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1 Introduction

Mobile robots did not wait to know that they were nonholonomic to plan and
execute their motions autonomously. It is interesting to notice that the first
navigation systems have been published in the very first International Joint
Conferences on Artificial Intelligence from the end of the 60’s. These systems
were based on seminal ideas which have been very fruitful in the development
of robot motion planning: as examples, in 1969, the mobile robot Shakey used
a grid-based approach to model and explore its environment [61]; in 1977 Jason
used a visibility graph built from the corners of the obstacles [88]; in 1979 Hilare
decomposed its environment into collision-free convex cells [30].

At the end of the 70’s the studies of robot manipulators popularized the
notion of configuration space of a mechanical system [53]; in this space the
“piano” becomes a point. The motion planning for a mechanical system is
reduced to path finding for a point in the configuration space. The way was open
to extend the seminal ideas and to develop new and well-grounded algorithms
(see Latombe’s book [42]).

One more decade, and the notion of nonholonomy (also borrowed from
Mechanics) appears in the literature [44] on robot motion planning through
the problem of car parking which was not solved by the pioneering mobile
robot navigation systems. Nonholonomic Motion Planning then becomes an
attractive research field [52].

This chapter gives an account of the recent developments of the research in
this area by focusing on its application to mobile robots.

Nonholonomic systems are characterized by constraint equations involving
the time derivatives of the system configuration variables. These equations are
non integrable; they typically arise when the system has less controls than
configuration variables. For instance a car-like robot has two controls (linear
and angular velocities) while it moves in a 3-dimensional configuration space.
As a consequence, any path in the configuration space does not necessarily
correspond to a feasible path for the system. This is basically why the purely
geometric techniques developed in motion planning for holonomic systems do
not apply directly to nonholonomic ones.
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While the constraints due to the obstacles are expressed directly in the man-
ifold of configurations, nonholonomic constraints deal with the tangent space.
In the presence of a link between the robot parameters and their derivatives,
the first question to be addressed is: does such a link reduce the accessible con-
figuration space ? This question may be answered by studying the structure of
the distribution spanned by the Lie algebra of the system controls.

Now, even in the absence of obstacle, planning nonholonomic motions is
not an easy task. Today there is no general algorithm to plan motions for any
nonholonomic system so that the system is guaranteed to exactly reach a given
goal. The only existing results are for approximate methods (which guarantee
only that the system reaches a neighborhood of the goal) or exact methods for
special classes of systems; fortunately, these classes cover almost all the existing
mobile robots.

Obstacle avoidance adds a second level of difficulty. At this level we should
take into account both the constraints due to the obstacles (i.e., dealing with
the configuration parameters of the system) and the nonholonomic constraints
linking the parameter derivatives. It appears necessary to combine geometric
techniques addressing the obstacle avoidance together with control theory tech-
niques addressing the special structure of the nonholonomic motions. Such a
combination is possible through topological arguments.

The chapter may be considered as self-contained; nevertheless, the basic
necessary concepts in differential geometric control theory are more developed
in Belläıche–Jean–Risler’s chapter.

Finally, notice that Nonholonomic Motion Planning may be consider as the
problem of planning open loop controls; the problem of the feedback control is
the purpose of DeLuca–Oriolo–Samson’s chapter.

2 Controllabilities of mobile robots

The goal of this section is to state precisely what kind of controllability and
what level of mobile robot modeling are concerned by motion planning.

2.1 Controllabilities

Let us consider a n-dimensional manifold, U a class of functions of time t
taking their values in some compact sub-domain K of Rm. The control systems
Σ considered in this chapter are differential systems such that

Ẋ = f(X)u+ g(X).

u is the control of the system. The i−th column of the matrix f(X) is a vector
field denoted by fi. g(X) is called the drift. An admissible trajectory is a
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solution of the differential system with given initial and final conditions and u
belonging to U .

The following definitions use Sussmann’s terminology [83].

Definition 1. Σ is locally controllable from X if the set of points reachable
from X by an admissible trajectory contains a neighborhood of X. It is small-
time controllable from X if the set of points reachable from X before a given
time T contains a neighborhood of X for any T .

A control system will be said to be small-time controllable if it is small-time
controllable from everywhere.

Small-time controllability clearly implies local controllability. The converse
is false.

Checking the controllability properties of a system requires the analysis of
the control Lie algebra associated with the system. Considering two vector fields
f and g, the Lie bracket [f, g] is defined as being the vector field ∂f.g−∂g.f 1.
The following theorem (see [82]) gives a powerful result for symmetric systems
(i.e., K is symmetric with respect to the origin) without drift (i.e, g(X) = 0).

Theorem 2.1. A symmetric system without drift is small-time controllable
from X iff the rank of the vector space spanned by the family of vector fields fi
together with all their brackets is n at X.

Checking the Lie algebra rank condition (LARC) on a control system con-
sists in trying to build a basis of the tangent space from a basis (e.g., a P. Hall
family) of the free Lie algebra spanned by the control vector fields. An algo-
rithm appears in [46,50].

2.2 Mobile robots: from dynamics to kinematics

Modeling mobile robots with wheels as control systems may be addressed with
a differential geometric point of view by considering only the classical hypoth-
esis of “rolling without slipping”. Such a modeling provides directly kinematic
models of the robots. Nevertheless, the complete chain from motion planning
to motion execution requires to consider the ultimate controls that should be
applied to the true system. With this point of view, the kinematic model should
be derived from the dynamic one. Both view points converge to the same mod-
eling (e.g., [47]) but the later enlightens on practical issues more clearly than
the former.
1 The k-th coordinate of [f, g] is

[f, g][k] =

n∑
i=1

(g[i]
∂

∂xi
f [k]− f [i]

∂

∂xi
g[k]).
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Let us consider two systems: a two-driving wheel mobile robot and a car
(in [17] other mechanical structure of mobile robots are considered).

Two-driving wheel mobile robots A classical locomotion system for mobile
robot is constituted by two parallel driving wheels, the acceleration of each
being controlled by an independent motor. The stability of the platform is
insured by castors. The reference point of the robot is the midpoint of the two
wheels; its coordinates, with respect to a fixed frame are denoted by (x, y); the
main direction of the vehicle is the direction θ of the driving wheels. With `
designating the distance between the driving wheels the dynamic model is:

ẋ
ẏ

θ̇
v̇1

v̇2

 =


1
2 (v1 + v2) cos θ
1
2 (v1 + v2) sin θ

1
` (v1 − v2)

0
0

+


0
0
0
1
0

 u1 +


0
0
0
0
1

 u2 (1)

with |u1| ≤ u1,max, |u2| ≤ u2,max and v1 and v2 as the respective wheel speeds.
Of course v1 and v2 are also bounded; these bounds appear at this level as
“obstacles” to avoid in the 5-dimensional manifold. This 5-dimensional system
is not small-time controllable from any point (this is due to the presence of the
drift and to the bounds on u1 and u2).

By setting v = 1
2 (v1 + v2) and ω = 1

` (v1 − v2) we get the kinematic model
which is expressed as the following 3-dimensional system: ẋ

ẏ

θ̇

 =

 cos θ
sin θ

0

 v +

0
0
1

 ω (2)

The bounds on v1 and v2 induce bounds vmax and ωmax on the new controls v
and ω. This system is symmetric without drift; applying the LARC condition
shows that it is small-time controllable from everywhere. Notice that v and ω
should be C1.

Car-like robots From the driver’s point of view, a car has two controls: the
accelerator and the steering wheel. The reference point with coordinates (x, y)
is the midpoint of the rear wheels. We assume that the distance between both
rear and front axles is 1. We denote w as the speed of the front wheels of the
car and ζ as the angle between the front wheels and the main direction θ of the
car2. Moreover a mechanical constraint imposes |ζ| ≤ ζmax and consequently a
2 More precisely, the front wheels are not exactly parallel; we use the average of their

angles as the turning angle.
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minimum turning radius. Simple computation shows that the dynamic model
of the car is:

ẋ
ẏ

θ̇
ẇ

ζ̇

 =


w cos ζ cos θ
w cos ζ sin θ
w sin ζ

0
0

 +


0
0
0
1
0

 u1 +


0
0
0
0
1

 u2 (3)

with |u1| ≤ u1,max and |u2| ≤ u2,max. This 5-dimensional system is not small-
time controllable from everywhere.

A first simplification consists in considering w as a control; it gives a 4-
dimensional system:

ẋ
ẏ

θ̇

ζ̇

 =


cos ζ cos θ
cos ζ sin θ

sin ζ
0

 w +


0
0
0
1

 u2 (4)

This new system is symmetric without drift; applying the LARC condition
shows that it is small-time controllable from everywhere. Notice that w should
be C1. Up to some coordinate changes, we may show that this system is equiv-
alent to the kinematic model of a two-driving wheel mobile robot pulling a
“trailer” which is the rear axle of the car (see below). The mechanical con-
straint |ζ| ≤ ζmax ≤ π

2 appears as an “obstacle” in R2 × (S1)2.
Let us assume that we do not care about the direction of the front wheels.

We may still simplify the model. By setting v = w cos ζ and ω = w sin ζ we get
a 3-dimensionated control system: ẋ

ẏ

θ̇

 =

 cos θ
sin θ

0

 v +

0
0
1

 ω (5)

By construction v and ω are C1 and their values are bounded. This system
looks like the kinematic model of the two-driving wheel mobile robot. The
main difference lies on the admissible control domains. Here the constraints
on v and ω are no longer independent. Indeed, by setting wmax =

√
2 and

ζmax = π
4 we get: 0 ≤ |ω| ≤ |v| ≤ 1. This means that the admissible control

domain is no longer convex. It remains symmetric; we can still apply the LARC
condition to prove that this system is small-time controllable from everywhere.
The main difference with the two-driving wheel mobile robot is that the feasible
paths of the car should have a curvature lesser than 1.

A last simplification consists in putting |v| ≡ 1 and even v ≡ 1; by ref-
erence to the work in [65] and [22] on the shortest paths in the plane with
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bounded curvature such systems will be called Reeds&Shepp’s car and Dubins’
car respectively (see Souères–Boissonnat’s chapter for an overview of recent
results on shortest paths for car-like robots). The admissible control domain of
Reeds&Shepp’s car is symmetric; LARC condition shows that it is small-time
controllable from everywhere3. Dubins’ car is a system with drift; it is locally
controllable but not small-time controllable from everywhere; for instance, to
go from (0, 0, 0) to (1−cos ε, sin ε, 0) with Dubins car takes at least 2π−ε unity
of time.

The difference between the small-time local controllability of the car of
Reeds & Shepp and the local controllability of Dubins’ car may be illustrated
geometrically. Figure 1 shows the accessibility surfaces in R2×S1 of both sys-
tems for a fixed length of the shortest paths. Such surfaces have been computed
from the synthesis of the shortest paths for these systems (see [76,51,15] and
Souères–Boissonnat’s chapter). In the case of Reeds&Shepp’s car, the surface
encloses a neighborhood of the origin; in the case of Dubins’ car the surface is
not connected and it does not enclose any neighborhood of the origin.

2.3 Kinematic model of mobile robots with trailers

Let us now introduce the mobile robot with trailers which has been the canoni-
cal example of the work in nonholonomic motion planning; it will be the leading
thread of the rest of the presentation.

Figure 2 (left) shows a two-driving wheel mobile robot pulling two trailers;
each trailer is hooked up at the middle point of the rear wheels of the previous
one. The distance between the reference points of the trailers is assumed to be
1. The kinematic model is defined by the following control system (see [47]) :

Ẋ = f1(X)v + f2(X)ω (6)

with
X = (x, y, θ, ϕ1, ϕ2)T

f1(X) = (cos θ, sin θ, 0, − sinϕ1, sinϕ1 − cosϕ1 sinϕ2)T and
f2(X) = (0, 0, 1, 1, 0)T

Note that the first body can be viewed as the front wheels of a car; the
system then appears as modeling a car-like robot pulling a trailer.

After noticing that [f2, [f1, f2]] = f1, one may check that the family com-
posed of {f1, f2, [f1, f2], [f1, [f1, f2]], [f1, [f1, [f1, f2]]]} spans the tangent space
at every point in R2 × (S1)3 verifying ϕ1 6≡ π

2 (regular points). The family
{f1, f2, [f1, f2], [f1, [f1, f2]], [f1, [f1, [f1, [f1, f2]]]]} spans the tangent space else-
where (i.e., at singular points). Thanks to the LARC, we conclude that the
3 A geometric proof appears in [44].
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Two points of view of the same Reeds&Shepp’s ball

Two points of view of the same Dubins’ “ball”

Fig. 1. Accessibility domains by shortest paths of fixed length

system is small-time controllable at any point. Its degree of nonholonomy4 is 4
at regular points and 5 at singular points. A more general proof of small-time
controllability for this system with n trailers appears in [47].

Another hooking system is illustrated in Figure 2 (right). Let us assume
that the distance between the middle point of the wheels of a trailer and the
hookup of the preceding one is 1. The control system is the same as (6), with

4 The minimal length of the Lie bracket required to span the tangent space at a point
is said to be the degree of nonholonomy of the system at this point. The degree of
nonholonomy of the system is the upper bound d of all the degrees of nonholonomy
defined locally (see Belläıche–Jean–Risler’s Chapter for details).
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ϕ1

ϕ2

y

x

θ

ϕ1

ϕ2

y

x

θ

Fig. 2. Two types of mobile robots with trailers.

f1(X) = (cos θ, sin θ, 0, − sinϕ1, − sinϕ2 cosϕ1+cosϕ2 sinϕ1+sinϕ1)T and
f2(X) = (0, 0, 1, −1− cosϕ1, sinϕ1 sinϕ2 + cosϕ1 cosϕ2 + cosϕ1)T

The family {f1, f2, [f1, f2], [f1, [f1, f2]], [f2, [f1, f2]]} spans the tangent space
at every point in R2 × (S1)3 verifying ϕ1 6≡ π, ϕ2 6≡ π and ϕ1 6≡ ϕ2 (regular
points). The degree of nonholonomy is then 3 at regular points. The family
{f1, f2, [f1, f2], [f1, [f1, f2]], [f1, [f1, [f1, f2]]]} spans the tangent space at points
verifying ϕ1 ≡ ϕ2. The degree of nonholonomy at these points is then 4. When
ϕ1 ≡ π or ϕ2 ≡ π the system is no more controllable; this is a special case of
mechanical singularities.

2.4 Admissible paths and trajectories

Constrained paths and trajectories Let CS be the configuration space of
some mobile robot (i.e., the minimal number of parameters locating the whole
system in its environment). In the sequel a trajectory is a continuous function
from some real interval [0, T ] in CS. An admissible trajectory is a solution of the
differential system corresponding to the kinematic model of the mobile robot
(including the control constraints), with some initial and final given conditions.
A path is the image of a trajectory in CS. An admissible path is the image of
an admissible trajectory.

The difference between the various kinematic models of the mobile robots
considered in this presentation only concerns their control domains (Figure 3).
It clearly appears that admissible paths for Dubins’ car are admissible for
Reeds&Shepp’s car (the converse is false); admissible paths for Reeds&Shepp’s
car are admissible for the car-like robot (the converse is true); admissible paths
for the car-like robot are admissible for the two-driving wheel mobile robot (the
converse is false).
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Reeds & SheppCar-likeTwo-driving wheels Dubins

ω

v

ω

v

ω

v

ω

v

Fig. 3. Kinematic mobile robot models: four types of control domains.

Remark 1: Due to the constraint |ω| < |v|, the admissible paths for the car-like,
Reeds&Shepp’s and Dubins’ robots have their curvature upper bounded by 1
everywhere. As a converse any curve with curvature upper bounded by 1 is an
admissible path (i.e., it is possible to compute an admissible trajectory from
it).

Remark 2: This geometric constraint can be taken into account by consid-
ering the four-dimensionated control system (4) with |ζ| ≤ π

4 ; the inequality
constraint on the controls for the 3-dimensionated system is then transformed
into a geometric constraint on the state variable ζ. Therefore the original con-
trol constraint |ω| < |v| arising in system (5) can be addressed by applying
“obstacle” avoidance techniques to the system (4).

From paths to trajectories The goal of nonholonomic motion planning
is to provide collision-free admissible paths in the configuration space of the
mobile robot system. Obstacle avoidance imposes a geometric point of view
that dominates the various approaches addressing the problem. The motion
planners compute paths which have to be transformed into trajectories.

In almost all applications, a black-box module allows to control directly the
linear and angular velocities of the mobile robot. Velocities and accelerations
are of course submitted bounds.

The more the kinematic model of the robot is simplified, the more the trans-
formation of the path into a trajectory should be elaborated. Let us consider
for instance an elementary path consisting of an arc of a circle followed by a
tangent straight line segment. Due to the discontinuity of the curvature of the
path at the tangent point, a two driving-wheel mobile robot should stop at
this point; the resulting motion is clearly not satisfactory. This critical point
may be overcome by “smoothing” the path before computing the trajectory.
For instance clothoids and involutes of a circle are curves that account for the
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dynamic model of a two driving-wheel mobile robot: they correspond to bang-
bang controls for the system (1) [35]; they may be used to smooth elementary
paths [25].

Transforming an admissible path into an admissible trajectory is a classical
problem which has been investigated in robotics community mainly through the
study of manipulators (e.g., [67] for a survey of various approaches). Formal
solutions exist (e.g., [75] for an approach using optimal control); they apply
to our problem. Nevertheless, their practical programming tread on delicate
numerical computations [40].

On the other hand, some approaches address simultaneously the geometric
constraints of obstacle avoidance, the kinematic and the dynamic ones; this is
the so-called “kinodynamic planning problem” (e.g., [20,21,66]). These methods
consist in exploring the phase space (i.e., the tangent bundle associated to the
configuration space of the system) by means of graph search and discretiza-
tion techniques. In general, such algorithms provide approximated solutions
(with the exception of one and two dimensional cases [62,19]) and are time-
consuming. Only few of them report results dealing with obstacle avoidance for
nonholonomic mobile robots (e.g., [28]).

The following developments deal with nonholonomic path planning.

3 Path planning and small-time controllability

Path planning raises two problems: the first one addresses the existence of a
collision-free admissible path (this is the decision problem) while the second
one addresses the computation of such a path (this is the complete problem).

The results overviewed in this section show that the decision problem is
solved for any small-time controllable system; even if approximated algorithms
exist to solve the complete problem, the exact solutions deal only with some
special classes of small-time controllable systems.

We may illustrate these statements with the mobile robot examples intro-
duced in the previous section:

– Dubins’ robot: this is the simplest example of a system which is locally
controllable and not small-time controllable. For this system, the decision
problem is solved when the robot is reduced to a point [27]. An approx-
imated solution of the complete problem exists [34]; exact solutions exist
for a special class of environments consisting of moderated obstacles (mod-
erated obstacles are generalized polygons whose boundaries are admissible
paths for Dubins’ robot) [2,13]. Notice that the decision problem is still
open when the robot is a polygon.
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– Reeds&Shepp’s, car-like and two-driving wheel robots: these systems are
small-time controllable. We will see below that exact solutions exist for
both problems.

– Mobile robots with trailers: the two systems considered in the previous
section are generic of the class of small-time controllable systems. For both
of them the decision problem is solved. For the system appearing in Figure 2
(left) we will see that the complete problem is solved; it remains open for
the system in Figure 2 (right).

Small-time controllability (Definition 1) has been introduced with a control
theory perspective. To make this definition operational for path planning, we
should translate it in purely geometric terms.

Let us consider a small-time controllable system, with U a class of control
functions taking their values in some compact domain K of Rm. We assume that
the system is symmetric5. As a consequence, for any admissible path between
two configurations X1 and X2, there are two types of admissible trajectories:
the first ones go from X1 to X2, the second ones go from X2 to X1.

Let X be some given configuration. For a fixed time T , let ReachX(T ) be
the set of configurations reachable from X by an admissible trajectory before
the time T . K being compact, ReachX(T ) tends to {X} when T tends to 0.

Because the system is small-time controllable, ReachX(T ) contains a neigh-
borhood of X. We assume that the configuration space is equipped with a
(Riemannian) metric: any neighborhood of a point contains a ball centered at
this point with a strictly positive radius. Then there exists a positive real num-
ber η such that the ball B(X, η) centered at X with radius η is included in
ReachX(T ).

Now, let us consider a (not necessarily admissible) collision-free path γ with
finite length linking two configurations Xstart and Xgoal. γ being compact, it is
possible to define the clearance ε of the path as the minimum distance of γ to
the obstacles6. ε is strictly positive. Then for any X on γ, there exists TX > 0
such that ReachX(TX) does not intersect any obstacle. Let ηTX be the radius
of the ball centered at X whose points are all reachable from X by admissible
trajectories that do not escapeReachX(TX). The set of all the balls B(X, ηTX ),
X ∈ γ, constitutes a covering of γ. γ being compact, it is possible to get a finite
sequence of configurations (Xi)1≤i≤k (with X1 = Xstart, Xk = Xgoal), such
that the balls B(Xi, ηTXi ) cover γ.

Consider a point Yi,i+1 lying on γ and in B(Xi, ηTXi ) ∩ B(Xi+1, ηTXi+1
).

Between Xi and Yi,i+1 (respectively Xi+1 and Yi,i+1) there is an admissible
5 Notice that, with the exception of Dubins’ robot, all the mobile robots introduced

in the previous section are symmetric.
6 We consider that a configuration where the robot touches an obstacle is not

collision-free.
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trajectory (and then an admissible path) that does not escape ReachXi(TXi)
(respectively ReachXi+1(TXi+1)). Then there is an admissible path between Xi

and Xi+1 that does not escape ReachXi(TXi)∪ReachXi+1(TXi+1); this path is
then collision-free. The sequence (Xi)1≤i≤k is finite and we can conclude that
there exists a collision-free admissible path between Xstart and Xgoal.

Theorem 3.1. For symmetric small-time controllable systems the existence of
an admissible collision-free path between two given configurations is equivalent
to the existence of any collision-free path between these configurations.

Remark 3: We have tried to reduce the hypothesis required by the proof to a
minimum. They are realistic for practical applications. For instance the com-
pactness of K holds for all the mobile robots considered in this presentation.
Moreover we assume that we are looking for admissible paths without contact
with the obstacles: this hypothesis is realistic in mobile robotics (it does not
hold any more for manipulation problems). On the other hand we suggest that
two configurations belonging to the same connected component of the collision-
free path can be linked by a finite length path; this hypothesis does not hold for
any space (e.g., think to space with a fractal structure); nevertheless it holds
for realistic workspaces where the obstacles are compact, where their shape is
simple (e.g., semi-algebraic) and where their number is finite.

Consequence 1: Theorem 3.1 shows that the decision problem of motion plan-
ning for a symmetric small-time controllable nonholonomic system is the same
as the decision problem for the holonomic associated one (i.e., when the kine-
matics constraints are ignored): it is decidable. Notice that deciding whether
some general symmetric system is small-time controllable (from everywhere)
can be done by a only semi-decidable procedure [50]. The combinatorial com-
plexity of the problem is addressed in [77]. Explicit bounds of complexity have
been recently provided for polynomial systems in the plane (see [68] and refer-
ences therein).

Consequence 2: Theorem 3.1 suggests an approach to solve the complete prob-
lem. First, one may plan a collision-free path (by means of any standard meth-
ods applying to the classical piano mover problem); then, one approximates
this first path by a finite sequence of admissible and collision-free ones. This
idea is at the origin of a nonholonomic path planner which is presented below
(Section 5.3). It requires effective procedures to steer a nonholonomic system
from a configuration to another. The problem has been first attacked by ignor-
ing the presence of obstacles (Section 4); numerous methods have been mainly
developed within the control theory community; most of them account only
for local controllability. Nevertheless, the planning scheme suggested by Theo-
rem 3.1 requires steering methods that accounts for small-time controllability
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(i.e., not only for local controllability). In Section 5.1 we introduce a topological
property which is required by steering methods in order to apply the planning
scheme. We show that some among those presented in Section 4 verify this
property, another one does not, and finally a third one may be extended to
guaranty the property.

4 Steering methods

What we call a steering method is an algorithm that solves the path planning
problem without taking into account the geometric constraints on the state.
Even in the absence of obstacles, computing an admissible path between two
configurations of a nonholonomic system is not an easy task. Today there is
no algorithm that guarantees any nonholonomic system to reach an accessible
goal exactly. In this section we present the main approaches which have been
applied to mobile robotics.

4.1 From vector fields to effective paths

The concepts from differential geometry that we want to introduce here are
thoroughly studied in [79,90,80,81] and in Belläıche–Jean–Risler’s Chapter.
They give a combinatorial and geometric point of view of the path planning
problem.

Choose a point X on a manifold and a vector field f defined around this
point. There is exactly one path γ(τ) starting at this point and following f .
That is, it satisfies γ(0) = X and γ̇(τ) = f(γ(τ)). One defines the exponential
of f at point X to be the point γ(1) denoted by ef .X. Therefore ef appears
as an operation on the manifold, meaning “slide from the given point along
the vector field f for unit time”. This is a diffeomorphism. With α being a
real number, applying eαf amounts to follow f for a time α. In the same way,
applying ef+g is equivalent to follow f + g for unit time.

It remains that, whenever [f, g] 6= 0, following directly αf +βg or following
first αf , then βg, are no longer equivalent. Intuitively, the bracket [f, g] mea-
sures the variation of g along the paths of f ; in some sense, the vector field g
we follow in αf +βg is not the same as the vector field g we follow after having
followed αf first (indeed g is not evaluated at the same points in both cases).

Assume that f1, . . . , fn are vector fields defined in a neighborhood N of
a point X such that at each point of N , {f1, . . . , fn} constitutes a basis of
the tangent space. Then there is a smaller neighborhood of X on which the
maps (α1, . . . , αn) 7→ eα1f1+···+αnfn ·X and (α1, . . . , αn) 7→ eαnfn · · · eα1f1 ·X
are two coordinate systems, called the first and the second normal coordinate
system associated to {f1, . . . , fn}.
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The Campbell-Baker-Hausdorff-Dynkin formula states precisely the differ-
ence between the two systems: for a sufficiently small τ , one has:

eτf · eτg = eτf+τg− 1
2 τ

2[f,g]+τ2ε(τ)

where ε(τ)→ 0 when τ → 0.
Actually, the whole formula as proved in [90] gives an explicit form for the

ε function. More precisely, ε yields a formal series whose coefficients ck of τk

are combinations of brackets of degree k,7 i.e.

τ2ε(τ) =
∞∑
k=3

τkck

Roughly speaking, the Campbell-Baker-Hausdorff-Dynkin formula tells us
how a small-time nonholonomic system can reach any point in a neighborhood
of a starting point. This formula is the hard core of the local controllability
concept. It yields methods for explicitly computing admissible paths in a neigh-
borhood of a point.

4.2 Nilpotent systems and nilpotentization

One method among the very first ones has been defined by Lafferiere and
Sussmann [39] in the context of nilpotent system. A control system is nilpotent
as soon as the Lie brackets of the control vector fields vanish from some given
length.

For small-time controllable nilpotent systems it is possible to compute a
basis B of the Control Lie Algebra LA(∆) from a Philipp Hall family (see
for instance [46]). The method assumes that a holonomic path γ is given. If
we express locally this path on B, i.e., if we write the tangent vector γ̇(t)
as a linear combination of vectors in B(γ(t)), the resulting coefficients define
a control that steers the holonomic system along γ. Because the system is
nilpotent, each exponential of Lie bracket can be developed exactly as a finite
combination of the control vector fields: such an operation can be done by
using the Campbell-Baker-Hausdorff-Dynkin formula above. An introduction
to this machinery through the example of a car-like robot appears in [48]. It
is then possible to compute an admissible and piecewise constant control u for
the nonholonomic system that steers the system exactly to the goal.

For a general system, Lafferiere and Sussmann reason as if the system were
nilpotent of order k. In this case, the synthesized path deviates from the goal.
Nevertheless, thanks to a topological property, the basic method may be used
7 As an example the degree of [[f, g], [f, [g, [f, g]]]] is 6.
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in an iterated algorithm that produces a path ending as close to the goal as
wanted.

In [33], Jacob gives an account of Lafferiere and Sussmann’s strategy by
using another coordinate system. This system is built from a Lyndon basis of
the free Lie algebra [93] instead of a P. Hall basis. This choice reduces the
number of pieces of the solution.

In [11], Belläıche et al apply the nilpotentization techniques developed in
[10] (see also [31]). They show how to transform any controllable system into a
canonical form corresponding to a nilpotent system approximating the original
one. Its special triangular form allows to apply sinusoidal inputs (see below) to
steer the system locally. Moreover, it is possible to derive from the proposed
canonical form an estimation of the metrics induced by the shortest feasible
paths. This estimation holds at regular points (as in [92]) as well as at singular
points. These results are critical to evaluate the combinatorial complexity of
the approximation of holonomic paths by a sequence of admissible ones (see
Section 5.7).

The mobile robots considered in this presentation are not nilpotent8. A
nilpotentization of this system appear in [39]. We conclude this section by the
nilpotentization of a mobile robot pulling a trailer [11].

Example: Let us consider the control system 6:
ẋ
ẏ

θ̇
ϕ̇

 =


cos θ
sin θ

0
− sinϕ

u1 +


0
0
1
1

u2

= f1u1 + f2u2

where (x, y) defines the position of the mobile robot, θ its direction and ϕ the
angle of the trailer with respect to the mobile robot.

The coordinates of vector fields f3 = [f1, f2] and f4 = [f1, [f1, f2]] are
respectively:

f3 =


sin θ
− cos θ

0
cosϕ

 f4 =


0
0
0
1


We check easily that {f1, f2, f3, f4} is a basis of the tangent space at every point
of the manifold R2 × (S1)2. Let X0 = (x0, y0, θ0, ϕ0) and X = (x, y, θ, ϕ) be
8 Consider the system (2); let us denote f1 and f2 the two vector fields corresponding

to a straight line motion and a rotation respectively. By setting adf (g) = [f, g], we
check that ad2m

f2 (f1) = (−1)mf1 6= 0.
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two points of the manifold. By writing ∆x = x− x0, ∆y = y− y0, ∆θ = θ− θ0

and ∆ϕ = ϕ−ϕ0, the coordinates (y1, y2, y3, y4) of X in the chart attached to
X0 with the basis {f1, f2, f3, f4}(X0) are:

y1

y2

y3

y4

=
=
=
=

cos θ0∆x+ sin θ0∆y
∆θ
sin θ0∆x− cos θ0∆y
sin(ϕ0 − θ0)∆x+ cos(ϕ0 − θ0)∆y −∆θ +∆ϕ

The goal of the following computations is to provide a new coordinate sys-
tem (z1, z2, z3, z4) at X0 such that:

– ((fi)zk)(X0) = δik,
– there exists i and j such that ((fi.fj)z3)(X0) 6= 0,
– for any i and j, ((fi.fj)z4)(X0) = 0, and
– there exists i, j and k such that ((fh.fi.fj)z4)(X0) 6= 0

with h, i, j ∈ {1, 2} and k ∈ {1, 2, 3, 4}; δik = 1 iff i = k; (f) designates the
differential operator associated to the vector field f ; (f.g) is the product of
the corresponding differential operators. Such coordinates are called privileged
coordinates.

One may check that ((fi)yk)(X0) = δik for i ∈ {1, 2} and k ∈ {1, 2, 3, 4}.
Moreover ((f1)2y3)(X0) = ((f2)2y3)(X0) = 0 and ((f2.f1)y3)(X0) = 1. Now, it
appears that ((f1)2y4)(X0) = sinϕ0 cosϕ0; then (y1, y2, y3, y4) is not a privi-
leged coordinate system if sinϕ0 cosϕ0 6= 0.

One gets privileged coordinates by keeping

z1 = y1, z2 = y2, z3 = y3

and taking

z4 = y4 −
1
2

sinϕ0 cosϕ0y
2
1 .

In such coordinates, we have

f1 =


cos z2

0
− sin z2

F (z1, z2, z3, z4)

 f2 =


0
1
0
0

 (7)

where

F (z1, z2, z3, z4) = −z1(cos z2 sin 2ϕ0)/2 + sin(ϕ0 + z2)
− sin

(
ϕ0 − z1 sinϕ0 + z2

1(sin 2ϕ0)/4 + z2 + z3 cosϕ0 + z4

)
.
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The nilpotent approximation is obtained by taking in the Taylor expansions
of (7) the terms of homogeneous degree wi−1 for the i-th coordinate where wi
is the degree of the vector field fi (i.e., w1 = w2 = 1, w3 = 2, w4 = 3). We get

f̂1 =


1
0
−z2

F̂ (z1, z2, z3)

 f̂2 =


0
1
0
0


where

F̂ (z1, z2, z3) = −z2
1(sinϕ0 cos 2ϕ0)/2− z1z2 sin2 ϕ0 − z3 cos2 ϕ0.

It is easy to check that this new system is nilpotent of order 3.

4.3 Steering chained form systems

At the same time as Lafferiere and Sussmann work, Murray and Sastry explored
in [58,59] the use of sinusoidal inputs to steer certain nonholonomic systems:
the class of systems which can be converted into a chained form. A chained
system has the following form:

ẋ1 = v

ẋ2 = f2(x1)v
ẋ3 = f3(x1, x2)v

...
ẋp = fp(x1, . . . , xp)v

with xi ∈ Rmi and
∑
imi = n.

Because of this special form, there exists simple sinusoidal control that may
be used for generating motions affecting the ith set of coordinates while leaving
the previous sets of coordinates unchanged. The algorithm then is:

1. Steer x1 to the desired value using any input and ignoring the evolutions
of the xi’s (1 < i),

2. Using sinusoids at integrally related frequencies, iteratively find the inputs
steering the xi’s without changing the xj ’s, j < i.

Extensions [86] by Tilbury and Sastry allow to use sinusoidal control to steer
all the coordinates at once for systems with two inputs. They show also how
polynomial controls may be used to this end. Moreover Monaco and Normand-
Cyrot show that multirate controls (i.e., piece-wise constant controls) provide
an exact steering method for chained form systems [57].
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Even if a system is not triangular, it may be possible to transform it into
a triangular one by feedback transformations (see [59,60]). Moreover, notice
that the nilpotentization techniques introduced in the previous section leads to
approximated systems which are in chained form.

Example: Let us consider our canonical example of a mobile robot with two
trailers (Figure 2, left). The clever idea which enables the transformation of
the system into a chained form was to consider a frame attached to the last
trailer rather than attached to the robot [86]. Denoting by θ1 and θ2 the angle
of the trailers, and by x2 and y2 the coordinates of the middle point of the last
trailer, the system (6) may be re-written as:

ẋ = cosθ2cos(θ1 − θ2)cos(θ0 − θ1)u1

ẏ = sinθ2cos(θ1 − θ2)cos(θ0 − θ1)u1

θ̇0 = u2

θ̇1 = sin(θ0 − θ1)u1

θ̇2 = sin(θ1 − θ2)cos(θ0 − θ1)u1

Let us consider the following change of coordinates:

z1 = x

z2 = 1
cos4θ2

. tan(θ0−θ1)
cos(θ1−θ2) × (1 + tan2(θ1 − θ2))

+ 1
cos4θ2

× tan(θ1 − θ2)(3tan(θ1 − θ2)tanθ2 − (1− tan2(θ1 − θ2)))
z3 = tan(θ1−θ2)

cos3θ2
z4 = tanθ2

z5 = y

This transformation is a local diffeomorphism around configurations for
which the angle between bodies are not equal to π

2 . In this new coordinates,
the kinematic model of the system has the following chained form:

ż1 = v1

ż2 = v2

ż3 = z2.v1

ż4 = z3.v1

ż5 = z4.v1

(8)

Notice that Sordalen generalizes this result by providing a conversion of the
car with an arbitrary number of trailers into a chained form [78].

Sinusoidal inputs: Let us consider the following inputs [86]:{
v1(t) = a0 + a1 sinωt
v2(t) = b0 + b1 cosωt+ b2 cos 2ωt+ b3 cos 3ωt (9)
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Let Zstart be a starting configuration. Equations (8) are integrable. Then
each zi(T ) can be computed from the five coordinates of Zstart and the six
parameters (a0, a1, b0, b1, b2, b3). For a given a1 6= 0 and a given configu-
ration Zstart, Tilbury et al show that the function computing Z(T ) from
(a0, b0, b1, b2, b3) is a C1 diffeomorphism at the origin; then the system is invert-
ible and the parameters (a0, b0, b1, b2, b3) can be computed from the coordinates
of two configurations Zstart and Zgoal. The system inversion can be done with
the help of any symbolic computation software. The corresponding sinusoidal
inputs steer the system from Zstart to Zgoal.

The shape of the path only depends on the parameter a1. Figure 4 from [71]
illustrates this dependence. Moreover the shape of the paths is not invariant
by rotation (i.e., it depends on the variables θstart and θgoal and not only on
the difference (θstart − θgoal)).

Fig. 4. Three paths solving the same problem with three values of a1: -30, 70,
110

Polynomial inputs: Another steering method is also proposed in [86]. The poly-
nomial inputs: {

v1(t) = 1
v2(t) = c0 + c1t+ c2t

2 + c3t
3 + c4t

4

steer the system from any configuration Zstart to any Zgoal verifying zgoal1 6=
zstart1 . In this case T should be equal to |zgoal1 − zstart1 |. As for the case of
the sinusoidal inputs, the system can be inverted by symbolic computation.
To reach configurations such that zgoal1 = zstart1 it is sufficient to choose an
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intermediate configuration respecting the inequality and to apply the steering
method twice.

Extensions: The previous steering methods deal with two-input chained form
systems. In [16] Bushnell, Tilbury and Sastry extend these results to three-input
nonholonomic systems with the fire-truck system as a canonical example9. They
give sufficient conditions to convert such a system to two-chain, single generator
chained forms. Then they show that multirate digital controls, sinusoidal inputs
and polynomial inputs may be used as steering methods.

4.4 Steering flat systems

The concept of flatness has been introduced by Fliess, Lévine, Martin and
Rouchon [26,63].

A flat system is a system such that there exists a finite set of variables yi
differentially independent which appear as differential functions of the system
variables (state variables and inputs) and of a finite number of their derivatives,
each system variable being itself a function of the yi’s and of a finite number
of their derivatives. The variables yi’s are called the linearizing outputs of the
system.

Example: In [63] Rouchon et al show that mobile robots with trailers are flat
as soon as the trailers are hitched to the middle point of the wheels of the
previous ones. The proof is based on the same idea allowing to transform the
system into a chained form: it consists in modeling the system by starting from
the last trailer.

Let us consider the system (6) (Figure 2, left). Let us denote the coordinates
of the robot and the two trailers by (x, y, θ), (x1, y1, θ1) and (x2, y2, θ2) respec-
tively. Remind that the distance between the reference points of the bodies is
1. The holonomic equations allow to compute x, y, x1 and y1 from x2, y2, θ1

and θ2:

x1 = x2 + cos θ2 x = x2 + cos θ2 + cos θ1

y1 = y2 + sin θ2 y = y2 + sin θ2 + sin θ1

The rolling without slipping conditions lead to three nonholonomic equations
ẋi sin θi − ẏi cos θi = 0 allowing to compute θ2 (resp. θ1 and θ) from (ẋ2, ẏ2)
(resp. (ẍ2, ÿ2) and (

...
x2,

...
y2)). Finally the controls v and ω are given by v = ẋ

cos θ

(or v = ẏ
sin θ ) and ω = θ̇.

Therefore any variable of the system can be computed from x2 and y2 and
their derivatives. The system is flat with x2 and y2 as linearizing outputs.
9 The fire-truck system is a car-like robot (two inputs) with one trailer whose direc-

tion of the wheels is controllable (third input).
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A steering method: Let us consider a path γ2 followed by the reference point
P2 of the second trailer (Figure 5). γ2 is parametrized by arc length s2. Let
us assume that γ2 is sufficiently smooth, i.e., d

ds2
P2 is defined everywhere and

the curvature κ2 can be differentiated at least once. The point P1 belongs to
the tangent to γ2 at P2 and P1 = P2 + τ2, with τ2 the unitary tangent vector
to γ2. Differentiating this relation w.r.t. s2 leads to d

ds2
P1 = τ2 + κ2ν2 with

ν2 the unitary vector orthogonal to τ2. The angle of the first trailer is then
θ1 = θ2 + atan(κ2). We then deduce the path γ1 followed by the first trailer.
Parametrizing γ1 with s1 defined by ds1 = (1 + κ2)

1
2 ds2 leads to

κ1 = (1 + κ2)−
1
2 (κ2 + (1 + κ2)−

1
2 )

d

ds2
κ2

Applying the same geometric construction from P1 we can compute the path
γ followed by the robot when the second trailer follows γ2. The only required
condition is the existence of d2

ds22
κ2; moreover the relative angles ϕ1 and ϕ2

should belong to ]− π
2 ,

π
2 [ (see [26] for details).

Two configurations Xstart and Xgoal being given, one computes geomet-
rically the values of κstart, κstart1 , κstart2 , κgoal, κgoal1 and κgoal2 ; each of them
being a function of κ2 and its derivative, it is straightforward to compute γ2

satisfying such initial and final conditions (e.g., by using polynomial curves).

P

P

P1

2

γ

γ γ21

Fig. 5. Geometric construction of P1 (resp. P ) path from P2 (resp. P1) path.

Remark: Because the curvature of γ2 should be defined everywhere, the method
can not provide any cusp point; nevertheless such points are required in some
situations like the parking task; in that case, Rouchon et al enter the cusp point
by hand [63]. We will see below how to overcome this difficulty.

Flatness conditions: In cite [64], Rouchon gives conditions to check whether
a system is flat. Among them there is a necessary and sufficient condition for
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two-input driftless systems: it regards the rank of the various vector space
∆k iteratively defined by ∆0 = span{f1, f2}, ∆1 = span{f1, f2, [f1, f2]} and
∆i+1 = ∆0 + [∆i,∆i] with [∆i,∆i] = span{[f, g] , f ∈ ∆i, g ∈ ∆i}. A system
with two inputs is flat iff rank(∆i) = 2 + i.

Let us apply this condition to the mobile robot system with two trailers.
According to the computations presented in Section 2.3:

– for the case shown in Figure 2 (left), we get:

rank(∆0) = 2, rank(∆1) = 3, rank(∆2) = 4 and rank(∆3) = 5

the system is flat.
– for the case shown in Figure 2 (right), we get:

rank(∆0) = 2, rank(∆1) = 3 and rank(∆2) = 5

the system is not flat.
– for the same case shown in Figure 2 (right) but with only one trailer, one

can check that:

rank(∆0) = 2, rank(∆1) = 3 and rank(∆2) = 4

the system is flat.

We have seen that the linearizing outputs in the first case are the coordinates
of the reference point of the second trailer. In the last case, the linearizing
outputs are more difficult to translate into geometric terms (see [63]). Notice
that there is no general method to compute the linearizing outputs when the
system is flat.

4.5 Steering with optimal control

Optimal length paths have been at the origin of the very first nonholonomic
motion planners for car-like mobile robots (see for instance [48,43] and below).
Nevertheless, today the only existing results allowing to compute optimal paths
for nonholonomic systems have been obtained for the car-like systems (see
Souères–Boissonnat’s Chapter). For general systems, the only possibility is to
call on numerical methods.

We sketch here the method developed by Fernandez, Li and Gurvitz in [24].
Let us consider a dynamical system: Ẋ = B(X)u together with a cost

function J =
∫ T

0
< u(τ), u(τ) > dτ . Both starting and goal configurations

being given, the optimization problem is to find the control law (if any) that
steers the system from the starting configuration to the goal in time T by
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minimizing the cost function J . The path corresponding to an optimal control
law is said to be an optimal path.

Let us consider a continuous and piecewise C1 control law u defined over
[0, T ]. We denote by ũ the periodic extension of u over R. We may write ũ in
terms of a Fourier basis:

ũ =
∞∑
k=0

(αkei
2kπt
T + βke

−i 2kπt
T )

We then approximate ũ by truncating its expansion up to some rank N .
The new control law û is then defined by N real numbers10 û =

∑N
k=1 αkek,

ek ∈ {ei
2pπ
T , p ∈ Z}. The choice of the reals αk being given, the point X(T )

reached after a time T with the control law û appears as a function f(α) from
RN to Rn.

Now, we get a new cost function

Ĵ(α) =
N∑
k=1

|αk|2 + γ‖X(T )−Xgoal‖2.

The new optimization problem becomes: for a fixed time T , an initial point
Xinit and a final point Xgoal , find α ∈ RN such as

Ĵ(α) =
N∑
k=1

|αk|2 + γ‖f(α)−Xgoal‖2

is minimum.
One proves (e.g., see [24]) that the solutions of the new finite-dimensional

problem converge to the solutions of the original problem as N and γ go to
infinity.

Because we do not know f and δf/δα explicitly we use numerical methods
(numerical integration of the differential equations and numerical optimization
like Newton’s algorithm) to compute a solution of the problem. Such a solution
is said to be a near-optimal solution of the original problem.

Figure 6 from [71] shows three examples of near-optimal paths computed
from this method for a mobile robot with two trailers [49].

5 Nonholonomic path planning for small-time
controllable systems

Consider the following steering method for a two-driving wheel mobile robot.
To go from the origin (0, 0, 0) to some configuration (x, y, θ) the robot first
10 This approximation restricts the family of the admissible control laws.
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Fig. 6. Three examples of near-optimal paths.

executes a pure rotation to the configuration (0, 0, atan yx ), then it moves along
a straight line segment to (x, y, atan yx ), and a final rotation steers it to the
goal. This simple method accounts for local controllability: any point in any
neighborhood of the origin can be reached by this sequence of three elementary
paths (when x = 0, replace atan yx by ±π2 ). Nevertheless such a method does
not account for small-time controllability. If the space is very constraint it does
not hold. Think to the parking task (Figure 17): the allowed mobile robot
orientations θ vary in some interval ]− η, η[. To go from (0, 0, 0) to (0, ε, 0) the
steering method violates necessarily this constraint.

Therefore, obstacle avoidance requires steering methods accounting for
small-time controllability. Such a requirement can be translated into geometric
terms.

5.1 Toward steering methods accounting for small-time
controllability

Let dCS be the following distance over the configuration space CS:

dCS(X1, X2) =
n∑
i=1

|x1
i − x2

i |

The set of configurations X2 such that dCS(X1, X2) < ε is denoted by B(X1, ε);
this is the ball centered at X1 with radius ε.

Let P be the set of feasible paths defined over an interval of the type [0, T ].
A steering function is a mapping from CS × CS into P:

(X1, X2)→ Steer(X1, X2)

where Steer(X1, X2) is defined over the interval [0, T ], such that
Steer(X1, X2)(0) = X1, Steer(X1, X2)(T ) = X2.
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Definition 2. Steer verifies the weak topological property iff:

∀ε > 0,∀X1 ∈ CS,∃η > 0,∀X2 ∈ CS, (10)

dCS(X1, X2) < η ⇒ ∀t ∈ [0, T ], dCS(Steer(X1, X2)(t), X1) < ε

By using a steering method that verifies the weak topological property,
it is possible to approximate any collision-free path γfree. Nevertheless, this
property is not sufficient from a computational point of view. Indeed, it is local:
the real number η depends on X1. Situations as shown in Figure 7 may appear:
let us consider a sequence of configurations Xi converging to the critical point
Xc, and such that limXi→Xc η(Xi) = 0; to be collision-free any admissible
path should necessary goes through the configuration Xc. The computation of
Xc may set numerical problems. To overcome this difficulty, we introduce a
stronger property for the steering methods.

c’
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c � � � �

c�
0

c’’
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free
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start

goal
X

X

Fig. 7. Weak topological property

Definition 3. Steer verifies the topological property iff:

∀ε > 0,∃η > 0,∀(X1, X2) ∈ (CS)2, (11)

dCS(X1, X2) < η ⇒ ∀t ∈ [0, T ], dCS(Steer(X1, X2)(t), X1) < ε

In this definition η does not depend on any configuration (Figure 8). This
is a global property that not only accounts for small-time controllability but
also holds uniformly everywhere.
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Fig. 8. Topological property

Remark 1: Proving that a given steering method verifies the topological prop-
erty is not an easy task. The following sufficient condition appears in [71,74].
Let us equip P with a metric dP between paths: Γ1 and Γ2 being two paths on
[0, 1], we define dP(Γ1, Γ2) = maxt∈[0,1] dCS(Γ1(t), Γ2(t)).

Let us consider a steering method Steer continuous w.r.t. to the topology
induced by dP . Steer is uniformly continuous on any compact set K included
in CS2, i.e.,

∀ε > 0 , ∃η > 0, ∀ {(X1, X2), (Y 1, Y 2)} ∈ K
dCS((X1, Y 1) < η and dCS((X2, Y 2) < η

=⇒ dP(Steer(X1, X2),Steer(Y 1, Y 2)) < ε

Choosing X2 = Y 1 = Y 2 we deduce:

∀ε > 0 , ∃η > 0, ∀(X1, X2) ∈ CS2

dCS(X1, X2) < η =⇒ dP(Steer(X1, X1),Steer(X1, X2)) < ε

Now, let us assume that Steer(X,X) = {X} at any point X. Then:

∀ε > 0 , ∃η > 0 ∀(X1, X2) ∈ CS2

dCS(X1, X2) < η =⇒ ∀t ∈ [0, 1], dCS(X1,Steer(X1, X2)(t)) < ε

Therefore a sufficient condition for a steering method Steer to verify the topo-
logical property is that (1) Steer is continuous w.r.t. the topology associated
with dP and (2) the path Steer(X,X) is reduced to the point X. Notice that
the second condition is obviously a necessary condition.
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Remark 2: The first general result taking into account the necessary uniform
convergence of steering methods is due to Sussmann and Liu [84]: the authors
propose an algorithm providing a sequence of feasible paths that uniformly con-
verge to any given path. This guarantees that one can choose a feasible path
arbitrarily close to a given collision-free path. The method uses high frequency
sinusoidal inputs. Though this approach is general, it is quite hard to imple-
ment in practice. In [87], Tilbury et al exploit the idea for a mobile robot with
two trailers. Nevertheless, experimental results show that the approach cannot
be applied in practice, mainly because the paths are highly oscillatory. There-
fore this method has never been connected to a geometric planner in order to
get a global planner which would take into account both environmental and
kinematic constraints.

5.2 Steering methods and topological property

In this section we review the steering methods of Section 4 with respect to the
topological property.

Optimal paths Let us denote by Steeropt the steering method using optimal
control. Steeropt naturally verifies the weak topological property. Indeed the
cost of the optimal paths induce a special metric in the configuration space;
such a metric is said to be a nonholonomic [92], or singular [14], or Carnot-
Caratheory [56], or sub-Riemannian [80] metric. By definition any optimal path
with cost r does not escape the nonholonomic ball centered at the starting
point with radius r. A general result states that the nonholonomic metrics
induce the same topology as the “natural” metrics dCS . This means that for
any nonholonomic ball Bnh(X, r) with radius r, there are two real numbers ε
and η strictly positive such that B(X, η) ⊂ Bnh(X, r) ⊂ B(X, ε).

The nonholonomic distance being continuous, to get the topological prop-
erty, it suffices to restrict the application of Steeropt to a compact domain of
the configuration space11.

There is no general result that gives the exact shape of the nonholonomic
balls; nevertheless the approximated shape of these balls is well understood
(e.g., see Belläıche–Jean–Risler’s chapter).

The metric induced by the length of the shortest paths for Reeds&Shepp’s
car is close to a nonholonomic metric; car-like robots are the only known cases
where it is possible to compute the exact shape of the balls (see Figure 1).

11 Notice that the steering method Steeropt is not necessarily continuous w.r.t. the
topology induced by dP .
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Sinusoidal inputs and chained form systems Let us consider the two-
input chained form system (8) together with the sinusoidal inputs (9) presented
in Section 4.3. We have seen that the shape of the paths depends on a1 (Fig-
ure 4). The only constraint on the choice of a1 is that it should be different
from zero.

The steering method using such inputs is denoted by Steera1
sin. For a fixed

value of a1, Steera1
sin does not verify the topological property. Indeed, for any

configuration Z, the path Steera1
sin(Z,Z) is not reduced to a point12.

Therefore, the only way to build a steering method based on sinusoidal
inputs and verifying the topological property is not to keep a1 constant. One
has to prove the existence of a continuous expression of a1(Z1, Z2) such that:

lim
Z2→Z1

a1(Z1, Z2) = 0

lim
Z2→Z1

a0(Z1, Z2, a1(Z1, Z2)) = 0

lim
Z2→Z1

bi(Z1, Z2, a1(Z1, Z2)) = 0

The proof appears in [73]. It first states that, for a fixed value of a1,
Steera1

sin is continuous w.r.t. to the topology induced by dP . This implies that
when the final configuration Z2 tends to the initial configuration Z1, the
path Steera1

sin(Z1, Z2) tends to the path Steera1
sin(Z1, Z1). Moreover, for any

Z, Steera1
sin(Z,Z) tends to {Z} when a1 tends to zero. Combining these two

statements and restricting the application of Steera1
sin to a compact domain K

of CS2, one may conclude that:

∀ε > 0 , ∃A1 > 0 ∀a1 < A1, ∃η(a1), ∀(Z1, Z2) ∈ K,

dCS(Z1, Z2) < η(a1), =⇒ ∀t ∈ [0, 1], dCS(Z1,Steera1
sin(Z1, Z2)(t)) < ε

Then, by tuning a1, it is a priori possible to design a steering method
Steersin based on sinusoidal inputs and verifying the topological property. It
remains to define a constructive way to tune the parameter a1. The problem is
not easy. Indeed the general expression of parameters a0 and bi are unknown.
Then we do not dispose of a unique expression of Steersin. Nevertheless, it is
possible to “simulate” a steering method verifying the topological property, by
switching between different Steera1

sin according to the distance between the start
and goal configurations. The principle of the construction presented in Annex
consists in introducing the possibility to iteratively compute subgoals and then
a sequence of subpaths that reaches the final goal without escaping a bounded
domain.

12 The first coordinate of points lying on the path is z1(t) = z1 + a1
ω

(1− cosωt).
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A flatness based steering method for mobile robots with trailers We
have seen in Section 4.4 that a mobile robot with two trailers (with centered
hooking up system) is flat with the coordinates (x2, y2) of the second trailer
reference point P2 as linearizing outputs. Planning an admissible path for the
system then consists in finding a sufficiently smooth planar curve γ2(s) for
P2. All the coordinates (x, y, θ, ϕ1, ϕ2) of a configuration can be geometrically
deduced from (x2, y2, θ2, κ2,

d
ds2

κ2). Nevertheless this steering method cannot
verify the topological properties. Indeed, due to the conditions on γ2 (absence of
cusp points), going from a configuration (x2, y2, θ2, . , . ) to some configuration
(x2, y2 + ε, θ2, . , . ) should necessarily contain a configuration ( . , . , θ2 ±
π
2 , . , . ).

[74] takes advantage of the flatness property of a mobile robot with one
trailer to design a steering method verifying the topological property. [41] gen-
eralizes the method to a system with n trailers. Let us sketch the method for
a mobile robot with two trailers.

Let us consider a configuration X = (x, y, θ, ϕ1, ϕ2) of the system. If Γ is an
admissible path in the configuration space, we will denote by γ2 the curve in R2

followed by P2. Among all the admissible paths containing a configuration X,
there exists exactly one path Γ such that d

ds2
κ2 remains constant everywhere:

the corresponding curve γ2 is a clothoid13.
Let Xstart and Xgoal be the initial and goal configurations respectively.

Let γ2,start and γ2,goal be the associated clothoids defined on [0, 1] and such
that Γstart(0) = Xstart and Γgoal(1) = Xgoal. Then any combination γ(t) =
α(t)γ2,start(t) + (1 − α(t))γ2,goal(t) is a C3 path; it then corresponds to an
admissible path for the whole system. To make this path starting at Xstart

and ending at Xgoal, α should verify: α(0) = α̇(0) = α̈(0) =
...
α (0) = α̇(1) =

α̈(1) =
...
α (1) = 0 and α(1) = 1 (indeed, the three first derivatives of γ should

be the same as those of γ2,start at 0 and the same as those of γ2,goal at 1).
At this level we get a steering method (denoted by Steer∗flat) that allows

the mobile robot with its two trailers to reach any configuration from any
other one. Nevertheless, this method does not verify the required topological
property: indeed it cannot generate cusps and the steering method we want to
provide should be able to do it when it is necessary.

Let Xstart be an initial configuration and γ2,start, the corresponding
clothoid in R2. In [41] we prove that, for any ε > 0, if we choose a configuration
X within a ”cone” Cstart,ε centered around Γstart with vertex Xstart (see Figure
9), then the path Steer∗flat(X

start, q) does not escape the ball B(Xstart, ε).
Moreover, if Xstart moves within a small open set, the clothoid γ2,start is

submitted to a continuous deformation: for instance a change on the coordinates

13 If we consider only one trailer, we impose κ1 to remain constant; in this case the
trailer follows a circle with radius `.cotanϕ1
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(x2, y2) (respectively θ2) of Xstart corresponds to a translation (respectively ro-
tation) of the clothoid γ2,start. Then for a small deformation, the corresponding
path in the configuration space necessarily intersects Cstart,ε.

Let us now consider a configuration Xgoal sufficiently close to Xstart. The
local planner Steerflat then works as follows:

– If Xgoal belongs to Cstart,ε, Steerflat(Xstart, Xgoal) =
Steer∗flat(X

start, Xgoal)
– otherwise, we choose a point Xcusp on γ2,goal within Cstart,ε and

Steerflat(Xstart, Xgoal) is constituted by Steer∗flat(X
start, Xcusp) followed

by the arc of the clothoid γ2,goal between Xcusp and Xgoal.

With this construction Steerflat(Xstart, Xgoal) is guaranteed to remain
within the ball B(Xstart, ε) (Figure 9).

cusp

X
goal

X
start

2,start
γ

2,goal
γ

B(X   ,    )
start

η

B(X   ,   )ε
start

X

Fig. 9. Topological property of Steerflat.

Figure 10 shows an example of the path generated by Steerflat.
Figures 11 shows paths computed by Steerflat for a mobile robot with one

trailer (the curve is the path followed by the robot).
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Fig. 10. An admissible path for a mobile robot with 2 trailers

5.3 Approximating holonomic paths: a two step approach

Principle Everything being in place, we may now define a first nonholonomic
path planning scheme for small-time controllable systems. It consists in ap-
proximating a collision-free (holonomic) path by a sequence of collision-free
admissible ones. Applying this scheme requires three main components:

– A geometric path planner that computes collision-free paths without taking
into account the kinematic constraints.

– A steering method verifying the topological property.
– A geometric routine checking whether a given path is collision-free or not.

Fig. 11. Admissible paths computed by Steerflat for a mobile robot with one
trailer
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The algorithm itself is then very simple:

1. Step 1: Plan a collision-free path with the geometric path planner. If no
such path exists, the algorithm stops: there is no solution.

2. Step 2: Perform subdivisions on the path until all endpoints can be linked
to their neighbors by an admissible collision-free path.

Convergence and completeness: By Theorem 3.1, the convergence of Step 2 is
guaranteed as soon as the steering method verifies the topological property.
Then the completeness of the algorithm only depends on the completeness of
the geometric planner that computes a first collision-free path14.

Geometric planner: There are no general and practical algorithm solving the
classical “piano mover” problem with completeness property15. Numerous tech-
niques are available to address dedicated problems [42]. Moreover new general
principles appeared in the past few years. Among them one should notice the
“distributed representation approach” [5] that leads to resolution-complete al-
gorithms (such algorithms are guaranteed to find a solution when a solution
exists at a given resolution when modeling the search space by a grid). Another
notion is related to the behavior of probabilistic algorithms: an algorithm is
said to be probabilistically complete if it includes random choices and if it is
guaranteed to find a solution in finite (possibly unbounded) time when a so-
lution exists; such algorithms cannot terminate with a negative answer on the
existence of a solution. Nevertheless resolution and probabilistically complete
algorithms are well understood [8] and they lead today to fast and practical
motion geometric planners even for highly dimensionated systems.

Smoothing step: Step 2 provides a sequence of elementary admissible paths
computed by the chosen steering method. The length of the sequence mainly
depends on the clearance of the first collision-free path: the closer to the obsta-
cles the path is, the more it should be subdivided. The sequence may be shorten
in a third step by applying the steering method to link randomly chosen pairs
of points lying on the first solution path. Unfortunately there is today no result
insuring the convergence of this third step to any “optimal” sequence.

Several nonholonomic path planners have been designed in this way. Here
is a review of the main ones.
14 An algorithm is complete if it is guaranteed to report a negative answer when a

solution does not exist and to compute a solution otherwise.
15 General algorithms have been provided within the framework of real algebraic ge-

ometry [69,18]; nevertheless the performance of the existing algebraic computing
software and the intrinsic computational complexity of the general problem do not
allow effective implementations of these algorithms.
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Application to mobile robots (without trailer) The seminal ideas of the
algorithm above have been introduced in [48]. This reference deals with car-like
robots. When the robot is a polygon, the geometric planner is derived from the
algorithm based on an analytical representation of the configuration space of
a polygon moving amidst polygonal obstacles [4]. When the robot is a disk,
the geometric planner works from the Voronoi diagram of the environment.
In both cases, the steering method is Steeropt: it consists in computing the
shortest length admissible paths for a car-like robot as characterized in [65].
Due to the completeness of the geometric planners the proposed algorithms are
complete. Nevertheless they are delicate to implement and fragile in practice
(indeed the basic geometric routines are sensitive to numerical computations; a
robust implementation could be done by using software computing with rational
numbers).

Another version of this algorithm appears in [43] where the geometric plan-
ner has been replaced by a distributed representation approach; the search
consists in exploring the discretized configuration space with an A∗ algorithm
heuristically guided by a potential function. It is then resolution-complete, less
fragile than the original version, and sufficiently efficient to be integrated on
real robots. Figure 12 shows an example of a solution from a software developed
for the mobile robots Hilare at LAAS.

Fig. 12. A planned path for a car-like robot: the workspace is modeled by a
grid of 250× 150 pixels; the total running of the algorithm is 2 seconds on an
Indy Silicon Graphics.

A clever idea appears in [55]. It tends to minimize the length of the short-
est path sequence approximating the geometric path. It consists in computing



34 J.P. Laumond, S. Sekhavat and F. Lamiraux

a skeleton gathering the set of points with maximum clearance with respect
to the obstacles. The key point is that the clearance is measured with the
metric induced by the length of the shortest admissible paths (the so-called
Reeds&Shepp metric). Then the geometric planner works by retracting the ini-
tial and goal configurations on the skeleton and by exploring it. Even if one
cannot conclude to any optimality of the solution, the sequence of shortest paths
provided the approximation step is shorter than a sequence approximating a
path that would lie closer to the obstacles. A critical point of the approach is
the computation of the metric. The distance between two configurations being
invariant by translation and rotation, the authors use a lookup table storing
all the distance value over a discretized compact region around the origin. This
table is computed off-line once and may be used to compute the skeleton of
various environments.

Recent results derived from the synthesis of the shortest paths for a car-
like robot (see above and Souères–Boissonnat’s Chapter) provide an analyti-
cal way to compute the shortest path distance to a polygonal obstacle for a
point car-like robot [91]. This means that all the distance computations in the
Reeds&Shepp metric can be done on-line. This property has been exploited
to include dynamic obstacle avoidance when the robot executes its trajectory.
Figure 13 from [38] shows an example of on-line updating of an admissible path
when an unexpected obstacle (the black box) occurs during the execution of
the motion. The various balls covering the path in the figure are the projection
onto R2 of the maximal collision-free Reeds&Shepp balls covering the path in
the configuration space. Up to now, the distance function are known for a point
robot; its extension to a polygonal robot has to be done.

© Oper © Oper

Fig. 13. A planned path is updated in real-time when an unexpected moving
obstacle occurs.
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The case of mobile robots with trailers The case of mobile robots with
n trailers has been solved by using RPP as geometric planner and the three
steering methods Steeropt, Steersin (for n = 1 and n = 2) and Steerflat (for
n = 1) [71].

To compute a collision-free path we use the algorithm RPP, the random
path planner presented in [5]. We consider n+1 control points: two are located
on the robot and one is located on each trailer. The start configuration and
the goal being given, a potential field is computed for each control point in the
workspace16; the n+ 1 potential fields are then combined to create a potential
field in the configuration space; the search consists in following the gradient of
the potential; when it stops at some local minimum, the algorithm generates
a random path and follows again the gradient until the goal is reached. The
algorithm is probabilistically complete.

From the various experiments reported in [71], it appears that the the algo-
rithm based on Steersin is much faster than the algorithm based on Steeropt (in
terms of computation time) for a mobile robot with one or two trailers. For a
mobile robot with one trailer the computation time are roughly the same when
using Steerflat and Steersin; nevertheless the smoothness of the final path is
better with Steerflat than with Steersin.

In the examples on Figures 14 and 15 the workspace is modeled by a grid
of 600× 470 pixels.

Fig. 14. Solutions using Steersin: the total computation time is 30 seconds
(left) and 114 seconds (right) on a Sun-Sparc-20.

16 The potential field are computed from a bitmap representation of the workspace.
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Fig. 15. Solutions using Steerflat: the total computation time is 21 seconds
(left) and 6 seconds (right) on a Sun-Sparc-20.

5.4 Probabilistic approaches

Svestka–Overmars’ chapter reviews recent results provided by applying a new
general paradigm in motion planning. This is a probabilistic approach consist-
ing in two phases:

– In a first learning phase an incremental roadmap is built by randomly
choosing collision-free configurations and by linking them with admissible
paths. Admissible paths are computed with a (not necessarily complete)
local path planner.

– In the query phase, paths are to be found between some given start and goal
configurations. The local path planner is used to connect the configurations
to some nodes of the roadmap. If this succeeds, a graph search is performed.

As for the approach using a holonomic path approximation, the algorithm
includes a last step consisting in smoothing the computed solution.

Such a scheme applies for nonholonomic systems as soon as the local path
planner is a steering method verifying the topological property. The algorithm
is probabilistically complete. It has been applied to mobile robots with trailers
on the basis of Steersin [70]. An analysis of the approach together with practical
results are overviewed in Svestka–Overmars’ chapter.
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5.5 An approach using optimization techniques

At the same time, a slightly different approach has been proposed by Bessière
et al [12]. Its principle consists in exploring the free space from the initial
configuration along admissible paths by spreading landmarks, each being as
far as possible from one another. In parallel, a local path planner checks if the
target may be reached from each new landmark. Both phases are solved by using
optimisation techniques (e.g., genetic algorithms). This general paradigm has
been applied to nonholonomic mobile robots in [3] by using the Steersin as local
path planner. Because Steersin verifies the topological property the algorithm
may be proved to be complete as soon as the convergence the optimization
routines is guaranteed.

5.6 A multi-level approach

It remains that the computational cost of the nonholonomic path planners in-
creases with the dimension of the systems. Facing the intrinsic complexity of
the problem for practical applications requires a good understanding of the
kinematic structures of the systems as well as a good experience in evaluat-
ing the performance of a given planning scheme. [70] presents a multi-level
nonholonomic path planner.

Let us illustrate the idea from a car-like robot pulling two trailers: from
the collision avoidance point of view the system is of dimension five (three
parameters for the car and one parameter for each trailer); from the control
point of view the direction of the front wheels of the car is taken into account:
the system is then six-dimensionated.

The underlying idea consists in introducing the nonholonomic constraints of
the bodies iteratively. In a first step one plans a “semi-holonomic” path feasible
by the car, but not necessarily by the trailers (i.e. at this step the trailers are
assumed to be holonomic). Then the nonholonomic constraint due to the first
trailer is introduced: this step consists in searching a path feasible by both the
car and the first trailer. Finally, all the kinematic constraints are taken into
account.

Each step should benefit from the path computed by the previous one, via
a specific nonholonomic motion planner. In [70], the first semi-holonomic path
is computed with a probabilistic approach that considers only the kinematic
constraints of the car. Then a probabilistic search using Steersin is applied
within a tube surrounding the path; it provides a second semi-holonomic path
that takes into account the first three kinematic constraints. Finally the second
path is approximated via Steersin accounting for all the constraints. The global
algorithm is then based on a combination of the holonomic path approximation
scheme and the probabilistic one.
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Three examples of solutions provided by the algorithm appear in Fig-
ure 16: the left column shows the first “semi-holonomic” paths (the two trailers
“slide”); the right column shows the corresponding final paths. The total time
to compute the solutions ranges from less than one minute for the first example
to around three minutes for the third one, on a 136 MIPS workstation.

5.7 On the computational complexity of nonholonomic path
planning

Evaluating the computational complexity of the approaches introduced above
is a difficult task. More generally, the complexity of the nonholonomic path
planning problem is an open problem.

For small-time controllable systems, we have seen that the existence of
a solution is characterized by the existence of any collision-free path for the
associated holonomic system. The complexity of deciding whether a solution
exists is then equivalent to the complexity of the classical piano mover problem
(see [42] for an overview). The complexity for other systems (e.g., with drift)
is an open problem.

In this section we give an account of results providing lower bounds on the
complexity of nonholonomic paths for small-time controllable mobile robots.
By reference to the approximation scheme, we may define the complexity of
a collision-free nonholonomic path by the length of the sequence of admissi-
ble paths approximating a holonomic one. This definition depends a priori on
the steering method used to approximate a holonomic path. A more intrinsic
definition consists in considering the approximation scheme that uses Steeropt.
Indeed the cost of the optimal paths induces a (nonholonomic) metric in the
configuration space. A possible definition of the complexity of a path is the
minimum number of balls computed with the nonholonomic metric and cover-
ing the path. For instance the complexity of the paths appearing in Figure 13 is
7 in both cases. This definition allows to link the complexity of nonholonomic
path planning with the clearance of the free-space.
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Fig. 16. Examples of solutions computed by the multi-level approach (the left
column shows the first “semi-holonomic” paths)
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Let us consider the classical parking task problem illustrated in Figure 17
for a car-like robot. The solutions have been computed by the algorithm pre-
sented in Section 15. The steering method to approximate the holonomic path
is Steeropt which computes Reeds&Shepp’s shortest paths. The length of the
shortest paths induces a metric dRS in configuration space. The shape of the
balls computed with this metric appears in Figure 1 (top). Let us consider a
configuration X = (x, y, θ) near the origin O. It has been proved in [48] that:

1
3

(|x|+ |y| 12 + |θ|) ≤ dRS(O,X) ≤ 12(|x|+ |y| 12 + |θ|)

As a consequence, the number of balls required to cover the “corridor” where
the car has to be parked varies as ε−2 with ε being the width of the corridor.
Moreover each elementary shortest path providing a motion in the direction of
the wheel axis requires exactly two cusps. Then the number of maneuvers to
park a car is in Ω(ε−2).

Fig. 17. The number of maneuvers varies as the inverse of the square of the
free space.

Such a reasoning may be generalized to small-time controllable systems.
Let us consider a control system defined by a set of vector fields; let us assume
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that the tangent space at every point can be spanned by a finite family of these
vector fields together with their Lie brackets (i.e., the system verifies the LARC
at every point). The minimal length of the Lie bracket required to span the
tangent space at a point is said to be the degree of nonholonomy of the system
at this point.

The cost of the optimal paths induces a metric in the configuration space of
the system. A ball of radius r corresponding to this metric is the set of all the
points in the configuration space reachable by a path of cost lesser than r. The
balls grow faster in the directions given by the vector fields directly controlled
than in the directions defined by the Lie brackets of these vector fields. A
powerful result from sub-Riemannian geometry shows that the growing law
depends on the degree of bracketing (see [9,29,92,56] or Belläıche–Jean–Risler’s
chapter): when r is small enough, the ball grows as r in the directions directly
controlled; it grows as rd in the directions spanned by Lie brackets of length d.
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Fig. 18. The complexity of admissible paths for a mobile robot with n trailers
are respectively Ω(ε−n−2) (case on the left side) and Ω(ε−Fib(n+3)) (case on
the right side).

Figure 18 illustrates this complexity modeling on a mobile robot with two
trailers. We have seen in Section 2.3 that the degree of nonholonomy of this
system is 4 when ϕ1 6= π

2 (regular points) and 5 everywhere else. This means
that the complexity of the parking task is in Ω(ε−4) while the complexity of
the exotic example on the right side (the mobile robot can not escape from the
room . . . ) is in Ω(ε−5). These worst case examples may be generalized to an
arbitrary number of trailers: the degree of nonholonomy for a mobile robot with
n trailers has been proved to be n+2 at regular points and Fib(n+3) when all
the relative angles of the trailers are π

2 [54,36] (Fib(n+3) is the (n+3)th number
of the famous sequence of Fibonacci defined by Fib(i+2) = Fib(i+1)+Fib(i),
i.e., 1, 1, 2, 3, 5, 8, 13 . . . ). This means that the complexity of the problems
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appearing in Figure 18 and generalized to n trailers are respectively Ω(ε−n−2)
(simply exponential in n) and Ω(ε−Fib(n+3)) (doubly exponential in n).

6 Other approaches, other systems

This section overviews other works related to nonholonomic path planning
for mobile robots. They deal either with direct approaches based on dynamic
programming techniques, or with specific systems.

Combining discrete configuration space and piece-wise constant inputs: Bar-
raquand and Latombe propose in [6,7] a direct approach to nonholonomic path
planning. It applies to car-like robots with trailers. The model of the car cor-
responds to the control system (4) introduced in Section 2.2. Four input types
are chosen in {−1, 1} × {ζmin, ζmax}; they correspond to backward or forward
motions with an extremal steering angle. The admissible paths are generated
by a sequence of these constant inputs, each of them being applied over a fixed
interval of time δt. Starting from the initial configuration the search generates
a tree: the successors of a given configuration X are obtained by setting the
input to one of the four values and integrating the differential system over δt.
The configuration space is discretized into an array of cells of equal size (i.e.
hyperparallelepipeds). A successor X ′ of a configuration X is inserted in the
search tree if and only if the computed path from X to X ′ is collision-free and
X ′ does not belong to a cell containing an already generated configuration. The
algorithm stops when it generates a configuration belonging to the same cell
as the goal (i.e., it does not necessarily reach the goal exactly).

The algorithm is proved to be asymptotically complete w.r.t. to both δt and
the size of the cells. As a brute force method, it remains quite time-consuming
in practice. Its main interest is that the search is based on Dijkstra’s algorithm
which allows to take into account optimality criteria such that the path length
or the number of reversals. Asymptotical optimality to generate the minimum
of reversals is proved for the car-like robot alone.

Progressive constraints: In [23] Ferbach combines the two step approach pre-
sented in Section 5.3 and a so-called variational approach. It applies for small-
time controllable system. First, a collision-free path is generated. Then the
nonholonomic constraints are introduced progressively. At each iteration, a
path is generated from the previous one to satisfy more severe nonholonomic
constraints. The search explores the neighborhood of the current path accord-
ing to a dynamic programming procedure. The progressiveness of the search
is obtained by taking random tangent vectors chosen in neighborhoods of the
admissible ones and by making these neighborhoods decreasing to the set of
admissible tangent vectors.
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The method is neither complete nor asymptotically complete. Completeness
would require back-tracking that would be expensive. Nevertheless simulations
have been performed with success for a mobile robot with three trailers and
for two tractor-trailer robots sharing the same environment.

Car-like robots moving forward: After the pioneering work of Dubins who char-
acterized the shortest paths for a particle moving with bounded curvature [22],
attempts have been done to attack the path planning for car-like robots moving
only forward. Except some algorithms that do not verify any general complete-
ness properties (e.g., [45,89,94]), they are only few results addressing the gen-
eral problem. All of them assume that the robot is reduced to a point. In [27],
Fortune and Wilfong propose an algorithm running in exponential time and
space to decide if a path exists; the algorithm does not generate the solution.
Jacobs and Canny’s algorithm [34] is a provably good approximation algorithm
that generates a sequence of elementary feasible paths linking configurations
in contact with the obstacles. According to the resolution of a contact space
discretization, the algorithm is proved to compute a path which is as close as
possible to the minimal length path. More recent results solve the problem ex-
actly when the obstacles are bounded by curves corresponding to admissible
paths (i.e., the so-called moderate obstacles) [2,13].

Nonholonomic path planning for Dubins’ car then remains a difficult and
open problem17.

Multiple mobile robots: Nonholonomic path planning for the coordination of
multiple mobiles robots sharing the same environment has been addressed along
two main axis: centralized and decentralized approaches18.

In the centralized approaches the search is performed within the Cartesian
product of the configuration spaces of all the robots. While the problem is
PSPACE-complete [32], recent results by Svestka and Overmars show that it
is possible to design planners which are efficient in practice (until five mobile
robots) while being probabilistically complete [85]: the underlying idea of the
algorithm is to compute a probabilistic roadmap constituted by elementary
(nonholonomic) paths admissible for all the robots considered separately; then
the coordination of the robots is performed by exploring the Cartesian product
of the roadmaps. The more dense is the initial roadmap, the higher is the
probability to find a solution in very cluttered environments.

In [1], Alami reports experiments involving ten mobile robots on the basis of
a fully decentralized approach: each robot builds and executes its own plan by
17 Notice that Barraquand and Latombe’s algorithm [6] may be applied to provide an

approximated solution of the problem.
18 We refer the reader to Svestka–Overmars’ chapter for a more detailed overview on

this topic.
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merging it into a set of already coordinated plans involving other robots. In such
a context, planning is performed in parallel with plan execution. At any time,
robots exchange information about their current state and their current paths.
Geometric computations provide the required synchronization along the paths.
If the approach is not complete (as a decentralized schemes), it is sufficiently
well grounded to detect deadlocks. Such deadlocks usually involve only few
robots among the fleet; then they may be overcome by applying a centralized
approach locally.

7 Conclusions

The algorithmic tools presented in this chapter show that the research in motion
planning for mobile robots reaches today a level of maturity that allows their
transfer on real platforms facing difficult motion tasks.

Numerous challenging questions remain open at a formal level. First of all,
there is no nonholonomic path planner working for any small-time controllable
system. The case of the mobile robot with trailers shown in Figure 2 (right) is
the simplest canonical example which can conduce new developments. A second
issue is path planning for controllable and not small-time controllable systems;
Dubins’ car appears as another canonical example illustrating the difficulty of
the research on nonhonomic systems. Souères–Boissonnat’s chapter emphasizes
on recent results dealing with the computation of optimal controls for car-like
robots; it appears that extending these tools to simple systems like two-driving
wheel mobile robots is today out of reach.

Perhaps the most exciting issues come from practical applications. The mo-
tion of the robot should be performed in the physical world. The gap between
the world modeling and the real world is critical. Usually, path planning as-
sumes a two-steps approach consisting in planning a path and then executing
it via feedback control. This assumption holds under the condition that the
geometric model of the environment is accurate and that the robot’s Cartesian
coordinates are directly and exactly measured. Designing a control law that
executes a planed path defined in a robot centered frame may be sufficient in
manufacturing applications; it is not when dealing with applications such as
mobile robot outdoor navigation for instance. In practice, the geometric model
of the world and the localisation of the robot should be often performed through
the use of embarked extereoceptive sensors (ultrasonic proximeters, infrared or
laser range finder, laser or video cameras . . . ).

Uncertainties and sensor-based motions are certainly the two main key-
words to be considered to reach the ultimate objectives of the motion plan-
ning. Addressing these issues requires to revisit the motion planning problem
statement: the problem is to plan not a robot-centered path but a sequence of
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sensor-based motions that guaranty the convergence to the goal. The solution is
no more given by a simple search in the collision-free configuration space. This
way is explored in manufacturing applications for several years; it is difficult in
mobile robotics where nonholonomy adds another difficulty degree.
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Annex: Sinusoidal inputs and obstacle avoidance
(comments on the tuning of a1)

As we have seen in Section 11, we do not dispose of a unique expression of
Steersin verifying the topological property. In this annex we show that it is
possible to switch between different Steera1

sin to integrate such a steering method
within a general nonholonomic path planning scheme.

Let us consider the two input chained form system (8) introduced in Sec-
tion 4.3:



ż1 = v1

ż2 = v2

ż3 = z2.v1

... =
...

żn = zn−1.v1

Steera1
sin is defined by:{
v1(t) = a0 + a1 sinωt
v2(t) = b0 + b1 cosωt+ b2 cos 2ωt+ . . . bn−2 cos(n− 2)ωt

We have proved that for a given a1 small enough, the maximal gap between
Zstart and the path Steera1

sin(Zstart, Zgoal) decreases when Zgoal tends to Zstart.
But this gap do not tends to zero. In other words, for a fixed value of a1,
trying to reach closer configurations on the geometric path decreases the risk
of collision but does not eliminate it. Moreover to tend this gap to zero we have
also to decrease |a1|. But these two decreasings are not independent. Indeed,
by changing the value of a1 we change the steering method Steera1

sin and so we
change the family of the paths. For a given couple of extremal configurations,
a decreasing of a1 increases in most of the cases the extremal gap between
the start point and the path. In other words, in order to reduce the risk of
collision we have to choose close goal configurations but we also have to reduce
a1. Which in turn increase again the clearance between the path and the start
point. So we have again to bring the goal closer . . . If the decreasing of |a1| is
too fast with respect to the one of the distance between the start configuration
and the current goal, the approximation algorithm will not converge.

A strategy for tuning these two decreasings can be integrated in the approx-
imation algorithm (Section 5.3) while respecting its completeness. The follow-
ing approach has been implemented; it is described with details in [72,71]. It is
based on a lemma giving an account of the distance between a path generated
by Steera1

sin and its starting point Z0. Let us denote zi(t)− z0
i by δi(t).
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Lemma 7.1. For any path computed by Steera1
sin, for any t ∈ [0, T ] :

|δ1(t)| ≤ |a0T |+ |a1T | = ∆1

|δ2(t)| ≤
∑
|biT | = ∆2

|δk+1(t)| ≤ |z0
k|∆1 + . . .+ |z0

3 |∆k−2
1 + (|z0

2 |+∆2)∆k−1
1 withk > 2

(12)

Proof: By definition δ̇1(t) = a0 + a1 sinωt. Then:

|δ1(t)| ≤
∫ t

0

|δ̇1(τ)|dτ ≤
∫ t

0

(|a0|+ |a1|) dτ ≤ |a0T |+ |a1T |

By setting ∆1 = |a0T | + |a1T | we have the intermediate result that for all t,∫ t
0
|δ̇1(τ)|dτ ≤ ∆1. The same reasoning holds to prove that |δ2(t)| ≤

∑
|biT |.

Now, for any k > 2:

δk+1(t) =
∫ t

0

zk(τ)ż1(τ) dτ =
∫ t

0

δk(τ)ż1(τ) dτ + z0
k

∫ t

0

ż1(τ) dτ

An upper bound ∆k on |δk(t)| being given, we get:

|δk+1(t)| ≤ ∆k

∫ t

0

|ż1(τ)| dτ + |z0
k|
∫ t

0

|ż1(τ)| dτ ≤ (∆k + |z0
k|)∆1

Then
∆k+1 ≤ (∆k + |z0

k|)∆1

And by recurrence:

|δk+1(t)| ≤ |z0
k|∆1 + . . .+ |z0

3 |∆k−2
1 + (|z0

2 |+∆2)∆k−1
1 2

Given a start configuration Zstart, we first fix the value of a1 and two other
parameters ∆min

1 and ∆min
2 to some arbitrary values (see [71] for details on

initialization). Then we choose a goal configuration on the straight line segment
[Zstart, Zgoal] (or on any collision-free path linking Zstart and Zgoal]) closer
and closer to Zstart. This operation decreases the parameters a0, b0, . . . , bn so
it decreases ∆1 and ∆2 (the detailed proof of this statement appears in [71,74]).
We continue to bring the goal closer to the initial configuration until a collision-
free path is found or until ∆1 ≤ ∆min

1 and ∆2 ≤ ∆min
2 . In the second case, we

substitute a1, ∆min
1 and ∆min

2 respectively by k.a1, k.∆min
1 and k.∆min

2 , with
k < 1 and we start the above operations again. The new starting path may or
may not go further away from Zstart than the previous one but in any case,
from equations (12) we have the guarantee that following this strategy, the
computed path will lie closer and closer to Zstart. We have then the guarantee
of finding a collision-free path.
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63. P. Rouchon, M. Fliess, J. Lévine and P. Martin, “Flatness and motion planning:
the car with n trailers,” European Control Conference. pp. 1518–1522, 1993.

64. P. Rouchon, “Necessary condition and genericity of dynamic feedback lineariza-
tion,” in J. Math. Systems Estimation Control, Vol. 4 (2), 1994.

65. J. A. Reeds and R. A. Shepp, “Optimal paths for a car that goes both forward
and backwards,” Pacific Journal of Mathematics, 145 (2), pp. 367–393, 1990.

66. J. Reif and H. Wang, “Non-uniform discretization approximations for kinody-
namic motion planning and its applications,” Algorithms for Robotic Motion
and Manipulation, WAFR’96, J.P. Laumond and M. Overmars Eds, A.K. Pe-
ters, 1997.

67. M. Renaud and J.Y. Fourquet, “Time-optimal motions of robot manipulators in-
cluding dynamics,” The Robotics Review 2, O. Khatib, J.J. Craig and T. Lozano-
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