find an hyperplane
H tangent to C at X(t, u), separating C and the half-line D−, and containing
the vector f̂(t, u). Now, the reasoning is the same as before; the adjoint vector
ψ̂ = (ψ0, ψ1, . . . , ψn) is defined, up to a multiplicative constant, as the vector
outward orthogonal to this hyperplane at each time. Following the principle of
optimal evolution, the projection of the vector f̂(t, u) on the line parallel to
ψ̂(t), passing through x(t, u), must be maximal for the control u.

The case of nonholonomic systems: As we will see later, the nonholonomic
rolling without slipping constraint, characteristic of wheeled robots, makes their
displacement anisotropic. Indeed, although forwards motion can be easily per-
formed, moving sideways may require numerous manoeuvres. For this reason,
and due to the symmetry properties of such systems, the set of accessibility
(in time) is generally not convex and its boundary does not coincide every-
where with the wavefront associated with the propagation. Instead of this,
we will show later that the boundary is made up by the propagation of sev-
eral intersecting wavefronts. Therefore, a local method like PMP, based on the
comparison of very close control laws cannot be a sufficient tool to compare the
cost of trajectories corresponding to different wavefronts. This very important
point will be illustrated in section 4 through the construction of a synthesis of
optimal paths for the Reeds-Shepp car.

So far, we only have stated necessary conditions for trajectories to be op-
timal. We now present a theorem by V. Boltyanskii which states sufficient
optimality conditions under very strong hypotheses.

3.4 Boltyanskii’s sufficient conditions

In this section we recall Boltianskii’s definition of a regular synthesis as stated
in [4]. This concept is based on the definition of a piecewise-smooth set.

Let M be a n-dimensional vector space, and Ω an open subset of M . Let
E an s-dimensional vector space (s ≤ n) and K ⊂ E a bounded, s-dimensional
convex polyhedron. Assume that in a certain open set of E containing K are
given n continuously differentiable functions ϕi(ξ1, ξ2, . . . , ξs), (i = 1, 2, . . . , n)
such that the rank of the matrix of partial derivatives (∂ϕ

i

∂ξj ), (i = 1, 2, . . . , n),
(j = 1, 2, . . . , s) be equal to s at every point ξ ∈ K.

Definition 8. - If the smooth vector mapping ϕ = (ϕ1, ϕ2, . . . , ϕn) from K
to M is injective, the image L = ϕ(K) is called a s-dimensional curvilinear
polyhedron in M .



Optimal Trajectories for Nonholonomic Mobile Robots 105

^

^
0

-

x x1 2

ψ
ψ

θ

f
0.

θ

0x

ψ

ψ
f

H

f

D

C

.

..
........ ..

..
.....

..
.

.. .
...

.
.
.

. .
.

 Plane (     ,     )

Fig. 2. Hyperplane H separating the half-line D− and the convex cone C.



106 P. Souères and J.-D. Boissonnat

- Any set X ⊂ Ω which is the union of a finite or countable number of
curvilinear ployhedra, such that only a finite number of these polyhedra intersect
every closed bounded set lying in Ω, will be called a piecewise-smooth set in Ω.
The dimension of this set will be the highest dimension of polyhedra involved
in the construction.

Remark 4. It has been proven in [12] that any non-singular smooth surface
of dimension less than n, closed in Ω, can be decomposed in a finite number of
curvilinear polyhedra. Therefore, such a surface is is a piecewise-smooth set in
Ω.

Now let us state the problem: In the n-dimensional space M , we consider
the following system:

dxi

dt
= f i(x1, . . . , xn, u) i = 1, . . . , n (12)

where the control u = (u1, . . . , um) belongs to an open set U ⊂ Rm. The
problem is the following one: Given any two points x0 and x1 ∈ Ω, among all
the piecewise continuous controls u(t) transferring the point from x0 to x1 find
the one which minimizes the functional J =

∫ t1
t0
f0(x(t), u(t))dt.

Now, let us assume that are given a piecewise-smooth set N of dimension
lower or equal to n−1, and n+1 piecewise-smooth sets P 0, P 1, . . . , Pn verifying

P 0 ⊂ P 1 ⊂ P 2 ⊂ . . . ⊂ Pn = Ω, (13)

and a function v defined in Ω and taking its values in U . Now, we can introduce
Boltianskii’s definition of a regular synthesis.

Definition 9. The sets, N,P 0, . . . , Pn and the function v effect a regular syn-
thesis for (12) in the region Ω, if the following conditions are satisfied.

A The set P 0 is the target point. Every smooth component of P i \ (P i−1∪N),
i = 1, . . . , n, is an i-dimensional smooth manifold in Ω; these components
will be called i-dimensional cells. The function v is continuously differen-
tiable on each cell and can be extended into a continuously differentiable
function on the neighbourhood of the cell.

B All the cells are grouped into cells of the first or second type (T1 or T2) in
the following manner:
(1) If σ is a 1-dim cell of type T1, then it is a segment of a phase trajectory

solution of (12) approaching the target P 0 with a nonzero phase velocity.
If σ is a i-dim cell of type T1 (i > 1), then through every point of σ,
passes a unique trajectory solution of equation (12). Furthermore, there
exists an (i − 1)-dim cell Π(σ) such that every trajectory solution of
(12) leaves σ after a finite time, and strikes against the cell Π(σ) at a
nonzero angle and with a nonzero phase velocity.
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(2) If σ is a (i − 1)-dim cell of type T2 (i ≥ 1), then, from any point
of σ there issues a unique trajectory of (12), moving in an (i + 1)-
dim cell Σ(σ) of type T1. Moreover, the function v(x) is continuously
differentiable on σ ∪Σ(σ).

(3) All 3-dim cells are of type T1.
C The conditions B(1), B(2) and B(3) ensure the possibility of extending

the trajectories solutions of (12) from cell to cell.2 It is required that each
trajectory “pierces” cells of the second kind only a finite number of times.
In this connection every trajectory terminates at the point O. We will refer
to these trajectories as being marked.

D From every point of the set Ω \N there exists a unique marked trajectory
that leads to O. From every point of N there issues a trajectory, solution
of (12), not necessarily unique and which is also said to be marked.

E All the marked trajectories are extremals.
F The value of the functional J computed along the marked trajectories ending

at the point O, is a continuous function of the initial point. In particular,
if several trajectories start from a point x0 of N , then, J takes the same
value in each case.

From this definition, we can now express Boltianskii’s sufficient optimality
condition:

Theorem 6. If a regular synthesis is effected in the set Ω under the as-
sumption that the derivatives ∂fi

∂xj and ∂fi

∂uk
exist and are continuous, and that

f0(x, u) > 0, then all the marked trajectories are optimal (in the region Ω).

4 Shortest paths for the Reeds-Shepp car

4.1 The pioneer works by Dubins and Reeds and Shepp

The initial work by Dubins from 1957 considered a particle moving at a constant
velocity in the plane, with a constraint on the average curvature of trajectories.
Using techniques close to those involved in the proof of Fillipov’s existence
theorem, Dubins proved the existence of shortest paths for his problem. He
showed that the optimal trajectories are necessarily made up with arc of circles
C of minimal turning radius and line segments S. Therefore, he proved that
any optimal path must be of one of the following two path types:

{CaCbCe , CaSdCe} where: 0 ≤ a, e < 2π, π < b < 2π, and d ≥ 0 (14)

2 Trajectories are extended from the cell σ into Π(σ) if Π(σ) is of type T1, and from
σ to Σ(Π(σ)) if Π(σ) is of type T2.
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In order to specify the direction of rotation the letter C will sometimes
be replaced by a ”r” (right turn) or a ”l” (left turn). The subscripts a, e, . . .
specify the length of each elementary piece.

Later, Reeds and Shepp [31] considered the same problem, when backwards
motions are allowed (|u1| = k). In both cases, as the modulus of the linear veloc-
ity keeps constant, the shortest path problem is equivalent to the minimum-time
problem. Contrary to Dubins, Reeds and Shepp did not prove the existence of
optimal paths. Indeed, as the control set is no more convex the existence of op-
timal paths cannot be deduced directly from Fillipov’s theorem. From Dubins’s
result, they deduced that any subpath of an optimal path, lying between two
consecutive cusp-points, must belong to the sufficient family (14). Finally, they
proved that the search for a shortest path may be restricted to the following
sufficient family (the symbol | indicates a cusp):

{ C|C|C, CC|C, C|CC, CCa|CaC, C|CaCa|C,
C|Cπ/2SC, CSCπ/2|C, C|Cπ/2SCπ/2|C, CSC } (15)

However the techniques used by Reeds and Shepp in their proof are based
on specific ad hoc arguments from differential calculus and geometry, specially
developed for this study, and cannot constitute a framework for further studies.

The following two subsections present a sequence of more recent works
based on optimal control theory and geometry which have led to characterize
the complete solution of Reeds and Shepp’s problem. Section (4.2) presents a
result simultaneously obtained by Sussmann and Tang [36] on the one hand,
and by Boissonnat, Cerezo and Leblond [2] on the other hand, showing how
Reeds and Shepp’s result can be found and even slightly improved by using
optimal control theory.

Section (4.3) presents a work by Souères and Laumond [33] who achieved
the characterization of shortest paths by completing the local reasoning of PMP
with global geometric arguments.

The last section (section 4.4) concludes the study by providing, a posteriori,
a new proof of the construction by using Boltianskii’s sufficient conditions [35].

4.2 Characterization of a sufficient family: A local approach

This section summarizes the work by Sussmann and Tang [36]; we use the
notations introduced by the authors.

The structure of commutations As the control set URS = {−1,+1} ×
[−1, 1] related to Reeds and Shepp’s problem (RS) is not convex, it is not
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possible to deduce the existence of optimal paths directly from Fillipov’s exis-
tence theorem. For this reason, the authors have chosen to consider what they
call the convexified problem (CRS) corresponding to the convexified control set
UCRS = [−1,+1]× [−1,+1] for which Fillipov’s existence theorem (theorem 2)
applies. The existence of optimal paths for RS will be established a posteriori
as a byproduct.

Let g1(x) =

 cos θ
sin θ

0

, and g2(x) =

0
0
1

 denote the two vector fields on

which the kinematics of the point is defined. With this notation system (2)
becomes :

ẋ = f(x, u) = g1(x) u1 + g2(x) u2 (16)

the corresponding hamiltonian is:

H = < ψ, f > = ψ1 cos θ u1 + ψ2 sin θ u1 + ψ3 u2 = φ1 u1 + φ2 u2

where φ1 = < ψ, g1 >, and φ2 = < ψ, g2 > represent the switching func-
tions. From PMP, a necessary condition for (u1(t), u2(t)) to be an optimal
control law, is that there exists a constant ψ0 ≤ 0 such that at each time
t ∈ [t0, t1]

−ψ0 = < ψ(t), g1(x(t)) > u1(t)+ < ψ(t), g2(x(t)) > u2(t)
= maxv=(v1,v2)∈U (< ψ(t), g1(x(t)) > v1(t)+ < ψ(t), g2(x(t)) > v2(t))

(17)

and ψ̇(t) =
−∂H
∂x

(ψ(t), x(t), u(t)) = −ψ(t) [u1
dg1

dx
+ u2

dg2

dx
]

A necessary condition for t to be a switching time for ui is that φi = 0.
Therefore, on any subinterval of [t0, t1] where the switching function φi does
not vanish the corresponding control component ui is bang i.e. maximal or
minimal.

Now, by means of theorem 4 we can express the derivative of the switching
functions in terms of Lie brackets:

φ1 =< ψ, g1 > =⇒ φ̇1 = u2 < ψ, [g2, g1] >
φ2 =< ψ, g2 > =⇒ φ̇2 = −u1 < ψ, [g2, g1] >

Thus the function φ3 =<ψ, g3 >, where g3 = [g1, g2] = (− sin θ, cos θ, 0)T ,
seems to play an important role in the search for switching times. We have
then:
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φ̇1 = u2φ3 , φ̇2 = −u1φ3 , φ̇3 = −u2φ1 (18)

Maximizing the Hamiltonian leads to:

u1(t) = sign(φ1(t)) and u2(t) = sign(φ2(t)) (19)

where sign(s) =

+1 if s > 0
−1 if s < 0
any element of [-1,1] if s = 0

Then from PMP we get:

|φ1(t)|+ |φ2(t)|+ ψ0 = 0 (20)

On the other hand, at each point of the manifold M , the vector fields g1, g2

and g3 define a basis of the tangent space. Therefore, as the adjoint vector
never vanishes, φ1, φ2 and φ3 cannot have a common zero. It follows that:

|φ1(t)|+ |φ2(t)|+ |φ3(t)| 6= 0 (21)

Equations (18), (19), (20) and (21) define the structure of commutations;
several properties may be deduced from these relations as follows:

Lemma 1. There do not exist (non trivial) abnormal extremals for CRS.

Proof: If ψ0 = 0 then (20)=⇒ φ1 ≡ 0 and φ2 ≡ 0. Then (21)=⇒ φ3 6= 0 but (18)

=⇒ u1φ3 = u2φ3 = 0 =⇒ u1 = u2 = 0. The only remaining possibility is a trivial

trajectory i.e. of zero length in zero time 2.

Lemma 2. On a non trivial extremal trajectory for CRS, φ1 and φ2 cannot
have a common zero.

Proof: If ∃t ∈ [t0, t1] such that φ1(t) = φ2(t) = 0 then (20) =⇒ ψ0 = 0, we

conclude with lemma 1 2

Lemma 3. Along an extremal for CRS κ = φ2
1 +φ2

3 is constant. Furthermore,
(κ = 0)⇐⇒ (φ1 ≡ 0)

Proof: As φ̇1 = u2φ3 and φ̇3 = u2φ1 we deduce that κ = φ2
1 + φ2

3 is constant.

κ = 0 ⇒ φ1 ≡ 0, obvious. Inversely, suppose φ1 ≡ 0 but κ 6= 0; from lemma 2 it

follows that φ2 6= 0. Therefore as u2 = sign(φ2), u2 6= 0. But then (18) =⇒ 0 = φ̇1 =

u2.φ3 =⇒ φ3 = 0 that leads to a contradiction 2.
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Lemma 4. Along an extremal for CRS, either the zeros of φ1 are all isolated,
or φ1 ≡ 0. Furthermore, at an isolated zero of φ1, φ̇1 exists and does not vanish.

Proof: Let x(t, u) be an extremal for CRS on [t0, t1]. Suppose φ1 6≡ 0; it follows

that κ > 0. Let τ ∈ ]t0, t1[ such that φ1(τ) = 0, from lemma 2 φ2(τ) 6= 0 and

as φ2 is continuous there exists a subinterval I ⊂ ]t0, t1[ containing τ such that

∀t ∈ I, φ2(t) 6= 0. Therefore the sign of φ2 is constant on I. From this, we deduce

that u2 ≡ 1 or u2 ≡ −1 on I. In either case, since the equation φ̇1 = u2(t) φ3(t)

holds on I, it comes φ̇1(t) = ±φ3(t), the sign keeping constant on I. κ > 0 and

φ1(τ) = 0 =⇒ φ3(τ) 6= 0 =⇒ φ̇1(τ) = ±φ3(τ) 6= 0. therefore, τ is an isolated zero.

2

Therefore, there exist two kinds of extremal trajectories for CRS:

– type A: trajectories with a finite number of switch on u1,
– type B: trajectories along which φ1 ≡ 0 and either u2 ≡ 1 or u2 ≡ −1.

Before starting the study of these two path types, we need to state a simple
preliminary lemma.

Lemma 5. If an optimal trajectory for CRS is an arc bang Ca then necessarily
a ≤ π.

Proof: When a > π it suffice to follow the arc of length 2π − a in the opposite

direction. 2

Characterization of type A trajectories First, let us consider the type
A trajectories with no cusp i.e. trajectories along which u1 ≡ 1 or u1 ≡ −1.
According to the symmetry of the problem we can restrict the study to the
case that u1 ≡ 1. The corresponding trajectories are the solutions of Dubins’
problem (DU) which are optimal for CRS.

Let γ(t), t ∈ [t0, t1] be such a trajectory. From lemma 4 we know that the
zeros of φ1 are all isolated. Furthermore, φ1 cannot vanish on ]t0, t1[ because
in that case the sign of φ1 would have to change, and u1 would have to switch.
Therefore, as γ is a trajectory for DU, φ1(t) ≥ 0 on [t0, t1] and φ1 > 0 on
]t0, t1[. Equations (18) become: φ̇2 = −φ3 and φ̇3 = −u2φ1. Then φ2 is of class
C1 and φ̈2 = u2φ1. Furthermore, u2 = sign(φ2), then φ̈2 = φ1sign(φ2). This
means that φ2 is convex, (resp. concave) on the whole interval where φ2 > 0
(resp. φ2 < 0). From that we deduce the following property:

Lemma 6. A trajectory γ with no cusp, optimal for CRS, is necessarily of one
of the following three kinds:

– Ca 0 ≤ a ≤ π
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– CaCb 0 < a ≤ π
2 and 0 < b ≤ π

2
– CaScCb 0 < c , 0 ≤ a ≤ π

2 and 0 ≤ b ≤ π
2

Proof:
As before we consider only the trajectories along which u1 ≡ 1. If φ2 does not

vanish, γ is an arc bang; from lemma 5 we can conclude.
If φ2 vanishes, let us denote by I the time interval defined by I = {t, t ∈

[t0, t1], φ2(t) 6= 0}. As φ−1
2 (0) is closed, I is relatively open in [t0, t1]. Let I be the set

of connected components of I. First, let us prove that I does not contain any open
interval J =]t′, t′′[⊂ [t0, t1]. Indeed, if J is such an interval, then φ2(t′) = φ2(t′′) = 0.
Since φ2 is either negative and concave, or positive and convex on J , then neces-
sarily φ2 ≡ 0 on J which is a contradiction. So [t0, t1] is partitioned into at most
three intervals I1, I2, I3 such that φ2 never vanishes on I1 ∪ I3, and φ2 ≡ 0 on I2.
On each interval J in I u2 is constant and equals 1 or −1. From equations (18) we
get φ̈3 + φ̇3 = 0. We have shown that φ2 vanishes on I2 = [t′, t′′]; if t0 < t′ then φ2

is convex and positive (or concave and negative) on [t0, t
′[ and φ2(t′) = 0. Therefore

both φ3 and φ̇3 have a constant sign on ]t0, t
′[ (for instance, if φ2 > 0 on [t0, t

′[, then
φ̇3 = −u2φ1 and u2 = −sign(φ2) = −1 ⇒ φ̇3 = φ1 6= 0). Also φ3 = −φ̇2, so φ3

has no zero either because the derivative of a convex function only vanishes at its
minimum. This implies that t′ − t0 ≤ π

2
. By applying a same reasoning on ]t′′, t1] we

conclude the proof for the case u1 ≡ 1. The case u1 ≡ −1 can be derived from the
same arguments 2.

Remark 5. The previous lemma does not solve Dubins’ problem. It just de-
termines the structure of Dubins’ trajectories which are CRS-optimal. Indeed,
a time optimal trajectory for DU is not necessarily optimal for CRS.

Now let us go back to the general form of type A trajectories. By integrating
the adjoint equations type A trajectories may be very well characterized. Let
us consider the adjoint system:


ψ̇1 = −∂H∂x = 0
ψ̇2 = −∂H∂y = 0
ψ̇3 = −∂H∂θ = ψ1 sin θ u1 − ψ2 cos θ u1 = ψ1 ẏ − ψ2 ẋ

Hopefully, these equations are easily integrable: ψ1 and ψ2 are constant on
[t0, t1] and if we suppose x(t0) = y(t0) = 0 we get φ2(t) = ψ3(t) = ψ3(t0) +
ψ1y(t)−ψ2x(t). Therefore, from relation (17) we can deduce that the switching
points are located on three parallel lines.

– when φ2(t) = 0, the point lies on the line D0: ψ1y − ψ2x+ ψ3(t0) = 0
– when φ1(t) = 0, we deduce from (17) that ψ3(t)u2(t) + ψ0 = 0:
• If u2 = 1 the point is on the line D+ : ψ1y−ψ2x+ψ3(t0) +ψ0 = 0
• If u2 = −1 the point is on the line D− : ψ1y−ψ2x+ψ3(t0)−ψ0 = 0
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- If φ2(t) vanishes over a non empty interval [τ1, τ2] ⊂ [t0, t1], we get from
relation (17): ψ1 cos θ(t) + ψ2 sin θ(t) + ψ0 = 0. According to lemma 2, the
constant ψ1 and ψ2 cannot be both zero, it follows that θ remains necessarily
constant on [τ1, τ2], the singular control component u2 is equal to 0, and the
corresponding trajectory is a segment of D0.

- At a cusp point φ1 = ψ1 cos θ + ψ2 sin θ = 0. It follows that the point is
oriented perpendicularly to the common direction of the three lines.

To sum up, type A trajectories are made up with arcs of circle (C) of
minimal turning radius which correspond to the regular control laws (u1 =
±1, u2 = ±1) and line segments (S) which correspond to the singularity of the
second control component: (u1 = ±1, u2 = 0). The line segments and the point
of inflection are on D0, the cusp point are on D+ or D− and at each cusp the
direction of the point is perpendicular to the common direction of the lines, see
figure (3). We have the following lemma:

Lemma 7. In the plane of the car’s motion any trajectory of type A is located
between two parallel lines D+ and D−. The points of inflection and the line
segments belong to a third line D0 having the same direction as D+ and D−

and located between them at equal distance |ψ0
ψ1
| ≤ π

2 . The cusp-points are
located on D+ when u2 = 1 and on D− when u2 = −1; at a cusp point the
representative point’s orientation is perpendicular to these lines.

At this stage, by using a geometric reasoning it is possible to prove that
some sequences of arcs and line segments are never optimal.

D

D
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D

D

D

2
π 

.
.
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r  r  l r  r   s  r+ - - + - - -

.

Fig. 3. Optimal paths of type (A) lie between two parallel lines D+ and D−.

Lemma 8. The following trajectories cannot be CRS-optimal paths.

1. Ca|Cπ a > 0
2. Ca|Cπ

2
SeCπ

2
a > 0, e ≥ 0, with the same direction of rotation ( l or r ) on

the arcs Cπ
2

located at each extremity of S.
3. Cπ

2
SeCπ

2
|Cπ

2
, e ≥ 0, with an opposite direction of rotation on the arcs Cπ

2

located at each extremity of S.
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4. Ca|CbCb|CbCb a, b > 0

Proof: The method of the proof consists in showing that each trajectory is equiv-
alent to another one which is clearly not optimal. The reasoning is illustrated at figure
(4): By replacing a part of the initial path by the equivalent one drawn in dotted line,
we get an equivalent trajectory i.e. having the same cost and linking the same two
configurations. Then, using the preceding lemmas 6 and 7 we prove that this new
trajectory does not verify the necessary conditions of PMP. On figure (4) the path
1, l+a l

−
π is equivalent to a path l+a r

+
π and from lemma 6 we now that such a path is

not optimal. The three other path types (2, 3 and 4) do not satisfy lemma 7. Indeed,
either the points of inflection and the line segment do not belong to the same line D0

or the direction of the point at a cusp is not perpendicular to D0. 2

1 2

3
4

Fig. 4. Non-optimal equivalent trajectories

Finally, Using the theory of envelopes, Sussmann and Tang showed that a
path Ca|CbCb|Cb is never optimal. Due to the lack of space we cannot present
here this technical part of the proof, the reader will have to refer to [36].
This last result eliminates type A trajectories with more than two cusps. The
remaining possible sequences of (C) and (S) determine eight path types which
are represented by the types (II) to (IX) of the sufficient family (22) presented
at section 4.2.

Characterization of type B trajectories Let us first consider the case that
u2 ≡ 1; we call this subproblem LTV (Left Turn Velocity). In order to lead their
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reasoning the authors considered what they called the lifted problem LLTV
(Lifted Left Turn Velocity) obtained from LTV by regarding the variable θ as
a real number x3. For this last problem, as ẋ3 ≡ 1, any trajectory γ linking the
point x0 at time t0 to the point x1 at time t1 has the cost: ∆t = x3(t1)−x3(t0).
The same phenomenon occurs for LTV, but only for trajectories whose duration
is lower or equal to π. For this reason the problem LLTV is called degenerate
whereas the problem LTV is locally degenerate.

Using the techniques presented in chapter 1 it is straight forward to deduce
from the structure of the Lie algebra L = Lie(g1, g2) generated by the vector
fields g1 and g2, that the problem LTV has the accessibility property. Neverthe-
less, as the corresponding system is not symmetric (i.e. an admissible trajectory
followed backwards is not necessary admissible) we cannot deduce directly the
controllability of LTV. This can be done by considering the “bang-bang” sys-
tem (BB) corresponding to the control set (u1, u2) ∈ {−1,+1} × {−1,+1}. As
the BB system has the accessibility property and is symmetric on the connected
manifold R2 × S1 it is controllable. Any admissible trajectory for BB is a se-
quences of tangent arcs C. By replacing every arc rα by the complementary
part l2π−α followed backwards, we can transform any BB trajectory into an
admissible trajectory for LTV. Therefore, we deduce the controllability of the
problem LTV. This is no more true for the problem LLTV in R3. It suffice to
note that no point (x, y, 0) verifying (x, y) 6= (0, 0) is reachable from the origin.

By using the Ascoli-Arzelà theorem, Sussmann and Tang proved that the
reachable set for LLTV from x0, R(x0), is a closed subset of R3. Now, let
L0 be the ideal of the lie algebra L generated by g1. As L0 is the smallest
linear subspace S of L, such that ∀X ∈ S, ∀Y ∈ L, [X,Y ] ∈ S. It follows that
L0 = Lie(g1, g3).

Definition 10. (Sussmann) - L0 is called strong accessibility Lie algebra.
- Let x ∈ R3, L0(x) = span(g1(x), g2(x)); a trajectory of LLTV is called a

strong extremal if the corresponding adjoint vector ψ is not trivial on L0(γ(t)),
i.e. the projection of ψ(t) on L0(γ(t)) never vanishes.

- We will call boundary trajectory of LLTV any trajectory γ : [t0, t1]→ R3

such that γ(t1) belongs to the boundary ∂R(x0) of R(x0).

Lemma 9. Any boundary trajectory of LLTV is a strong extremal of the form
ls0a l

s1
π . . . lskπ l

sk+1
b where 0 ≤ a, b ≤ π and the signs si ∈ {+,−} alternate.

Proof: Let γ : [t0, t1]→ R3 be a boundary trajectory for LLTV, x0 = γ(t0) and

x1 = γ(t1) ∈ ∂R(x0). From theorem 5 we know that there exists a nontrivial adjoint

vector ψ = (ψ0, ψ1, . . . , ψn) verifying ψ0 ≡ 0. From relation (20) we get |φ1|+|φ2| = 0.

On the other hand, κ = φ1(t)2 + φ3(t)2 6= 0 otherwise φ1 = φ2 = φ3 = 0. It follows

that < ψ, g1 >= φ1 and < ψ, g2 >= φ3 do not vanish simultaneously and therefore

γ is a strong extremal for LLTV. Now, as u2 ≡ 1 we know from equations (18) that
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φ1 must be a nontrivial solution of φ̈1 + φ1 = 0. Therefore, the distance between two

consecutive zeros of φ1 is exactly π and the sign of φ1 changes at each switch. 2

Lemma 10. Given any path γ solution of LLTV, there exists an equivalent
solution γ′ of LLTV which is a concatenation of a boundary trajectory and an
arc bang of LLTV for the control u1 ≡ 1.

Proof: Let γ be defined on [t0, t1], γ(t0) = x0 and γ(t1) = x1 a trajectory solution

of LLTV. If x1 ∈ ∂R(x0) the conclusion follows. Suppose now that x1 ∈ Int(R(x0)).

let us consider an arc bang for LLTV corresponding to the control u1 ≡ 1, ending

at x1. As the set R(x0) is closed, by following this path backwards from x1 the

representative point reaches, after a finite time, a point x′1 belonging to the boundary.

The problem being degenerate, the trajectory γ made up by the boundary trajectory

from x0 to x′1 followed by the arc bang from x′1 to x1 is equivalent to γ. 2

Now Suppose γ : [t0, t1] → R2 × S1 is an LTV trajectory time optimal for
CRS. Let π : R3 → R2×S1 be the canonical projection, then γ = π ◦γ? where
γ? : [t0, t1] → R3 is a trajectory of LLTV. From the previous lemma we can
replace γ? by the concatenation γ?new of a boundary trajectory γ?1 and a bang
trajectory γ?2 for u1 ≡ 1, and then project these down to trajectories γnew,
γ1, γ2 in R2×S1. Then γ1 is of the form ls0a l

s1
π . . . lskπ l

sk+1
b . But from lemma 8 a

path Ca|Cπ with a > 0 cannot be optimal. It follows that γ1 contains at most
one cusp, and the length of γ2 is lower or equal to π. Therefore, γnew is a path
l+a l
−
b l

+
c or l−a l

+
d l

+
e = l−a l

+
d+e with a, b, c and d+ e at most equal to π. Hence, the

type l+a l
−
b l

+
c , 0 ≤ a, b, c ≤ π constitutes a sufficient family for LLTV.

Using the same reasoning for the dual problem RTV (Right Turn Velocity),
the path type r+

a r
−
b r

+
c with 0 ≤ a, b, c ≤ π appears to be also sufficient.

Remark 6. The reasoning above cannot be directly held in R2 × S1 for LTV
because in this case the length of a trajectory steering the point from x0 to x1

is not necessarily equal to θ(t1)− θ(t0).

Sufficient family for RS From the reasoning above it appears that the search
for optimal trajectories for CRS may be restricted to the following sufficient
family containing nine path types:

(I) l+a l
−
b l

+
e or r+

a r
−
b r

+
e 0 ≤ a ≤ π , 0 ≤ b ≤ π , 0 ≤ e ≤ π

(II)(III) Ca|CbCe or CaCb|Ce 0 ≤ a ≤ b , 0 ≤ e ≤ b , 0 ≤ b ≤ π
2

(IV ) CaCb|CbCe 0 ≤ a < b , 0 ≤ e < b , 0 ≤ b ≤ π
2

(V ) Ca|CbCb|Ce 0 ≤ a < b , 0 ≤ e < b , 0 ≤ b ≤ π
2

(V I) Ca|Cπ
2
SlCπ

2
|Cb 0 ≤ a < π

2
, 0 ≤ b < π

2
, 0 ≤ l

(V II)(V III) Ca|Cπ
2
SlCb or CbSlCπ

2
|Ca 0 ≤ a ≤ π , 0 ≤ b ≤ π

2
, 0 ≤ l

(IX) CaSlCb 0 ≤ a ≤ π
2
, 0 ≤ l , 0 ≤ b ≤ π

2

(22)
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However, all the path contained in this family are obtained for u1 = 1 or
u1 = −1, and by this, are admissible for RS. Therefore, this family constitutes
also a sufficient family for RS which contains 46 path types. This result improves
slightly the preceding statement by Reeds and Shepp of a sufficient family
containing 48 path types.

On the other hand, as Fillipov’s existence theorem guarantees the existence
of optimal trajectories for the convexified problem CRS, it ensures the existence
of shortest paths with bounded curvature radius for linking any two configura-
tions of Reeds and Shepp’s car. Applying PMP to Reeds and Shepp’s problem
we deduce the following lemma that will be useful in the sequel.

Lemma 11. (Necessary conditions of PMP)
Optimal trajectories for RS are of two types:

– A/ Paths lying between two parallel linesD+ andD− such that the straight
line segments and the points of inflection lie on the median line D0 of both
lines, and the cusp points lie on D+ or D−. At a cusp the point’s orientation
is perpendicular to the common direction of the lines (see figure 3),

– B/ Paths C|C| . . . |C with length(C) ≤ π for any C.

4.3 A geometric approach: construction of a synthesis of optimal
paths

Symmetry and reduction properties In order to analyse the variation of
the car’s orientation along the trajectories let us consider the variable θ as
a real number. To a point q = (x, y, θ∗) in R2 × S1 correspond a set Q =
{(x, y, θ) / θ ∈ θ∗} in R3 where θ∗ is the class of congruence modulus 2π.
Therefore, the search for a shortest path from q to the origin in R2 × S1

is equivalent to the search for a shortest path from Q to the origin in R3.
By considering the problem in R3 instead of R2 × S1 we can point out some
interesting symmetry properties. First let us consider trajectories starting from
each horizontal plane Pθ = {(x, y, θ), x, y ∈ R2} ⊂ R3.

In the plane P of the robot’s motion, or in the plane Pθ, we denote by ∆θ

the line of equation: y = −x cot θ2 and ∆⊥θ the line perpendicular to ∆θ passing
through 0. Given a point (M, θ), we denote by M1 the point symmetric to M
with respect to O, M2 the point symmetric to M with respect to ∆θ, and M3

the point symmetric of M1 with respect to ∆θ. Let T a be path from (M, θ)
to (O, 0).

Lemma 12. There exist three paths T1, T2 and T3 each isometric to T , starting
respectively from (M1, θ), (M2, θ) and (M3, θ) and ending at (O, 0) (see figure
5).
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∆

∆

θ

θ
⊥

M
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M M
T3

31

T1

2

T2

T

0

Fig. 5. A path gives rise to 3 isometric ones.

Proof: (see Figure 5) T1 is obtained from T by the symmetry with respect to O.
Proving the existence of T2 requires us to consider the construction illustrated at

figure (6): We denote by δ the line passing through M and making an angle θ with the
x-axis, and s the axial symmetry with respect to δ. Let A be the intersecting point of δ
with the x-axis and r the rotation by the angle −θ around A. Let us note L = r(M).

Finally, t, represents the translation of vector
−→
LO. We denote by T2 the image of

T by the isometry = = t ◦ r ◦ s. T2 links the directed point (M̃, θ̃) = =((O, 0)) to
(O, 0) = =(M, θ). θ̃ clearly equals θ. We have to prove that M̃ = M2. Let respectively
α and β be the angles made by (O,M) and (O, M̃) with the x-axis. The measure of

the angle made by the bisector of ̂(M,O, M̃) and the x-axis is: α+ β−α
2

= α+β
2

= π−θ
2

.

As tan π−θ
2

= − cot θ
2
, we can assert that M̃ is the symmetric point of M with respect

to ∆θ, i.e. M2.

Finally T3 is obtained as the image of T by = followed by the symmetry with

respect to the origin. 2

Lemma 13. If T is a path from (M(x, y), θ) to (O, 0), there exists a path T ,
isometric to T , from (M(x,−y),−θ) to (O, 0).

Proof: It suffices to consider the symmetry sx with respect to the abscissa axis.

Remark 7. – By combining the symmetry with respect to ∆θ and the sym-
metry with respect to O, the line ∆⊥θ appears to be also an axis of symmetry.
According to lemmas 12 and 13 it is enough to consider paths starting from
one quadrant in each plane Pθ, and only for positive or negative values of
θ.

– The constructions above allow us to deduce easily the words w1, w2, w3 and
w4 describing T1, T2, T3 and T4 from the word w describing T .
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Fig. 6. Construction of the isometry =.

• w1 is obtained by writing w, then by permutating the superscripts +
and −
• w2 is obtained by writing w in the reverse direction, then by permutating

the superscripts + and −
• w3 is obtained by writing w in the reverse direction
• w is obtained by writing w, then by permutating the r and the l 2

As a consequence of both lemmas above a last symmetry property holds in
the case that θ = ±π:

Lemma 14. If T is a path from (M(x, y), π) (resp. (M(x, y),−π)) to (O, 0),
there exists an isometric path T ′ from (M(x, y),−π) (resp. (M(x, y), π) ) to
(O, 0).

The word w′ describing T ′ is obtained by writing w in the opposite direction,
then by permutating on the one hand the r and the l, and on the other hand
the + and −.

Remark 8. The points (M(x, y), π) and (M(x, y),−π) represent the same
configuration in R2 × S1 but are different in R3. This means that the tra-
jectories T and T ′ are isometric and have the same initial and final points, but
along these trajectories the car’s orientation varies with opposite direction.

Proof of lemma 14: We use the notation of lemma 12 and 13. Let (M(x, y), π)

be a directed point and T a trajectory from (M,π) to (0, 0). When θ = ±π the axis



120 P. Souères and J.-D. Boissonnat

∆θ is aligned with the x-axis. By lemma 12, there exists a trajectory T2 = =(T ),

isometric to T , starting at (M2(x,−y), π) and ending at (O, 0). Then by lemma 12

there exists a trajectory T2 = sx(T2), isometric to T2, starting at (M2(x, y),−π) and

ending at (O, 0). Let us call T ′ the trajectory T2, then T ′ = sx ◦ =(T ) is isometric

to T and by combining the rules defining the words w2 and w we obtain the rule

characterizing w2 = w′ (the same reasoning holds when θ = −π.) 2

Now by using lemma 14 we are going to prove that it suffice to consider
paths starting from points (x, y, θ) when θ ∈ [−π, π]. In the family (22) three
types of path may start with an initial orientation θ that does not belong to
[−π, π]. These types are (I) and (VII) & (VIII). Combining lemma 14 with the
necessary condition given by PMP we are going to refine the sufficient family
(22) by rejecting those paths along which the total angular variation is greater
than π.

Lemma 15. In the family (22), types (I), (VII) and (VIII) may be refined as
follows:

(I) l+a l
−
b l

+
e or r+

a r
−
b r

+
e 0 ≤ a+ b+ e ≤ π

(VII)(VIII) Ca|Cπ
2
SdCb or CbSdCπ

2
|Ca

0 ≤ a ≤ π
2 , 0 ≤ b ≤ π

2 , 0 ≤ d
and a+ b ≤ π

2 if u2 is constant
on every arc C

Proof: Our method is as follows:

1. We consider a path T linking a point (M, θ) to the origin, such that |θ| > π.

2. We select a part of T located between two configurations (M1, θ1) and (M2, θ2)
such that |θ1−θ2| = π. According to lemma 14 we replace this part by an isometric
one, along which the point’s orientation rotates in the opposite direction. In this
way we construct a trajectory equivalent to T i.e having the same length and
linking (M, θ) to the origin.

3. We prove that this new trajectory does not verify the necessary conditions given
by PMP. As T is equivalent to this non optimal path we deduce that it is not
optimal.

Let us consider first a type (I) path. Due to the symmetry properties it suffices to
regard a path l+a l

−
b l

+
e with a+ b+ e = π + ε, (ε > 0) and a > ε. If we keep in place a

piece of length ε and replace the final part using lemma 14, we obtain an equivalent
path l+ε r

−
e r

+
b r
−
a−ε which is obviously not optimal because the robot goes twice to the

same configuration.

We use the same reasoning to show that a path Ca|Cπ
2
Sd with d 6= 0 cannot be

optimal if a > π
2

. Without lost of generality we consider a path l+π
2 +εl

−
π
2
s−d . According

to lemma 14 we can replace the initial piece l+π
2 +εl

−
π
2−ε

by the isometric one r+
π
2−ε

r−π
2 +ε.
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The initial path is then equivalent to the path r+
π
2−ε

r−π
2 +εl

−
ε s
− which cannot be optimal

as the point of inflection do not belong to the line supporting the line segment.

Consider now a path Ca|Cπ
2
SdCb or CbSdCπ

2
|Ca with u2 constant on the arcs.

We show that such a path cannot be optimal if a+ b > π
2

. Consider a path l+a l
−
π
2
s−d l
−
b

with a + b = π
2

+ ε and a > ε. We keep in place a piece of length ε and replace

the final part by an isometric one according to lemma 14. We obtain an equivalent

path l+ε r
+
b s

+
d l

+
π
2
r−a−ε. As the point of inflection does not lie on the line D0, this path

violates both necessary conditions A and B of PMP (see lemma 11) and therefore is

not optimal. 2

Remark 9. In the sufficient family (22) refined by lemma 15, the orientation
of initial points is defined in [−π, π]. So, to solve the shortest path problem in
R2 × S1, we only have to consider paths starting from R2 × [−π, π] in R3.

Construction of domains For each type of path in the new sufficient family,
we want to compute the domains of all possible starting points for paths ending
at the origin. According to the symmetry properties it suffices to consider
paths starting from one of the four quadrants made by ∆θ and ∆⊥θ , in each
plane Pθ, and only for positive or negative values of θ. We have chosen to
construct domains covering the first quadrant (i.e. x tan θ

2 ≤ y ≤ −x cot θ2 ), for
θ ∈ [−π, 0].

As any path in the sufficient family is described by three parameters, each
domain is the image of the product of three real intervals by a continuous
mapping. It follows that such domains are connected in the configuration space.

To represent the domains, we compute their restriction to planes Pθ. As θ
is fixed, the cross section of the domain in Pθ is defined by two parameters. By
fixing one of them as the other one varies, we compute a foliation of this set.
This method allows us, on the one hand to prove that only one path starts from
each point of the corresponding domain, and on the other hand to characterize
the analytic expression of boundaries.

In order to cover the first quadrant we have selected one special path for
each of the nine different kinds of path of the sufficient family; by symmetry
all other domains may be obtained.

In the following we construct these domains, one by one, in Pθ. For each
kind of path, integrating successively the differential system on the time inter-
vals during which (u1, u2) is constant, we obtain the parametric expression of
initial points. In each case we obtain the analytical expression of boundaries;
computations are tedious but quite easy (a more detailed proof is given in [33]).

We do not describe here the construction of all domains. We just give a
detailed account of the computation of the first domain, the eight other domains
are constructed exactly the same way. Figure 9 presents the covering of the first
quadrant in P−π4 , the different domains are represented.
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Fig. 7. Path l+a l
−
b l
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Construction of domain of path C|C|C: As we said in the introductive section,
Sussmann and Tang have shown that the study of family C|C|C may be re-
stricted to paths types l+l−l+ and r+r−r+. As we only consider values of θ in
[−π, 0] it suffice to study the type l+a l

−
b l

+
e (figure 7). By lemma 15, a, b and e

are positive real numbers verifying: 0 ≤ a+ b+ e ≤ π.
Along this trajectories the control (u1, u2) takes successively the values

(+1,+1), (−1,+1) and (+1,+1). By integrating the system (4) for each of
these successive constant values of u1 and u2, from the initial configuration
(x, y, θ) to the final configuration (0, 0, 0) we get:

x = sin θ + 2 sin(b+ e)− 2 sin e
y = − cos θ + 2 cos(b+ e)− 2 cos e+ 1
θ = −a− b− e

(23)

Let us now consider that the value of θ is fixed. The arclength parameter e
varies in [0,−θ]; given a value of e, b varies in [0,−θ − e]. When e is fixed as
b varies, the initial point traces an arc of the circle ζe of radius 2 centered at
Pe(sin θ + 2 sin e,− cos θ − 2 cos e+ 1)

One end point of this arc is the point E(sin θ,− cos θ + 1) (when b = 0),
depending on the value of e the other end point (corresponding to b = −θ− e)
describes an arc of circle of radius 2 centered at the point H(− sin θ, cos θ + 1)
and delimited by the point E (when e = −θ) and its symmetric F with respect
to the origin O (when e = 0).

For different values of e the arcs of ζe make a foliation of the domain; this
ensures the existence of a unique trajectory of this type starting form every
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point of the domain. Figure (8) represents this construction for two different
values of θ. The cross section of this domain appears at figure (9) with the
eight other domains making the covering of the first quadrant in P−π4 .

Fig. 8. Cross section of the domain of path l+a l
−
b l

+
e in Pθ, (θ = −π4 left side)

and (θ = − 3π
4 right side).

- As this domain is symmetric about the two axes ∆θ and ∆⊥θ , it follows
from lemma 12 that the domain of path l−l+l− is exactly the same one.
This point corroborates the result by Sussmann and Tang which states that
the search for an optimal path of the family C|C|C (when θ ≤ 0) may be
limited to one of these two path types.

- When θ = −π the domain is the disc of radius 2 centered at the origin.

Following the same method the eight other domains are easily computed
(see [33]), they are represented at figure 9 in the plane P−π4 . The domain’s
boundaries are piecewise smooth curves of simple sort: arcs of circle, line seg-
ments, arcs of conchoids of circle or arcs of cardioids.

Analysis of the construction As we know exactly the equations of the
piecewise smooth boundary curves, we can precisely describe the domains in
each plane Pθ. This construction insures the complete covering of the first
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Fig. 9. The various domains covering the first quadrant in P−π4 (foliations
appear in dotted line).
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quadrant, and by symmetry the covering of the whole plane. All types in the
sufficient family are represented3. Analysing the covering of the first quadrant,
we can note that almost all the domains are adjacent, describing a continuous
variation of the path shape. Nevertheless some domains overlap and others are
not wholly contained in the first quadrant. Therefore, if we consider the covering
of the whole plane (see fig 10), many intersections appear. In a region belonging
to more than one domain, several paths are defined, and finding the shortest
one will require a deeper study. At first sight, the analysis of all intersections
seems to be combinatorially complex and tedious, but we will show that some
geometric arguments may greatly simplify the problem. First, let us consider
the following remarks about the domains covering the first quadrant:

∆

∆

θ

θ
⊥

Fig. 10. Overlapping of domains covering the plane P−π4 .

– Except for the domain r+l+l−r−, all domains are adjacent two-by-two (i.e.
they only have some parts of their boundary in common). Then, inside

3 However, each domain is only defined for θ belonging to a subset of [−π, π]. So
in a given plane Pθ only the domains corresponding to a subfamily of family (22)
refined by lemma 15 appear.
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the first quadrant we only have to study the intersection of the domain
r+l+l−r− with the neighbouring domains.

– Some domains are not wholly contained in the first quadrant, therefore,
they may intersect domains covering other quadrants. Nevertheless, among
the domains overlapping other quadrants, some are symmetric about ∆θ

or ∆⊥θ . These domains are:
• the domains l+l−l+ and r+l+l−r− symmetric about ∆θ,
• the domains l+l−l+ and l−s−l− symmetric about ∆⊥θ , (i.e. all domains

intersecting ∆⊥θ .)
In this case, we consider that only one half of the domain belongs to the
covering of first quadrant. Therefore, no intersections may occur with the
symmetric domains.

Finally, we only have to study two kinds of intersections: on the one hand
the intersections of pairs of symmetric domains with respect to ∆θ, (section 3),
and on the other hand the intersections inside the first quadrant between the
domain r+l+b l

−
b r
− and the neighbouring domains (section 3).

Refinement of domains intersecting ∆θ In this section we prove that the
path l+l−r−, l+l−b r

−
b r

+, l+l−π
2
s−r−π

2
r+, and l+l−π

2
s−r−, stop being optimal as

soon as their projections in Pθ cross the ∆θ-axis. This will allow us to remove
the part of these domains lying out of the first quadrant.

1/ Path l+l−r−

Lemma 16. A path l+l−r− linking a directed point (M(x, y), θ) to (0, 0, 0),
with y > −x cot θ2 , is never optimal.

Proof: Suppose that there is a path T1 of type l+l−r− from a directed point

(M1(x1, y1), θ1) to (0, 0, 0), verifying y1 > −x1 cot θ1
2

. Let M2 be the cusp point

(Figure 11). M2 is such that 4 y2 < −x2 cot θ2
2

. Let us consider a directed point

(M, θ) moving along the path from (M1, θ1) to (M2, θ2). As M moves, the direction

θ increases continuously from θ1 to θ2. As a result, the corresponding line ∆θ varies

from ∆θ1 to ∆θ2 . Its slope increases continuously from − cot θ1
2

to − cot θ2
2

. Then,

by continuity, there exists a directed point (Mα, α) on the arc (M1,M2), verifying

yα = −xα cot α
2

. From lemma 12, there exist two isometric paths of type l+l−r− and

r+l+l− linking (Mα, α) to the origin. Thus, (M1, θ1) is linked to the origin by a path

of type l+r+l+l− having the same length as T1. Such a path violates both necessary

conditions A and B of PMP (lemma 11): (A: D0 and D+ cannot be parallel) and

(B: u2 is not constant). As a consequence, T1 is not optimal. 2

4 This assertion can be easily deduced from the construction of the domain of path
l−s−r−.
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Fig. 11. There exists a point Mα such that Mα ∈ ∆α.

2/ Path l+l−π
2
s−r−

The shape of this path is close to the shape of the path l+a l
−
b r
−
e ( b = π

2 and
a line segment is inserted between the last two arcs). Then, we can use exactly
the same reasoning to prove the following lemma:

Lemma 17. A path l+l−π
2
sr− linking a directed point (M(x, y), θ) to (0, 0, 0),

with y > −x cot θ2 , is never optimal.

3/ Path l+l−b r
−
b r

+

Lemma 18. A path l+l−b r
−
b r

+ linking a directed point (M(x, y), θ) to (0, 0, 0),
with y > −x cot θ2 , is never optimal.

Proof: The reasoning is the same as in the proof of lemma 16. Assume that there

is a path T1 of type l+l−b r
−
b r

+ linking a directed point (M1(x1, y1), θ1), verifying y1 >

−x1 cot θ1
2

, to (0, 0, 0). Let M2 be the cusp-point; the subpath of T1 from (M2, θ1)

to the origin is of the type l−r−r+ symmetric to the type treated in Lemma 16.

Therefore, the coordinates of M2 must verify y2 < −x2 cot θ2
2

. Now, let us consider a

directed point (M, θ) moving along the arc from (M1, θ1) to (M2, θ). With the same

arguments as in the proof of Lemma 16, there exists a directed point (Mα, α) on this

arc, with θ1 ≤ α ≤ θ2, verifying yα = −xα cot α
2

. From lemma 12, there exist two
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isometric paths of types l+l−b r
−
b r

+ and r−r+
b l

+
b l
− linking (Mα, α) to the origin. As a

result, (M1, θ1) is linked to the origin by a path of the type l+r−r+
b l

+
b l
− having the

same length as T1. This path is not optimal because the robot goes twice through the

same configuration; therefore T1 cannot be optimal. 2

4/ Path l+l−π
2
s−r−π

2
r+

The shape of this path is close to the shape of the path l+l−b r
−
b r

+ ( b = −π2
and a line segment is inserted between the two middle arcs). Then, we can use
exactly the same arguments to prove the next lemma.

Lemma 19. A path l+l−π
2
s−r−π

2
r+ linking a directed point (M(x, y), θ) to

(0, 0, 0), with y > −x cot θ2 , is never optimal.

Now, with lemmas 16 to 19 we can remove the part of domains l+l−r−,
l+l−π

2
s−r−, l+l−r−r+ and l+l−π

2
s−r−π

2
r+ lying out of the first quadrant (on the

other side of ∆θ). Moreover, according to the analyse made at section 4.3, we
only have to consider, the half part of the domains symmetric about ∆θ or ∆⊥θ
located in the first quadrant. As every domain intersecting ∆⊥θ is symmetric
about this axis, we can construct the covering of all other quadrants with-
out generating new intersections. Inside each quadrant, it remains to study
the intersection between the domain of path C|CbCb|C and the neighbouring
domains. Once again we restrict ourselves to the first quadrant.

Intersections inside the first quadrant From the construction of domains
covering the first quadrant, it appears that the domain r+l+b l

−
b r
− may intersect

the following three adjacent domains: l+l−b′r
−
b′r

+, l+l−π
2
s−r−π

2
r+ and l+l−π

2
s−r−.

Furthermore the intersection between the domain r+l+b l
−
b r
− and the domains

l+l−π
2
s−r−π

2
r+ and l+l−π

2
s−r− only happens when b is strictly greater than π

3 .
First, as a corollary of lemma 16, we are going to prove that a path r+l+b l

−
b r
−

is never optimal when b > π
3 . Therefore the corresponding part of this domain

will be removed and the intersections of domains inside the first quadrant will
be reduced to the overlapping of domains r+l+b l

−
b r
− and l+l−b′r

−
b′r

+.

Corollary 1. A path of the family CCb|CbC verifying b > π
3 cannot be opti-

mal.

Proof: Let us consider a path of the type r+
a l

+
b l
−
b r
−
e . If this path is optimal, then

the subpath l+b l
−
b r
−
e is also optimal. Integrating the corresponding system we obtain

the expression of initial points coordinates:

{
x = sin θ − 2 sin(e− b) + 2 sin e
y = − cos θ + 2 cos(e− b)− 2 cos e+ 1
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with θ = e − 2b (since the first two arcs of circles have the same length) and from
lemma 16 the coordinates must verify y ≤ − cot θ

2
x. Replacing x and y by their

parametric expression, we obtain after computation:

sin
e

2
(2 cos b− 1) ≥ 0 then b ≤ π

3
(since 0 < e ≤ π

2
) 2

Therefore according to the previous construction we may remove the part
of the domain r+l+b l

−
b r
− located beyond the point H with respect to O. (see

figure 9).

Now, only one intersection remains inside the first quadrant, between the
domains r+

a l
+
b l
−
b r
−
e and l+a′ l

−
b′r
−
b′r

+
e′ ; let us call I this region. In order to deter-

mine which paths are optimal in this region, we compute in each plane Pθ the
set of points that may be linked to the origin by a path of each kind having
the same length. Initial point of these two paths are respectively defined by the
following parametric systems:

(r+
a l

+
b l
−
b r
−
e )
{
x = − sin θ + 2(2 cos b− 1) sin(e− b)
y = cos θ − 2(2 cos b− 1) cos(e− b) + 1

(l+a′ l
−
b′r
−
b′r

+
e′)
{
x = sin θ − 4 sin e′ + 2 sin(e′ + b′)
y = − cos θ + 4 cos e′ − 2 cos(e′ + b′)− 1 (24)

the length of these paths are respectively:{
L = a+ 2b+ e = 4b+ θ with θ = e− 2b+ a
L′ = e′ + 2b′ + a′ = 2(b′ + e′)− θ with θ = e′ − a′ (25)

The required condition L = L′ implies that θ+2b−b′−e′ = 0. By replacing
e′ + b′ by θ + 2b in the second system, then writing that both systems are
equivalent we obtain:

{
sin(e− b)(1− 2 cos b) + sin θ − 2 sin e′ + sin(θ + 2b) = 0
cos(e− b)(1− 2 cos b) + cos θ − 2 cos e′ + cos(θ + 2b) + 1 = 0

we eliminate the parameter e′ writing that sin2(e′)+cos2(e′) = 1; then after
computation, we obtain the following relation between e and b:

4 cos2 b− 2 cos b+ (1− 2 cos b)(2 cos(e− 2b− θ) cos b
+ cos(e− b)) + cos θ + cos(θ + 2b)− 1 = 0 (26)

As e− 2b− θ = e− b− (b+ θ), this equation may be rewritten as follows:
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A sin(e− b) +B cos(e− b) + C = 0

where A,B and C are functions of b and θ defined by:A = 2(1− 2 cos b) sin(b+ θ) cos b
B = (1− 2 cos b)(2 cos(b+ θ) cos b+ 1)
C = 4 cos2 b− 2 cos b+ cos θ + cos(θ + 2b)− 1

Therefore we can express sin(e − b) and cos(e − b) by solving a second degree
equation; we obtain:

sin(e− b) =
−AC ± |B|

√
A2 +B2 − C2

A2 +B2
(27)

The discriminant D = A2 +B2 − C2 may be factored as follows:

D = 4 cos(b) sin2(
b+ θ

2
)(cos(2b+ θ) + cos(θ) + 6 cos(b)− 4)

therefore, as b ∈ [0, π3 ], the sign of D is equal to the sign of

E(b) = cos(2b+ θ) + cos(θ) + 6 cos(b)− 4

Let us call bmax the value of b solution of E(b) = 0. As E(b) is a decreasing
function of b, E(b) is positive when b ≤ bmax. We will see later that the maximal
value of b we have to consider verifies this condition, ensuring our problem to
be well defined.

Now, as the region I is delimited by the vertical line (P2, N3), each point
belonging to I must verify: x ≤ sin θ. Moreover, as the type r+l+b l

−
b r
− is defined

for b ∈ [−θ, π3 ], we can deduce from the first line of system (24) that sin(e− b)
is negative. As a result, the choice of the positive value of the discriminant in
(27) cannot be a solution of our problem. From this condition we determine a
unique expression for sin(e− b) and cos(e− b). Replacing these expressions in
system (24) we obtain the parametric equation of a curve γθ issued from P2

(when b = −θ), dividing the region I into two subdomains, and crossing the
axis ∆θ at a point T (see figure 12). The value bT of b corresponding to the
point T may be characterized in the following manner:

From lemma 12 we know that any path of type r+
a l

+
b l
−
b r
−
e starting on ∆θ

verifies a = e; it follows that e − b − θ
2 = 0. Replacing e − b by θ

2 in (26) bT
appears as being the solution of the implicit relation R(b) = 0, where:
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R(b) = 4 cos2 b− 2 cos b+ (1− 2 cos b)(2 cos(b+
θ

2
) cos b+ cos

θ

2
) +

cos θ + cos(θ + 2b)− 1 (28)

Now, combining the relation R(bT ) = 0 with the expression of E(bT ) we
can prove simply that bT ≤ bmax in order to insure the sense of our result.
Therefore, R(b) being a decreasing function of b, the values of b ∈ [−θ, bT ] are
the values of b ∈ [−θ, π3 ] verifying R(b) ≥ 0. The curve γθ is the only set of
points in I where both paths have the same length. As the distance induced
by the shortest path is a continuous function of the state, this curve is the real
limit of optimality between these two domains. This last construction achieves
the partition of the first quadrant, and by the way the partition of the whole
plane.

0.5

0.5

1

γθ

l   l   r   r

r   l   l   r

+ − − −
b’ b’

+ −+ −
b b

intersection

∆ θ

GG
H

I
T

H

P2

Fig. 12. The curve γθ splitting the intersection of domains r+l+b l
−
b r
− and

l+l−b′r
−
b′r
− in the first quadrant of P−π4

Description of the partition Figures (13),(14) and (15) show the partition of
the plane Pθ for several values of θ all these pictures have been traced from the
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Fig. 13. Partitions of planes P0 and P−π8



Optimal Trajectories for Nonholonomic Mobile Robots 133

Fig. 14. Partitions of planes P−π4 and P−π2
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All 
paths

C | C | C

or or

or or

Fig. 15. Partitions of planes P− 3π
4

and P±π
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analytical equations of boundaries by using the symbolic computation software
Mathematica. Each elementary cell consists of directed points that may be
linked to the origin by the same kind of optimal path. The 46 domains never
appear together in a plane Pθ; the following table presents the values of θ for
which each domain exists5

Type Intervals of validity
CCu|CuC [− 2π

3 , 0] and [0, 2π
3 ]

C|CuCu|C [−π3 ,
π
3 ]

C|CC and CC|C [−π, 0] and [0, π]
C|Cπ

2
SC and CSCπ

2
|C [−π, 0] and [0, π]

if sign(u2) changes
C|Cπ

2
SC and CSCπ

2
|C [−π,−π2 ] and [π2 , π]

if sign(u2) is constant
C|C|C [−π, 0] and [0, π]
CSC [−π2 ,

π
2 ]

if sign(u2) changes
CSC [−π, 0] and [0, π]

if sign(u2) is constant
C|Cπ

2
SCπ

2
|C [−2 arccot(2), 2 arccot(2)]

When θ varies in [−π, π] the partition of planes Pθ induces a partition of
R2 × [−π, π]. Identifying the planes P−π and Pπ we obtain a partition of the
configuration space R2 × S1.

In most part of domains the optimal solution is uniquely determined. How-
ever, there exist some regions of the space where several equivalent path are
defined. To describe these regions we introduce the following notation.

In the first quadrant of each plane Pθ, we denote by ∆T
θ the half-line defined

as the part of ∆θ located beyond the point T (with respect to O). According to
lemmas 16 to 19, paths l+l−r−, l+l−π

2
s−r−, l+l−b r

−
b r

+, and l+lπ
2
s−r−π

2
r+ stop

being optimal as soon as they cross ∆T
θ , but are still optimal on ∆T

θ . As the
same reasoning holds for the domains symmetric with respect to ∆θ, there exist
two equivalent paths optimal for linking any point of ∆T

θ to the origin. The
same phenomenon occurs on the curve γθ where paths r+l+b l

−
b r
− and l+l−b r

−
b r

+

have the same length. Hence, in the first quadrant, two equivalent paths are
defined at each point of ∆T

θ ∪γθ. By symmetry with respect to ∆θ and ∆⊥θ , we
can define such a set inside the four other quadrants. Let us call Nθ the union
of these four symmetric sets.

At any point of Pθ \ Nθ = {p ∈ Pθ, p 6∈ Nθ} a unique path is defined if
θ 6≡ π mod(2π). Inside each domain the uniqueness is proven by the existence of
5 These values of θ have been deduced from the bounds on the parameters given by

the partition. Details are given in [34].
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a foliation, and on the boundaries (outside Nθ) any path is defined as a contin-
uous transition between two types (and belongs to both path types). However,
according to lemma 14, when θ ≡ π mod(2π), two equivalent (isometric) paths
are defined at any point of Pθ \ Nθ and therefore, four equivalent paths are
defined at any point of Nθ. As we have seen in the construction, there always
exist two equivalent paths ( l+l−l+ and l−l+l− when θ > 0) and (r+r−r+ and
r−r+r− when θ < 0) linking any point of the central domain C|C|C to the
origin. Furthermore, when the initial orientation θ equals ±π, there exist two
equivalent strategies for linking any point of the plane to the origin, each one
corresponding to a different direction of rotation of the point (see lemma 14).
In that case each of the four paths C|C|C is optimal in the central disc of
radius 2.

By choosing one particular solution in each region where several optimal
path are defined, one can determine a synthesis of optimal paths according to
definition 7. Therefore, the determination of such a synthesis is not unique.

In each cross section Pθ, the synthesis provides a complete analytic de-
scription of the boundary of domains which appear to be of simple sort: line
segment, arc of circle, arc of cardioid of circle, etc. Therefore, to characterize an
optimal control law for steering a point to the origin, it suffice to determine in
which cell the point is located, without having to do further test. This provides
a complete solution to Reeds and Shepp’s problem.

On the other hand, this study constitutes an interesting way to focus on the
insufficiency of a local method, such as Pontriagyn’s maximum principle, for
solving this kind of problem. The ∆θ axis appeared as a boundary and we had
to remove the piece of domains lying on one side of this axis. More precisely,
we have shown that any trajectory stops being optimal as it crosses the set
Nθ. This phenomenon is due to the existence of several wavefronts intersecting
each other on this set. For this reason two equivalent paths are defined at each
point of Nθ. (each of them corresponds to a different wave front). PMP is a
local reasoning based on the comparison of each trajectory with the trajectories
obtained by infinitesimally perturbating the control law at each time. As this
reasoning cannot be of some help to compare trajectories belonging to different
wave fronts, it is necessary to use a geometric method to conclude the study,
as we did in section 3 and 3. The main problem remains to determine a priori
the locus of points where different wave fronts intersect.

The construction we have done for determining a partition of the phase
space required a complex geometric reasoning. In the following section we will
show how Boltianskii’s verification theorem can be applied a posteriori to pro-
vide a simple new proof of this result.
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4.4 An example of regular synthesis

In this section, we prove that the previous partition effects a regular synthesis
in any open neighbourhood of O in R2×S1. First of all, we need to prove that
the curves and surfaces making up the partition define piecewise smooth sets.
From the previous construction we know that the restriction of any domain
to planes Pθ is a connected region delimited by a piecewise smooth boundary
curve. Except for the curve γθ (computed at section 3) each smooth component
Ci(θ) of the boundary remains a part of a same geometric figure F (line, circle,
conchoid of circle, . . . ) as θ varies. Let M i(θ) and N i(θ) be the extremities of
the curve Ci(θ). As θ varies, the position and orientation of F as well as the
coordinates of M i(θ) and N i(θ) vary as smooth functions of θ. Therefore, in
R2×[−π, π], the lines trace smooth ruled surfaces, and the circles and conchoids
draw smooth surfaces. In each case we have verified that the boundary curves
M i(θ) and N i(θ) of these surfaces never connect tangentially, making sure that
all these surfaces are non singular 2-dimensional smooth surfaces.

The study of the surface Γ , made up by the union of the horizontal curves
γθ when θ varies in [−π3 ,

π
3 ] requires more attention. As γθ is the region of Pθ

where paths r+
a l

+
b l
−
b r
−
e and l+a l

−
b r
−
b r

+
e have the same length, the surface Γ is

defined as the image of the set DΓ = {(θ, b) ∈ R2, θ ∈ [−π3 , 0], b ∈ [−θ, bT ]} by
the following mapping:


x = − sin θ + 2(2 cos b− 1) sin(e− b)
y = cos θ − 2(2 cos b− 1) cos(e− b) + 1
θ = e− 2b+ a

where sin(e − b) and cos(e − b) are deduced from formula (27) and bT is the
solution of the implicit equation R(b) = 0 where R(b) is given by (28).

Using the symbolic computation software Mathematica we have checked
that the matrix of partial derivatives has full rank 2 at each point of DΓ .
Therefore, as the domain DΓ is a 2-dimensional region of the plane (θ, b) with-
out singularities, delimited by two smooth curves, Γ constitutes a 2-dimensional
smooth surface (see figure 16).

All the pieces of surfaces, making up the partition are 2-dimensional smooth
surfaces and from remark 4 we know that they constitute 2-dimensional piecewi-
se-smooth sets. If P 2 is the union of these surfaces, P 1 the union of their smooth
boundary curves M i(θ) and N i(θ), P 0 the target point O, then in any open
neighbourhood V of O we can write the required relation: P 0 ⊂ P 1 ⊂ P 2 ⊂ V.

In order to check the regularity conditions we have considered each trajec-
tory one-by-one. following the representative point from the initial point to the
origin we have analysed the different cells encountered. We have checked that
the cell’s dimension varies according to the hypothesis B of definition 9. In each
case we have verified that the point never reaches the next cell tangentially. For
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Fig. 16. Set DΓ (left) and surface Γ (right)

each trajectory we can represent this study within a table by describing from
the top to the bottom the cells σi successively crossed. Each cell corresponds
to a subpath type represented by a subword of the initial word. In each case
we specify the dimension and the type (T1) or (T2) of the cells encountered.
When the point passes from a cell σi to a cell Π(σi) = σi+1 we verify that the
trajectory riches σi+1 with a nonzero angle αi. This is done by comparing the
vector vi tangent to the trajectory with a vector ni+1 normal to σi+1 (if σi+1 is
a 2-dim cell), or with a vector wi+1 tangent to σi+1 (if σi+1 is a 1-dim cell). In
any case the last cell, described in the bottom of the table, is a 1-dimensional
cell which is a piece of trajectory linking the point to P0.

Due to the lack of place we just present here the table corresponding to
paths l+a l

−
π
2
s−d r

−
π
2
r+
e , an exhaustive description of all path types may be found

in [35].
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Path l+a l
−
π
2
s−d r

−
π
2
r+
e

Cell Dim Type vi ni or wi angle αi

σ1 : l+a l
−
π
2
s−d r

−
π
2
r+
e 3 T1 v1

 cos θ
sin θ

1


σ2 : l−π

2
s−d r

−
π
2
r+
e 2 T2 n2

 cos θ
sin θ
3 + d

 n2.v1 =d+4 6=0
because d > 0

then α2 6= 0

σ3 : l−b s
−
d r
−
π
2
r+
e 3 T1 v3

− cos θ
− sin θ

1


σ4 : s−d r

−
π
2
r+
e 2 T1 v4

− cos θ
− sin θ

0

 n4

 sin θ
− cos θ
2 + d

 n4.v3 =2+d 6=0
because d > 0

then α4 6= 0

σ5 : r−π
2
r+
e 1 T2 w5

 cos θ − 2 sin θ
sin θ + 2 cos θ

1

 v4 and w5

not colinear
then α5 6= 0

σ6 : r−k r
+
e 2 T1 v6

− cos θ
− sin θ
−1


σ7 : r+

e 1 T1 w7

 cos θ
sin θ
−1

 v6 and w7

not colinear
then α7 6= 0

Now, let us analyse carefully the other regularity conditions: Let N be the
set defined by N = ∪θ∈[−π,π]Nθ where Nθ is the set defined at section 3 as the
union of γθ, ∆T

θ and their image by the axial symmetries with respect to ∆θ

and ∆⊥θ . From the previous reasoning we know that N is a piecewise smooth
set. Let v be the function defined in V, taking its values in the control set
U = {(u1, u2), |u1| = 1, and u2 ∈ [−1, 1]} which defines an optimal control law
at each point. In each cell where more than one optimal solution exists the
choice of a constant control has been done in order to define the function v in
a unique way.

A - As stated in the beginning of this section, all the i-dim cells are i-
dimensional smooth manifolds. Moreover, as each cell corresponds to a
same path type, the control function v takes a constant value at each point
of the cell. Therefore, v is obviously continuously differentiable inside each
cell, and may be prolonged into an other constant function when the point
reaches the next cell.

B - All the 3-dim cells are of type T1

- When the representative point passes from a cell to another it never arrives
tangentially. Furthermore, as u1 = 1, the velocity never vanishes.
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- Along the trajectory, the variation of cell types (T1) or (T2) follows the
rule stated by Boltianskii.

C - Along any trajectory, the representative point pierces at most three cells
of type T2 and reaches the point O after a finite time.

D - From every point of N there start two trajectories having the same length
and from any point of V \N there issues a unique trajectory.

E - All these trajectories satisfy the necessary conditions of PMP.
F - By crossing a border (except the set N) from a domain to another, either

the length of one elementary piece making up the trajectory vanishes, or a
new piece appears. When the point crosses the set N , the optimal strategy
switches suddenly for an isometric trajectory. Therefore, in any case, the
path length is a continuous function of the state in V (see [26] for more
details).

With this conditions the function v and the sets Pi effect a regular synthesis
in V. As the point moves with a constant velocity, it is equivalent to minimize
the path length or the time, we have f0(x, u) ≡ 1. Finally, as the coordinate
functions f1(x, u) = cos θu1, f2(x, u) = sin θu1 and f3(x, u) = u2 have contin-
uous partial derivatives in x and u, the hypotheses of theorem 6 are verified
providing a new proof of our preceding result.

To our knowledge, this construction constitutes the first example of a regular
synthesis for a nonholonomic system in a 3-dimensional space.

5 Shortest paths for Dubins’ Car

Let us now present more succinctly the construction of a synthesis of optimal
paths for Dubins’ problem (DU). This results is the fruit of a collaboration
between the project Prisme of INRIA Sophia Antipolis and the group Robotics
and Artificial Intelligence of LAAS-CNRS see [10] for more details.

At first sight, this problem might appear as a subproblem of RS. Neverthe-
less, the lack of symmetry of the system, due to the impossibility for the car to
move backwards, induces strong new difficulties. Nevertheless, the method we
use for solving this problem is very close to the one developed in the preceding
section.

The work is based on the sufficient family of trajectories determined by
Dubins (14). Note that this sufficient family can also be derived from PMP
(see [36]). The study is organized as before. First, we determine the symmetry
properties of the system and we use them to reduce the state space and to refine
Dubins’ sufficient family. Then, in a second time we construct the domains
corresponding to each path type and we analyse their intersections. As we did
in studying the problem RS, we consider the restriction of domains to planes
Pθ where the orientation θ is constant.
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Remark 10. As Dubins’ car only moves forwards its more convenient to fix
the initial configuration of the car to be at the origin (O, 0) of the space, and
to search for the configuration (M, θ) reachable from this point.

5.1 Symmetry and reduction properties

As the linear velocity u1 is fixed to 1 we can rewrite system 2 as follows:


ẋ = cos θ
ẏ = sin θ
θ̇ = u

(29)

where u ∈ [−1, 1] represents the angular velocity. In the study of Reeds
and Shepp’s problem we have shown that it was possible to construct several
isometric trajectories by using simple geometric arguments. Nevertheless, as
system (29) is no more symmetric, these properties are not valid for Dubins’
problem. In particular, if T is a trajectory admissible for DU, the trajectory
symmetric to T with respect to the point O is no more admissible. Therefore,
the sole symmetry property that remains valid for DU, is the existence of
isometric trajectories ending at points symmetric with respect to ∆⊥θ in each
plane Pθ. This result can be easily proven by using the same reasoning as the
one developed in the proof of lemma 12. We use the notations introduced for
the study of Reeds and Shepp’s problem.

Lemma 20. In the plane of the car’s motion (O, x, y) let (M, θ) be a config-
uration of the car and M3 the point symmetric to M with respect to ∆⊥θ . If
T is a trajectory admissible for DU starting at the origin (O, 0) and ending
at (M, θ), there exists another admissible trajectory T 3 isometric to T which
links the origin to the configuration (M3, θ).

As for RS the word describing T 3 is obtained by reversing the word describ-
ing T . On the other hand, the symmetry with respect to the x-axis provides
another isometric admissible trajectory as follows:

Lemma 21. If T is an admissible trajectory for DU, starting at the origin and
ending at (M(x, y), θ), there exists another admissible trajectory T isometric
to T , which starts at the origin and ends at (M(x,−y),−θ).

Dubins’ sufficient family (14) contains two path types:

– CaSdCe with a, e ∈ [0, 2π[ and d ≥ 0,
– CaCbCe with a, e ∈ [0, 2π[ and b ∈]π, 2π[.
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From lemma 20, we can restrict our study to paths: lrl, rlr, rsr, lsl and
either rsl or lsr. Furthermore thanks to lemma 21 we only have to consider
the values of θ such that a representative of their class modulo 2π belongs to
[0, π]. Let us now state three lemmas providing additional necessary optimality
conditions.

Lemma 22. A necessary condition for a path CaCbCe to be optimal is that:

π < b < 2π
0 ≤ a ≤ b and 0 ≤ e ≤ b
0 ≤ a < b− π or 0 ≤ e < b− π

Proof: The first condition on b has been already given by Dubins [16] or in [2,36].
A characteristic straight line D0 is defined for each optimal path (as in lemma 11),
which supports line segments and where inflection points occur. On one side of this
line the path turns clockwise, and on the other side, counterclockwise. Thus if a > b
(resp. e > b), the first (resp. last) arc must cross the line D0; this is not possible.

For the last condition, suppose that the contrary is true: a ≥ b−π and e ≥ b−π.

Consider the circle tangent to both extremal arcs. Tracing an arc of this new circle we

can build a shorter path as follows (see figure 17): an arc shortened to length a−b+π

on the first circle, concatenated to an arc of length 2π − b on the new circle followed

by an arc of length e− b+ π on the last circle.2

Lemma 23. Paths rsr (resp. lsl) such that the sum of the length of the two
arcs of circle is equal to 2π can be replaced by an isometric path lsl (resp. rsr).

Proof: It suffice to consider figure 18. Whenever there exists a path of type rasdre
(resp. lasdle) with a+e = 2π there also exists an equivalent path lesdla (resp. resdra)

2

Lemma 24. Along any optimal trajectory the maximal variation of θ is 2π.

Proof:

– Types rsl and lsr: As the directions of rotation on each arcs are opposite and
the length of each arc is lower or equal to 2π, the result follows.

– From lemma 22, on types ralbre and larble the arclength verify: 0 ≤ a ≤ b and
0 ≤ e ≤ b. therefore |a− e+ b| ≤ v < 2π.

– Types rsr and lsl: Suppose that the initial and final orientations are equal. From
lemma 23 we know that in the case that a + e = 2π, if a path of type rasdre
(resp. lasdle) exists, there also exists an equivalent path of type lesdla (resp.
resdra). It follows that a path rasdre (resp. lasdle) with a + e = 2π + ε cannot
be optimal because it is equivalent to a path lesdlarε which does not verify the
necessary conditions of PMP (points of inflection and line segment must belong
to the same line D0). 2

Now, taking into account these new bounds on arclength, and the symmetry
properties we construct the domains corresponding to each path type in planes
Pθ.
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b

a e

Fig. 17. Non optimal CaCbCe trajectory

Fig. 18. Simultaneous existence of path rasre and lesla when a+ e = 2π

5.2 Construction of domains

From lemma 20 it suffice to construct the domains of paths lsl, rsr, lsr, rlr
and lrl. The domain of path rsl will be obtained from the domain of path lsr
by symmetry with respect to the ∆⊥θ -axis.

From lemma 24 we know that the final orientation θ ∈ S1 may be viewed
as a real number belonging to [−2π, 2π]. Therefore, according to lemma 21 and
lemma 23, we only have to consider the cross sections of domains belonging to
planes Pθ with θ ∈ [0, π] or θ + 2π ∈ [0, π].

Integrating the differential system (29) for the successive constant values of
the input u (as we did for RS in section 4.3) we compute the cross section of
each domain. We do not give here the detail of the construction (see [11]). To
describe the construction we need to introduce the following notations.

∗ E is the point of coordinates (sin θ, 1− cos θ),
∗ G is the point of coordinates (sin θ,−1− cos θ),
∗ F (resp. H) is the point symmetric to E (resp. G) w.r.t. the origin O,
∗ J (resp. K) is the point symmetric to H (resp. G) w.r.t. point E,
∗ D0 (resp. D1) is the ray from E towards positive x-coordinates, of orienta-

tion 0 (resp. θ),
∗ D2 (resp. D3) is the ray from F parallel to D0 (resp. D1),
∗ we denote by C

P
the circle (or the disc) centered at the generic point P

and with radius 2.
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Fig. 19. Particular points, lines and circles

Then we have:

– the lsl domain is the internal angular sector defined by D0 and D1,
– the rsr domain is the external angular sector defined by D2 and D3,
– the rsl domain is the exterior of circle C

G
,

– the lrl domain is the union of the intersections between the pairs of discs
C
G

and C
H

, C
G

and C
J
, C

H
and C

K
,

– the rlr domain is the union of discs C
G

and C
H

.

Notice that these domains intersect each other and do not partition Pθ.
Each domain is defined upon two parameters. By fixing one parameter as the
other one varies, we trace iso-parametric curves creating a foliation of each
domain. From this construction it appears that a unique path of each type
starts from each point located in the interior of the domain.

5.3 Construction of the partition

At this stage, we have to determine which path type is actually optimal in each
region of Pθ covered by more than one domain. We are sure of the optimality of
the whole lsl domain for the lsl type, even if other domains intersect it. Indeed,
this domain is optimal for RS, and Dubins’ sufficient family is included in the
Reeds and Shepp one (except for CCC paths, which are shortened by C|C|C
paths). Clearly, a path type with no cusp which is optimal for RS is a fortiori
optimal for DU.
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So, let us consider the other intersections. Due to the lack of the symmetry
with respect to the ∆θ-axis, we cannot use a geometric reasoning to compare
isometric trajectories, as we did in section 3 for RS. Therefore, in each region
where more than one path type occur (see fig. 19), we use the method developed
at section 3 for RS to compute the boundaries of the subdomains in which each
path type is optimal. This method is based on the computation of the set of
points reachable by a path of each type having the same length and starting
at the origin. We conclude with arguments of continuity based on the foliation
of domains by iso-length curves.

We will only present here the final equations of these boundary curves, since
the calculation are really tedious (see [11] for more details).

Intersection rsr / rsl The intersection of these two domains, is defined by
the complementary in Pθ to the set made by the union of the disc C

G
and the

internal angular sector defined by the rays D2 and D3. Writing that the final
point are identical, and that both curves have the same length, we get a system
of three equations with four variables. Fixing one variable as a parameter, we
obtain the parametric expression of a curve I0:

I0

{
x = λ cos a+ 2 sin a+ sin θ
y = −λ sin a+ 2 cos a− cos θ − 1

where λ = ρ(a+θ−π)2+2(cos(a+θ)−1)
sin(a+θ)−(a+θ−π) , and a is the length of the first arc in the rsl

path. This parameter varies within the interval ]π− θ, µ] for θ ∈ [0, π[ where µ
is defined as follows:

– for θ ≤ π
2 + π, µ = π − θ+ η where η is the solution of the non-algebraic

equation cos t = t,
– for θ ≥ π

2 +π, µ is the value of a obtained when I0 and D2 intersect. This
value can be computed by equating the parametric system of both curves.

This curve divides the region of intersection into two sub-domains, and
admits the line of orientation θ, passing through G, as asymptote. We define
the symmetric curve I1 for the intersection between rsr and lsr.

Intersection rsl / lsr Let η defined as in section 5.3. For θ ≤ π
2 + η we

deduce from the analysis of iso-distance curves of each type that lsr paths are
always shorter than rsl paths in the infinite region delimited by D1, D3, and
the arc (E,K) of circle CH . Symmetrically with respect to the ∆⊥θ - axis, in the
infinite region delimited by D0, D2, and the arc (E, J) of circle CG the paths
rsl are shorter than the lsr ones.

For θ > π
2 + π a new boundary curve I6 appears; it is the locus of points

reachable from the origin by a path rsl and lsr having the same length. This
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curve is determined by equating the parametric system of both curves. The
curve I7 is obtained by symmetry with respect to ∆⊥θ (see fig. 24)

Intersection rsr / rlr This region of intersection is made up by the parts
of the discs C

G
and C

H
lying inside the external angular sector defined by

D2 and D3. We find geometrically that the set of points reachable from the
origin by a path of each type rsr and rlr having the same length belongs to
a circle called I2 of radius 4η and centered at F . Thus, this set is made of
two arcs of the circle I2 respectively defined by the interval of polar angles:
[max(θ, π/2 − η),min(θ, π/2 + η)] and the symmetric interval w.r.t. θ/2. This
intersection only occurs if θ ≤ π/2 + η.

Intersection rlr / lrl Using the same reasoning as in the study of the first
intersection, we deduce that inside the region determined by the union of the
intersections of discs C

G
and C

J
, and the intersection of discs C

H
and C

K
, rlr

paths are always shorter than lrl paths. However, for θ > π/2, the region of
intersection of discs C

G
and C

H
is divided into two subdomains by a curve called

I3. Paths rlr are optimal in the first subdomain, whereas paths lrl are optimal
in the other one.

After a change of variables, due to the rotation of angle θ/2, we obtain the
following parametric equations for I3:

I3

 X = cos v + cos(v + θ)
sin θ

2

Y 2 = (4 sin v
2 )2 − (X − 2 sin θ

2 )2

where v is the length of the middle arc of the lrl path. See [11] for the detail
relative to the determination of the interval in which v varies.

Intersection rlr / rsl This last intersection occurs in the region of the disc
C
H

located outside the disc C
G

and inside the internal angular sector delimited
by D2 and D3. Using the same method as before we determine a curve I4

delimiting two subdomains in which rlr and rsl are respectively optimal . The
curve I5 symmetric of I4 with respect to ∆⊥θ determines the boundary between
the subdomains of paths rlr and lsr in the symmetric region. The parametric
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equations of I4 are:

I4

{
x = 2 (σ cos a+ sin a ) + sin θ
y = 2 (σ sin a− cos a )− cos θ − 1

with a = 2π − arccosα

α = σ2 A+B
√

4 (1+cosσ)2+4 (σ+sinσ)2−σ4

2 (A2+B2)

A = cos θ (1 + cosσ)− sin θ (σ + sinσ)
B = cos θ (σ + sinσ) + sin θ (1 + cosσ)

where a is the length of the first arc and 2σ the length of the line segment in
the rsl path. We can notice that, here again, equations are non-algebraic. This
intersection only occurs for θ ≥ π/2− η. See [11] for the determination of the
range of σ.

5.4 Description of the partition

With the refinement provided by the previous section we finally obtain a par-
tition of Pθ, for values of θ having a representative modulus 2π in [0, π]. Using
the symmetry properties given by lemmas 20 and 21 we obtain the partition
for any θ ∈ S1. The shape of domains varies continuously with respect to θ. In
the sequel we describe four successive states of the partition according to four
successive intervals of θ. We also describe the cross sections corresponding to
two particular values: θ = 0 and π:

– θ = 0 (Figure 20)
All the domains are represented but notice that, for three of them, not only
one but two equivalent optimal paths are defined at each point. Notice
also that, in fact, the lrl and lsl domains are not connected: the initial
configuration O can be viewed as a point of the domain lrl (isolated in P0),
and the horizontal half-line (x ≥ 0, y = 0) also belongs to the domain lsl.

– θ ∈]0, π/2− η] (Figure 21)
For θ 6= 0, a unique path type is defined in each domain, but some domains
are not connected (rlr, rsl and lsr). For θ = π/2 − η, the segment of D2

(resp. D3) and I2 intersect each other on C
G

(resp. C
H

).
– θ ∈]π/2− η, π/2] (Figure 22)

Here, the intersection curves I4 and I5 appear, and for θ = π/2 the two
crescents of the rlr domain are connected at one point on the ∆π/2 axis.

– θ ∈]π/2, π/2 + η] (Figure 23)
The intersection curve I3 has appeared between rlr and lrl. Everything
varies continuously until I2 disappear when θ = π/2 +η, since the segment
of D2 (resp. D3), I4 (resp. I5), I0 (resp. I1) and the circle C

G
(resp. C

H
)

are concurrent.
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Fig. 20. Partition of P0
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Fig. 21. Partition of Pπ
5
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Fig. 22. Partition of Pπ
3
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Fig. 23. Partition of P 2π
3



150 P. Souères and J.-D. Boissonnat

– θ ∈]π/2 + η, π[ (Figure 24)
Domains are still varying continuously until I4 and I5 disappear, I4 and
I5 become horizontal half-lines, and I3 becomes an horizontal segment of
length 4.

LSL

RSR

RSL

LSR

LSR

RSL

LRL

RLR

I3

I0

I1

I4

I5

I6

I7

Fig. 24. Partition of P 5π
6

– θ = π (Figure 25)
In this case the partition contains six types; the domains of paths lsr and
rsl are still not connected.

Analysing this construction we can make the following remarks:

1. Optimal domains are not necessarily connected, unlike the Reeds and Shepp
case. This is due to the fact that a configuration (x, y, θ) can sometimes be
reached in different ways: either mostly turning left until the algebraic sum
of angles equals θ, or mostly turning right so that the algebraic sum equals
2π − θ. For the Reeds and Shepp case, these two solutions cannot be both
optimal since the algebraic sum of angles has to be lower than π.

2. The shape of the shortest paths varies continuously when crossing the
boundary of any domain, except the boundary arcs of discs C

G
and C

H
,

and the intersection curves Ii.
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LSL

RSR

RSL

RSL

LSR

LSR

LRL

RLR

Fig. 25. Partition of Pπ

3. The shortest path’s length is a continuous function of (x, y, θ) everywhere,
except on the boundary arcs of discs C

G
and C

H
. This discontinuity (in

shape and length) is due to the fact that inside the circle C
G

(resp. C
H

)
the rsl (resp. lsr) path does not exist. Figure 26 represents the iso-distance
curves in the plane Pθ for θ = 1 rad. The two thicker arcs in the center
of the picture represent the locus of points where the length function is
discontinuous.

4. For θ = 0, there exist two regions where two equivalent optimal solution
are defined. Therefore, to define a synthesis of optimal paths (uniqueness
of the solution), it suffice to choose arbitrarily a constant values for the
control in each region where several optimal strategies are available.

Remark 11. Due to the lack of continuity of the length function, this synthesis
of optimal paths does not verify Boltianskii’s regularity conditions (condition
F of definition 9 fails). This illustrates the fact that the very strong hypotheses
defining Boltianskii’s regular synthesis restrict the application area to a very
small class of problems. This example raises up the interest of searching for
sufficient conditions, weaker than Bolitanskii’s ones, that still guarantee the
optimality of marked trajectories.
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Fig. 26. Iso-distance curves in P1 and discontinuity of the length function.

5.5 Related works

Using also the frame of geometric control, R. Felipe Monroy Pérez has studied
Dubins’ problem in the case of Euclidean and non-Euclidean geometries [28].

In the Euclidean case (classical problem of Dubins) he provided a new proof
of the non optimality of the concatenation of four arcs of circle. He proved
that in two dimensional simply connected manifold with constant sectional
curvature, trajectories of minimal length necessarily follow Dubin’s pattern
(CLC and CCC) where L denotes a piece of a geodesic and C an arc of curve
with constant curvature. The study was done by means of optimal control on
Lie groups.

For the three dimensional case, he exhibited an explicit expression of the
torsion of optimal arcs. In particular, he determined a parametric equation
of curves satisfying optimality conditions in R3, providing a representation of
potential solutions for Dubins’ problem in R3.

Dubins’ problem in R3 has been also studied by H. J. Sussmann in [37].
By applying PMP on manifolds he proved that every minimizer is either an
helicoidal arc or a path of the form CSC or CCC.

6 Dubins model with inertial control law

From the previous section we know that optimal solutions of Dubins’ problem
are sequences of line segments and arcs of circle of minimal radius. Therefore,
there exist curvature discontinuities between two successive pieces, line-arc or
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arc-arc (with opposite direction of rotation) and to follow (exactly) such a tra-
jectory a real robot would be constrained to stop at the end of each piece. In
order to avoid this problem, Boissonnat, Cerezo and Leblond [3] have proposed
a generalization of Dubins’ problem by suggesting to control the angular ac-
celeration of the car instead of its angular velocity. This section presents the
analysis of the shortest paths problem for this model.

Using the same notation as for Dubins’ problem, let M(x, y) be the coordi-
nates of the robot’s reference point with respect to a fixed orthonormal frame,
and θ its orientation with respect to the x−axis. We use κ(t) to represent the
signed curvature of the path at each time (κ(t) > 0, meaning that the car is
turning left).

In the plane of the robot’s motion we consider a class C of C2 paths joining
two given configurations X0 = (M0, θ0, κ0) and Xf = (Mf , θf , κf ).

Definition 11. A path belongs to class C if it satisfies the following two prop-
erties:

1. Regularity: the path is a C2 concatenation of an at most countable number
of open C3 arcs of finite length, and the set of endpoints of these arcs, also
called the switching points, admits at most a finite number of accumulation
points.

2. Constraint: along the path, the absolute value of the derivative of the cur-
vature , with respect to the arc length, is upper bounded by a given constant
B > 0, at every point where it is defined.

With these notations and the above definition, the motion of the oriented
point M(t) = (x(t), y(t), θ(t), κ(t)) along paths of class C in R2 × S1 × R is
well-defined and continuous.

In the sequel we consider that the robot moves at constant speed 1, so that
time and arc length coincide.

A path in class C between any two configurations X0 = (x0, y0, θ0, κ0) and
Xf = (xf , yf , θf , κf ), if it exists, is entirely determined by the function v(t) =
κ̇(t), defined and continuous everywhere, except at the switching points, by the
following differential system:

Ẋ(t) =


ẋ(t) = cos θ(t)
ẏ(t) = sin θ(t)
θ̇(t) = κ(t)
κ̇(t) = v(t)

(30)

If we add the boundary conditions X(0) = X0, X(f) = Xf , and the constraint:

∀t ∈ [0, T ], |v(t)| ≤ B, (31)
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and if we search for a path of minimum length in class C, we have turned the
geometric problem into a classical question of optimal control theory where the
functional:

J(v) = T =
∫ T

0

dt (32)

is to be minimized among the set of control functions v satisfying (31).

6.1 Existence of an optimal solution

System (30) may be written as:

Ẋ = F (X, v) = f(X) + v g(X) ,

where the analytic vector fields f and g are given by:

f(X) =


cos θ
sin θ
κ
0

 , g(X) =


0
0
0
1

 .

Complete controllability of the system We first observe that the Lie
algebra L(f, g) generated by f and g is, at each point, of dimension 4. Indeed,
∀X ∈ R4,

h(X) = [g, f ](X) =


0
0
1
0

 , i(X) = [h, f ](X) =


− sin θ
cos θ

0
0

 ,

and

det


cos θ 0 0 − sin θ
sin θ 0 0 cos θ
κ 0 1 0
0 1 0 0

 = −1 .

Moreover, the solutions of the associated autonomous system Ẋ = f(X) are
circles (of radius 1/κ), thus periodic. Hence, Bonnard’s theorem [27, thm.III.4]
applies, to establish the complete controllability of (30) under the constraint
(31). This means that any X0 and Xf can always be joined by a path satisfying
(30) and (31).
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Existence of an optimal control The existence of an optimal control for
the problem (30), (31), (32), with given X0 and Xf , is ensured by Fillipov’s ex-
istence theorem (see [13, 5.1.ii] for example). Indeed, the hypotheses of the the-
orem are satisfied. The dynamic F (X, v) and the cost J(v) are smooth enough,
the set [−B,+B] of control is convex, and the initial and final configurations
X0 and Xf are fixed. Finally, one can easily check the existence of a constant
C such that tX F (X, v) ≤ C (|X|2 + 1) for all t ∈ [0, T ], X ∈ R2 × S1 × R,
v ∈ [−B,+B].

Fillipov’s theorem then asserts the existence of some T ∗ > 0 and of an
optimal control v∗(t) which is a measurable (thus locally integrable) function
which satisfies (31) on [0, T ∗]. The solution of (30) for v = v∗ is a path from
X0 to Xf which minimizes cost (32) under constraint (31).

6.2 Necessary conditions for a solution to be optimal

Pontryagin’s Maximum Principle We are going to apply Pontryagin’s
Maximum Principle in order to obtain necessary conditions for a solution to be
optimal (i.e. a measurable control v and a trajectory X) minimizing cost (32).

Let us denote by Ψ , tΨ = (ψ1, ψ2, ψ3, ψ4), the adjoint state associated to
X. For this minimum time problem, the Hamiltonian H is defined for every
t ∈ [0, T ] by

H(Ψ(t), X(t), v(t)) = < Ψ(t), F (X(t), v(t)) >

This yields in the case of system (30):

H(Ψ(t), X(t), v(t)) = ψ1(t) cos θ(t) + ψ2(t) sin θ(t) + ψ3(t)κ(t) + ψ4(t)v(t).
(33)

The adjoint state Ψ is defined on [0, T ] as a solution to the adjoint system
Ψ̇ = −∂H∂X , which is here:

Ψ̇(t) =


ψ̇1(t) = 0 ⇒ ψ1(t) = ψ1

ψ̇2(t) = 0 ⇒ ψ2(t) = ψ2

ψ̇3(t) = ψ1(t) sin θ(t)− ψ2(t) cos θ(t) = ψ1ẏ(t)− ψ2ẋ(t)
ψ̇4(t) = −ψ3(t) .

(34)

Therefore, as ψ1 and ψ2 are constant on [0, T ] there exists λ ≥ 0 and φ ∈ [0, 2π[
such that, ∀t ∈ [0, T ]: 

ψ1(t) ≡ ψ1 = λ cosφ
ψ2(t) ≡ ψ2 = λ sinφ
ψ̇3(t) = λ sin(θ(t)− φ)
ψ̇4(t) = −ψ3(t) .

(35)
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The Hamiltonian (33) can now be written as:

H(Ψ,X, v) = λ cos(θ − φ) + ψ3κ+ ψ4v. (36)

Now, according to theorem 3, a necessary condition for X(T ) to be an
extremal trajectory for the minimum-time problem is that Ψ(t) define a nonzero
absolutely continuous function such that ∀t ∈ [0, T ]:

H(Ψ(t), X(t), v(t)) = max
u∈[−B,+B]

H(Ψ(t), X(t), u(t)) = −ψ0. (37)

where ψ0 ≤ 0 is a constant.

Characterization of extremal arcs From equation (37) we deduce that:

ψ4(t) v(t) ≥ 0 for almost every t ∈ [0, T ] . (38)

As X belongs to class C, on each open C3 portion of the trajectory, v(t) = ±B
with the sign of ψ4 if ψ4(t) 6= 0 or, otherwise, that ∂H

∂v = ψ4(t) = 0. If ψ4(t) ≡ 0
over some interval [t1, t2] ⊂ [0, T ], (35) implies that ψ3(t) ≡ 0 and ψ̇3(t) ≡ 0.
As θ is continuous and λ 6= 0 (otherwise ψ1 = ψ2 = ψ3 = 0 and therefore
ψ0 = 0 which is not possible), it follows that θ(t) ≡ φ (mod π). Of course
then, κ ≡ v ≡ 0 on [t1, t2]. Hence, on each open C3 portion of the path,
v(t) ∈ {−B,+B, 0}, and since v has to be continuous on such a portion, it is
of one of the three kinds:

1. Cl+: v(t) ≡ B, ψ4(t) > 0
2. Cl−: v(t) ≡ −B, ψ4(t) < 0
3. S: v(t) ≡ 0, ψ4(t) ≡ 0

Arcs Cl± are finite portions of clothoids. A clothoid6 (see figure (27)), also
known as a “Cornu spiral”, is a curve along which the curvature κ depends
linearly on the arc length (here equal to t) and varies continuously from −∞
to +∞. Hence, all clothoids Cl+ (where v(t) = B) are translated and rotated
copies of a unique clothoid Γ while all clothoids Cl− (where v(t) = −B) are
translated, rotated and reflected copies of Γ . Clothoids Cl+ will be called direct
clothoids and clothoids Cl− will be called indirect clothoids. The canonical
clothoid Γ is chosen as the one defined by the following equations:

x(t) =
∫ t

0

cos(
B

2
τ2)dτ

y(t) =
∫ t

0

sin(
B

2
τ2)dτ .

6 More details about clothoiods are given in the next section
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Arcs S are line segments, all with the same orientation φ (mod π).
From the above discussion, we have:

Proposition 1. Any extremal path in class C is the C2 concatenation of line
segments (with the same orientation) and of arcs of clothoids (with κ̇ = ±B),
all of finite length. The control function v is constant on each piece: v = B on
a direct clothoid Cl+, −B on an indirect one Cl−, and 0 on a line segment S.

In the sequel, we denote by “Cl” an arc of clothoid, by “S” an open line seg-
ment, and by “.” a switching point. “Clµ” will further specify, when necessary,
the length µ of the arc.

In order to characterize the extremal paths, and, among them, the shortest
ones, we consider the following problem: how are these arcs Cl and S arranged
together along an extremal trajectory of class C ?
We provide in the next section a partial answer to this question.

Concatenation of arcs

Lemma 25. ψ4 = 0 at any switching point (Cl.Cl, Cl.S or S.Cl).

Proof: That ψ4 = 0 at a switching point Cl.S or S.Cl follows from the fact that

ψ4 ≡ 0 on S and that ψ4 is continuous. At a switching point Cl.Cl, the sign of v

changes and, by (38), also the sign of ψ4. 2

Lemma 26. If λ = 0, the extremal path consists of one or two arcs and is of
type Cl or Cl.Cl.

Proof: If λ = 0, ψ3 is constant on [0, T ] by (35). If ψ3 = 0, ψ4 is constant on
[0, T ] by (35). Moreover, ψ4 cannot be identically 0, since, otherwise, (Ψ, ψ0) ≡ (0, 0),
which contradicts the necessary conditions of PMP. Hence, it follows from Lemma 25
that the extremal path cannot contain a line segment nor a switching point and thus
reduces to a single arc Cl.

If ψ3 6= 0, ψ4(t) is a linear function of t by (35) and then vanishes at most at one

isolated point. Hence the extremal path is of type Cl or Cl.Cl, by Lemma 25. 2

Note that such paths are not generic: from any given initial configuration
X0 in R2×S1×R, the set of final configurations {Xf} one can reach through
such paths is only 1 or 2-dimensional.

Lemma 27. If an extremal path contains a line segment S, λ = −ψ0 > 0.

Proof: along a line segment ψ4 ≡ ψ3 ≡ 0 and θ ≡ φ (mod π). Hence, H ≡ ελ =

−ψ0 ≥ 0, with ε = ±1. As ψ0 ≤ 0 and λ > 0 (from Lemma 26), we must have ε = +1

and λ = −ψ0. 2

From the proof of lemma 27, ε = cos(θ − φ) = +1 on S, and we have:

Corollary 1. Along a line segment S, θ ≡ φ (mod 2π).



158 P. Souères and J.-D. Boissonnat

Lemma 28. ψ3 − ψ1 y + ψ2 x is constant along any extremal path. If λ > 0,
for any given c ∈ R, all the points of an extremal path where ψ3 = c lie on the
same straight line Dc, of direction φ (mod π).

Proof: ψ̇3 = ψ1 ẏ−ψ2 ẋ from (34), and ψ1 and ψ2 are constant. Thus there exists

a constant c0 such that ψ1y−ψ2x = ψ3 +c0, which proves the first part of the lemma.

If λ 6= 0, ψ1 and ψ2 cannot be both equal to 0 and ψ1y−ψ2x = c+ c0 is the equation

of a line of direction θ = φ (mod π). 2

As a consequence, we have:

Corollary 2. Any line segment S of an extremal path is contained in D0 and
is run with θ ≡ φ (mod 2π).

Proof: since ψ3 ≡ 0 on S, it follows from Lemma 28 that S is contained in the

line D0 of direction φ. By Corollary 1, θ ≡ φ (mod 2π). 2

Lemma 29. If λ > 0, each open arc of clothoid Clµ with µ > 0 of an extremal
path, except possibly the initial and the final ones, intersects D0 at least once.

Proof: let Clµ be an arc of length µ of an extremal path which is not the initial

nor the final arc. Both endpoints of such an intermediate arc are switching points.

Let ]t1, t2[ denote the time interval during which this intermediate arc Clµ is run.

By Lemma 25, ψ4(t1) = ψ4(t2) = 0. As t2 − t1 = µ > 0, there exists at least one

t ∈]t1, t2[, say t3, such that ψ̇4(t3) = 0 and thus, from (35), ψ3(t3) = 0. Finally, it

follows from Lemma 28 that M(t3) belongs to D0. 2

Observe that the hypothesis λ > 0 along an extremal path is true as soon
as it contains either a line segment (Lemma 27) or more than only two arcs of
clothoid (Lemma 26).

Lemma 30. An extremal path contains no portion of type S.Clµ.Cl or of sym-
metric type Cl.Clµ.S with µ > 0.

Proof: assume that there exists such a portion S.Clµ.Cl and let ]t1, t2[ denote the

time interval during which Clµ is run, with t2 − t1 = µ > 0. From Lemma 2, S ⊂ D0,

and since the variables (x, y, θ, κ) are continuous on [t1, t2], Clµ is tangent to D0 at

M(t1) and κ(t1) = 0. Hence, M(t1) is the inflection point of the clothoid supporting

Clµ and D0 is the tangent to the clothoid at M(t1). This implies that Clµ \ {M(t1)}
is entirely contained in an open half-plane delimited by D0, see figure (27), which

contradicts Lemma 29. 2

The last lemma is in fact superseded by the following one, due to H.J.
Sussmann.

Lemma 31. An extremal path contains no portion of type S.Clµ (or Clµ.S)
with µ > 0.
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Proof: assume that there is a portion of type S.Clµ, with µ > 0, in an extremal
trajectory and let t1 be the switching time between S and Clµ. From (35) and (36)
we obtain the following expressions of the four first derivatives of ψ4 (valid on S as
well as on Clµ): 

ψ̈4 = −λ sin(θ − φ)

...

ψ4 = −λκ cos(θ − φ)

....

ψ4 = λκ2 sin(θ − φ) + (ψ3 κ+ ψ4 v + ψ0) v .

Hence, the adjoint variable ψ4 is of class C3 in the neighbourhood of t1. Moreover,
on S, ψ4 = ψ̇4 = 0, θ ≡ φ (mod 2π), ψ3 = 0, κ = 0. From the above equations, we

also have ψ̈4 =
...

ψ4= 0 on S, and, by continuity, at t1. Moreover,
....

ψ4 (t1) = ψ0 v. Thus,
there exists an ε, 0 < ε ≤ µ, such that for t ∈ [t1, t1 + ε[ we have:

ψ4(t) = ψ0 v(t)
(t− t1)4

4!
+ o((t− t1)5) .

Now, from Lemma 27, ψ0 < 0, so that ψ4 and v have opposite signs on [t1, t1 + ε[

which contradicts (38). 2

A consequence of Lemmas 30 and 31 is the following proposition:

Proposition 2. If an extremal path of class C contains but is not reduced to a
line segment, then it contains an infinite number of concatenated clothoid arcs
which accumulate towards each endpoint of the segment which is a switching
point.

Proposition 2 together with the fact that a clothoid Cl is contained in a
ball of bounded diameter DCl (depending on the parameter B) implies the
following:

Proposition 3. The number n of C3 pieces contained in a generic extremal
path cannot be uniformly bounded from above (with respect to X0, Xf ). How-
ever, if d(M0,Mf ) denotes the Euclidean distance in the plane between M0 and
Mf , we have that:

n ≥ d(M0,Mf )
DCl

.

Proof: either the shortest path contains (and is generically not reduced to) a line

segment, and Proposition 2 implies that there are infinitely many arcs of clothoid, or

it is made only with arcs of clothoid, the number of which clearly depends on (and

increases with) the distance between X0 and Xf . The bound from below is obvious.

2
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6.3 Conclusion

Note that it is not clear whether or not extremal trajectories described in
Proposition 2, and, among them, the optimal ones, belongs to class C: indeed,
the set of switching points on an optimal trajectory (points where the control
v is undefined) might even be uncountable. Moreover, we don’t know yet if the
statement of this proposition remains true without the assumption that the
path contains a line segment.

However, Propositions 2 and 3 already indicate that the optimal control
associated to problem (30), (31), (32) has a complex behavior. Contrarily to
what occurs for Dubins or Reeds and Shepp problems, for which every optimal
trajectory contains at most a prescribed (finite) number of line segment and
arcs of circles, the number of switching points is unbounded here and might be
infinite.

6.4 Related works

Lemma 31 is due to H.J. Sussmann who provided a complete study of this
problem described as “Markov-Dubins problem with angular acceleration con-
trol” [38]. In this paper, the author uses results by Zelikin and Borisov [39] to
show that there exist extremals involving infinite chattering.

7 Time-optimal trajectories for Hilare-like mobile robots

The last model we consider is the model of Hilare the robot of LAAS-CNRS
whose locomotion system consists of two parallel driven wheels and four slave
castors.

Let (x, y) be the coordinates of the reference point located between the
driven wheels, and θ the robot’s orientation with respect to the x−axis. vr and
vl denote respectively the velocities of the contact point of the right and left
driven wheel with the floor. These virtual point velocities are considered as
two state variables while their acceleration ar and al constitute the two system
inputs. Therefore, a configuration of the robot is a 5-uple (x, y, θ, vr, vl). Using d
to denote the distance between the driven wheels we get the following dynamic
representation:


ẋ
ẏ

θ̇
v̇r
v̇l

 =


vr+vl

2 cos θ
vr+vl

2 sin θ
vr−vl
d
0
0

 +


0
0
0
1
0

 ar +


0
0
0
0
1

 al (39)
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Each wheel is driven by an independent motor and the power limitation is
expressed by the constraint: ar, al ∈ [−a, a], a > 0. For this model there is no
curvature constraint and the robot can turn about its reference point.

We consider the problem of characterizing minimum-time trajectories link-
ing any pair of configurations where the robot is at rest i.e verifying vr = vl = 0.

This problem has been initially studied by Jacobs et al [25]. After having
shown that the system is controllable, the authors have proven that minimum-
time trajectories are necessarily made up with bang-bang pieces. To illustrate
the reasoning of their proof let us suppose that the first control ar is singular
while the second control al is bang-bang.

For this minimum-time problem, denoting by ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)T the
adjoint vector, the Hamiltonian corresponding to system (39) is:

H = ψ1
vr + vl

2
cos θ + ψ2

vr + vl
2

sin θ + ψ3
vr − vl

2
+ ψ4 ar + ψ5 al

As we suppose ar to be singular, the corresponding switching function ψ4

vanishes over a nonzero interval of time. From the adjoint equation we get:

ψ̇4 = −∂H
∂vr

=
ψ1

2
cos θ +

ψ2

2
sin θ +

ψ3

d
= 0

and therefore,

ψ3 = −d
2

(ψ1 cos θ + ψ2 sin θ)

Taking the derivative of ψ3 and replacing θ̇ by its expression given by (39) we
get:

ψ̇3 = (ψ1 sin θ − ψ2 cos θ)(
vr − vl)

2
) (40)

The expression of ψ̇3 can also be deduced directly from the adjoint equation:

ψ̇3 = −∂H
∂θ

= (ψ1 sin θ − ψ2 cos θ)(
vr + vl)

2
) (41)

Equating (40) and (41) we deduce that

1. either v2 ≡ 0
2. either ψ1 sin θ − ψ2 cos θ = 0



162 P. Souères and J.-D. Boissonnat

As al is supposed to be bang-bang the first case leads to a contradiction.
On the other hand, as ∂H

∂x = ∂H
∂y = 0, we deduce from the adjoint equation

that ψ1 and ψ2 are constant. Thus, in the second case, the car is moving on a
straight line, but a necessary condition for such a motion to be time-optimal is
that the acceleration of wheels be both maximal or both minimal, and therefore
correspond to bang-bang control.

Using the same reasoning in the case that al is singular and ar regular, or
in the case that both control are singular, one can prove that extremal controls
are necessarily bang-bang.

Therefore, optimal trajectories are obtained for |ar| = |al| = a; these ex-
tremal curves are of two types.

• ar = −al = ±a
In this case the robot’s linear acceleration is null: v̇(t) = 1

2 (v̇d + v̇g) = 0.
v(t) is constant equal to v0, therefore the curvilinear abscissa s(t) = v0t.
v̇r(t) = ±a while v̇l(t) = ∓a. Integrating we get: vr(t) = ±at+ vr0, vl(t) =
∓at+ vl0 and ω(t) = θ̇(t) = ± 2a

d t+ ω0. The curvature κ is then:

κ(t) =
± 2a

d t+ ω0

v0
= ±kcs(t) +

ω0

v0
(42)

where kc = 2a
dv2

0
. In the (x, y)−plane, the curve is a clothoid with charac-

teristic constant kc. When x0 = y0 = ω0 = θ0 the curve is expressed by the
following parametric expression in terms of Fresnel sine and cosine.

x(t) = sign(v0)
√

π
kc

∫√ 2a
dπ t

0
cos(π2 τ

2)dτ

y(t) = sign(v0ar)
√

π
kc

∫√ 2a
dπ t

0
sin(π2 τ

2)dτ
(43)

Figure (27) shows a clothoid obtained for ar = −al = a. The part located
above the x−axis describes the robot’s motion for v0 > 0, while the part
located under the x− axis corresponds to v0 < 0. A curve symmetric with
respect to the x−axis is obtained for ar < 0.

Remark 12. When v0 = 0 the curve is reduced to a pure rotation about
the origin.

• ar = al = ±a
In this case the angular velocity is null: ω̇(t) = 1

d (v̇r(t) − v̇l(t)) = 0.
Therefore ω(t) = ω0, and θ(t) = ω0t + θ0. The linear acceleration is
v̇(t) = sign(ar)a, thus v(t) = sign(ar)at+ v0. The curvature radius ρ(t) is
given by:

ρ(t) =
v(t)
ω(t)

= sign(ar)ka(θ(t)− θ0) +
v0

ω0
(44)
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where ka = a
ω2

0
. In the (x, y)−plane the curve is an involute of a circle7

whose characteristic constant is ka. When x0 = y0 = v0 = θ0 the curve is
expressed by the following parametric expression:

{
x(t) = sign(ar)ka(cos(ω0t) + ω0t sin(ω0t)− 1)
y(t) = sign(ar)ka(sin(ω0t)− ω0t cos(ω0t))

(45)

Figure (28) represents an involute of a circle obtained for ar = al = a.
The robot turns in the counterclockwise direction when ω0 > 0 and in the
clockwise direction when ω < 0. For ar < 0 the resulting curve is symmetric
with respect to the origin.

Remark 13. When ω0 = 0, the curve is a line.

This description achieves the local characterization of extremal curves. Op-
timal trajectories are made up with pieces of clothoids and involute of circles.
The question is now to determine how many control switches occur along an
optimal trajectory and how to determine the switching times. This difficult
problem has motivated several research works.

A first work by Reister and Pin [30] was based on the conjecture that op-
timal paths contain at most four control switches. Using an interesting time
parameterization they presented a numerical study of bang-bang trajectories
containing only five elementary pieces. By computing the set of accessible con-
figurations in fixed time they tried to state that trajectories containing more
than five pieces are not optimal. Unfortunately this numerical analysis could
not provide a mathematical proof to bound the number of control switches.

More recently, the work by Renaud and Fourquet [32] has invalidated the
conjecture by Reister and Pin, showing that certain configurations of the space
could not be reached by extremal trajectories containing only five elementary
pieces. Furthermore, they pointed out the existence of extremal solutions al-
lowing to reach these configurations and containing more than four switches.

To our knowledge this work constitutes the last contribution to the problem.
Therefore, to date, there does not exist any result allowing to bound the number
of control switches along an optimal trajectory. It is then not possible at this
stage to try to characterize a sufficient family as we did at section (4). In fact,
the very first question we need to answer is to determine whether the number
of switches is finite or not.

In spite of solving the minimum-time problem the local description of ex-
tremal curves can be used to deduce interesting geometric properties for path
planning.
7 The involute of a circle is the curve described by the end of a thread as it is unwound

from a stationary spool.
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– Equation (42) show that clothoid allow to link smoothly curves with zero
curvature (lines) and curves with nonzero curvature (arcs of circle).

– Equation (44) show that involutes of circle can link smoothly curves with
infinite curvature (turn about) and curves with nonzero curvature. In par-
ticular, following this curve the robot can make a cusps while keeping a
nonzero angular velocity.

This result has been used by Fleury et al [17] to design primitives for
smoothing mobile robots’ trajectories. In this work several sub-optimal strate-
gies are proposed to smooth broken lines trajectories in a cluttered environ-
ment.

8 Conclusions

The study of these four problems corresponding to different models of wheeled
robots illustrates the strengths and weaknesses of the use of optimal control
for path planning.

By constructing a shortest paths synthesis for the models of Reeds and
shepp and the model of Dubins, we have definitely solved the path planning
problem for a car-like robot moving in a plane free of obstacles. Obviously, as
the vehicle is supposed to move at a constant speed along arcs of circle and line
segments this result does not constitute a real feedback control for the robot.
However, it constitutes a canonical way to determine a path, for linking any
two configurations, upon which path following techniques can be developed.

Furthermore, from this construction, it has been possible to determine a dis-
tance function providing a topological analysis of the path planning problem.
In particular, for the Reeds and Shepp problem, we have proven that the dis-
tance induced by the shortest path is Lipschitz equivalent to a sub-Riemannian
metric. Such a metric constitutes a very useful tool to compute the distance
between the robot and its environment.

However, whereas optimal control may provide a very complete result for
a small number of systems, the characterization of optimal path is in general
incomplete. This is illustrated by the last two problems. In such cases, the local
characterization of extremals can be used to determine suboptimal strategies
for planning.

Beyond solving the path planing problem, this study has permitted to get
very interesting results.

First, we have shown the existence of symmetry properties common to the
different models of wheeled robots. On this basis, by constructing the set of
reachable configuration for the model of Reeds and Shepp and for the model
of Dubins, we have shown the existence of several propagating wave fronts in-
tersecting each other. From this, we have proven the insufficiency of the local
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information provided by PMP and the need to be compare the cost of trajecto-
ries corresponding to different wave fronts, by means of global arguments. Using
this reasoning we have completely solved the problem of Reeds and Shepp as
well as the problem of Dubins.

On the other hand, by showing that the synthesis constructed for the Reeds
and Shepp problem verifies the required regularity conditions we have found
another proof to confirm this result a posteriori by applying Boltianskii’s suf-
ficient optimality conditions. Though this theorem allows to prove very strong
results in a very simple way, we have shown the narrowness of its application
area by considering the neighbouring example of Dubins for which the regular-
ity conditions no longer apply because of the discontinuity of path length.

The last two examples illustrate the difficulty very often encountered in
studying of optimal control problems. First, the adjoint equations are seldom
integrable making only possible the local characterization of optimal paths.
The search for switching times is then a very difficult problem. Furthermore,
as we have seen in studying the problem of Dubins with inertial control, it is
possible to face Fuller-like phenomenon though the solution could seem to be
a priori intuitively simple.
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