Max-Plus Linear Approximations for Deterministic Continuous-State Markov Decision Processes

DAG Seminar

Eloïse Berthier, Francis Bach
IEEE Control Systems Letters 2020

July 2, 2021
Motivation: Application to Robotics

Controlling a robot is challenging:

- The dimensions of the system are (relatively) large
 \[\Rightarrow\] completely solving optimal control problems is hopeless.

- The dynamical system is nonlinear
 \[\Rightarrow\] we cannot directly use linear control methods.

- There are modeling uncertainties
 \[\Rightarrow\] exact solutions are somehow useless.

- Some computations are done in real-time, embedded systems
 \[\Rightarrow\] the available computing power/time is limited.
Consider a **continuous-state MDP** (discrete-time, discrete-control). We want to **discretize it into a finite MDP** (discrete-state), *e.g.* to approximate the value function with value iteration.

Problem: A naive discretization has no notion of spatial proximity, hence we would need a **very large state-discretization**, not even fitting in memory for problems of moderate dimensions.

Following the approach of [McE03, AGL08], adapted to finite MDPs in [CB14, Bac19], we compute a **max-plus linear approximation** of the value function.
1 Introduction

2 Max-Plus Linear Approximation

3 Approximate Value Iteration

4 Error Analysis

5 Adaptive Function Dictionaries

6 Experiments
We consider a deterministic, time-homogeneous, infinite-horizon, discounted MDP defined by:

- a state space S,
- an action space A,
- a bounded reward function $r : S \times A \rightarrow [-R, R]$,
- a dynamics $\varphi(.) : S \times A \rightarrow S$,
- and a discount factor $0 \leq \gamma < 1$.

We make the following assumptions:

1. the state space S is a bounded subset of \mathbb{R}^d ($d \geq 1$);
2. the action space A is finite.
The optimal value function $V^*: \mathcal{S} \rightarrow \mathbb{R}$ corresponds to an optimal policy $\pi^*: \mathcal{S} \rightarrow \mathcal{A}$ maximizing the cumulative discounted reward. The greedy policy π corresponding to a value function V is then:

$$\pi(s) \in \arg\max_{a \in \mathcal{A}} r(s, a) + \gamma V(\varphi_a(s)).$$

The value iteration algorithm consists in computing V^* as the unique fixed point of the Bellman operator $T: \mathbb{R}^\mathcal{S} \rightarrow \mathbb{R}^\mathcal{S}$:

$$TV(s) := \max_{a \in \mathcal{A}} r(s, a) + \gamma V(\varphi_a(s)).$$

The value iteration algorithm iteratively computes the recursion $V_{k+1} = TV_k$ that converges to V^*, with linear rate since T is strictly contractive with factor $\gamma < 1$. But if \mathcal{S} is a finite set, it requires $O(|\mathcal{A}| \cdot |\mathcal{S}|)$ computations, and the storage of $O(|\mathcal{S}|)$ values of V_k at each step.
1 Introduction

2 Max-Plus Linear Approximation

3 Approximate Value Iteration

4 Error Analysis

5 Adaptive Function Dictionaries

6 Experiments
Max-Plus Linear Approximation

The max-plus semiring is defined as \((\mathbb{R} \cup \{-\infty\}, \oplus, \otimes)\), where \(\oplus\) represents the maximum operator, and \(\otimes\) represents the usual sum.

Let \(\mathcal{W}\) be a finite dictionary of functions \(w : S \rightarrow \mathbb{R}\). The value function can be approximated by a max-plus linear combination of functions in \(\mathcal{W}\).

For \(\alpha \in \mathbb{R}^\mathcal{W}\), we define the max-plus linear combinations:

\[
V(s) = \bigoplus_{w \in \mathcal{W}} \alpha(w) \otimes w(s) = \max_{w \in \mathcal{W}} \alpha(w) + w(s).
\]

and we write it more compactly:

\[
V = \mathcal{W} \alpha
\]
Max-Plus Indicator Functions

Possible dictionaries of functions:

- **Smooth**: \(w(s) = -c \| s - s_0 \|^2 \)
- **Lipschitz**: \(w(s) = -c \| s - s_0 \| \)
- **Indicator**: \(w(s) = \begin{cases} 0 & \text{if } s \in A \\ -\infty & \text{otherwise} \end{cases} \)
- **Soft indicator**: \(w(s) = -c \text{dist}(s, A)^2 \).

Smooth or Lipschitz basis functions are used to approximate value functions of the same regularity, controlled by \(c \) [AGL08].

Piecewise constant value functions are good candidates for a discretization. They are used in [Bac19] to cluster similar states in discrete MDPs.
Max-Plus Projections

We define the following four operators:

\[W : \mathbb{R}^\mathcal{W} \rightarrow \mathbb{R}^S, \quad W\alpha(s) := \max_{w \in \mathcal{W}} \alpha(w) + w(s) \]

\[W^+ : \mathbb{R}^S \rightarrow \mathbb{R}^\mathcal{W}, \quad W^+ V(w) := \inf_{s \in S} V(s) - w(s) \]

\[W^\top : \mathbb{R}^S \rightarrow \mathbb{R}^\mathcal{W}, \quad W^\top V(w) := \sup_{s \in S} V(s) + w(s) \]

\[W^{\top +} : \mathbb{R}^\mathcal{W} \rightarrow \mathbb{R}^S, \quad W^{\top +} \alpha(s) := \min_{w \in \mathcal{W}} \alpha(w) - w(s). \]

\(W^+ \) is the residuation and acts as a pseudo-inverse:

\[W\alpha \leq V \iff \alpha \leq W^+ V \]

We also define a “dot product”:

\[\forall z, w \in \mathbb{R}^S, \quad \langle z, w \rangle := \sup_{s \in S} z(s) + w(s). \]
Max-Plus Projections

A function $V \in \mathbb{R}^S$ can be lower- (or upper-) projected onto the basis \mathcal{W}:

$$P_W(V) = W W^+ V$$
$$P^W(V) = W^T + W^T V$$
1 Introduction

2 Max-Plus Linear Approximation

3 Approximate Value Iteration

4 Error Analysis

5 Adaptive Function Dictionaries

6 Experiments
Max-Plus Properties of the Bellman Operator

The structure of the Bellman operator

\[T : \mathbb{R}^S \rightarrow \mathbb{R}^S \]

\[TV(s) = \max_{a \in \mathcal{A}} r(s, a) + \gamma V(\varphi_a(s)) \]

is naturally compatible with max-plus algebra. It is max-plus additive and homogeneous:

\[T(V \oplus V') = T(\max\{V, V'\}) = \max\{TV, TV'\} = TV \oplus TV' \]

\[T(c \otimes V) = T(c + V) = \gamma c + TV = c \otimes \gamma TV. \]

This will be helpful to reduce the computational complexity of the subsequent approximation method. Importantly, additivity no longer holds for stochastic MDPs.
Algorithm: alternative applications of the Bellman operator and projections onto \mathcal{W}:

$$V_{k+1} = WW^+ TV_k.$$

Hence if V_k is represented as $W\alpha_k$, then α_{k+1} is given by $\alpha_{k+1} = W^+ TW \alpha_k$, where the operator $W^+ TW : \mathbb{R}^W \to \mathbb{R}^W$ is computed by:

$$\alpha_{k+1}(w) = \inf_{s \in S} \max_{w' \in \mathcal{W}} \gamma \alpha_k(w') + Tw'(s) - w(s).$$

This computation is a min/max problem, which is not easy to solve in general. If S is finite, this requires to compute $|S| \cdot |\mathcal{W}|$ values at each iteration.
Let’s define a second dictionary of test functions \mathcal{Z}. The value iteration recursion $V_{k+1} = TV_k$ is replaced by a variational formulation:

$$\langle z, V_{k+1} \rangle = \langle z, TV_k \rangle \quad \forall z \in \mathcal{Z},$$

of which we consider the maximal solution in $\text{span}(W)$ [AGL08]:

$$V_{k+1} = WW^+Z^T + Z^T TV_k.$$

If $V_k = W\alpha_k$, we have the following recursion:

$$\alpha_{k+1} = W^+ Z^T + Z^T TW \alpha_k.$$
Variational Method

The operator $W^+Z^\top + Z^\top TW : \mathbb{R}^\mathcal{W} \to \mathbb{R}^\mathcal{W}$ decomposes as $M \circ K$, with $K = Z^\top TW : \mathbb{R}^\mathcal{W} \to \mathbb{R}^\mathcal{Z}$ and $M = W^+Z^\top + : \mathbb{R}^\mathcal{Z} \to \mathbb{R}^\mathcal{W}$. The recursion may be recast as:

$$
\beta_{k+1}(z) = K\alpha_k(z) = \sup_{s \in \mathcal{S}} z(s) + \max_{w \in \mathcal{W}} \gamma \alpha_k(w) + Tw(s)
$$

$$
= \max_{w \in \mathcal{W}} \gamma \alpha_k(w) + \langle z, Tw \rangle
$$

$$
\alpha_{k+1}(w) = M\beta_{k+1}(w) = \inf_{s \in \mathcal{S}} -w(s) + \min_{z \in \mathcal{Z}} \beta_{k+1}(z) - z(s)
$$

$$
= \min_{z \in \mathcal{Z}} \beta_{k+1}(z) - \langle z, w \rangle.
$$

$W^+Z^\top + Z^\top TW$ is a γ-contraction, hence the recursion will converge with linear rate to the unique fixed point. The $|\mathcal{Z}| \cdot |\mathcal{W}|$ values $\langle z, Tw \rangle$ for $(z, w) \in \mathcal{Z} \times \mathcal{W}$ can be precomputed at a cost that is independent of the horizon $1/(1 - \gamma)$ of the MDP.
Approximate Value Iteration for Clustering

If $\mathcal{W} = \mathcal{Z}$ and the $(w_i)_{1 \leq i \leq n}$ are max-plus indicators, the approximate value iteration becomes:

$$\alpha_{k+1}(w) = \max_{w' \in \mathcal{W}} \langle w, Tw' \rangle + \gamma \alpha_k(w'),$$

which we interpret as classical value iteration on the MDP formed with the clusters $(A(w))_{w \in \mathcal{W}}$ as states, and as rewards the maximal achievable reward going from one cluster to the other:

$$R(w, w') = \langle w, Tw' \rangle = \sup_{s \in S} w(s) + Tw'(s)$$

$$= \sup_{s \in A(w)} \max_{a \in A \text{ s.t. } \varphi_a(s) \in A(w')} r(s, a).$$

and $R(w, w') = -\infty$ if $A(w')$ cannot be reached from $A(w)$.
Approximate Value Iteration for Clustering

Experiments taken from [Bac19] in a discrete MDP:

Figure 5: Approximation of a function V with different finite basis with 16 or 64 elements, within the MDP, and with values of ρ that are 4 and 32. One-dimensional case (with a convex optimal value function). From left to right: $(n = 16, \rho = 4)$, $(n = 16, \rho = 32)$, $(n = 64, \rho = 4)$, $(n = 16, \rho = 32)$.

This reduced problem is appealing but hard to solve in a continuous state space. Even finding if $R(w, w')$ is finite is a reachability problem, whose solution is not straightforward.

We use soft indicators: $w(s) = -c \text{dist}(s, A(w))^2$, with $c \gg 1$.
Precomputations

Subproblems: $\langle z, w \rangle$ is independent of the MDP and can be often computed in closed form, and:

$$
\langle z, Tw \rangle = \sup_{s \in S} z(s) + Tw(s)
$$

$$
= \sup_{s \in S, a \in A} z(s) + r(s, a) + \gamma w(\varphi_a(s)).
$$

In [AGL08], $\langle z, Tw \rangle$ is approximated using the Hamiltonian of the control problem. For general MDPs that do not come from an underlying continuous-time control problem, this cannot be done.
Precomputations

\[\langle z, Tw \rangle = \sup_{s \in S, \ a \in A} z(s) + r(s, a) + \gamma w(\varphi_a(s)) \]

\langle z, Tw \rangle \text{ can be approximated by gradient ascent on }

\[f_a(s) = z(s) + r(s, a) + \gamma w(\varphi_a(s)) \]

\[\nabla f_a(s) = \nabla z(s) + \nabla r(s, a) + \gamma J_{\varphi_a(s)}^\top \nabla w(\varphi_a(s)). \]

for each \(a \in A \), and then taking the maximum on \(a \).

Seeing this problem like [AGL08] as a perturbation of \(\langle z, w \rangle \), an efficient initialization is given by

\[s_0 \in \arg\max_s z(s) + w(s). \]

Even though it \textbf{not a concave maximization} problem, choosing strongly concave basis functions \(z \) and \(w \) has a regularizing effect.
Full Algorithm

Input: MDP, \(W \) and \(Z \), gradient steps \(k \), step size \(\xi \)

Output: approximate value function \(V \)

Precomputations:

1: \textbf{for} \(z \in Z, w \in W \) \textbf{do}
2: \hspace{1em} \(s, \langle z, w \rangle \leftarrow \arg\max_{s \in S} z(s) + w(s) \)
3: \hspace{1em} \textbf{for} \(a \in A \) \textbf{do}
4: \hspace{2em} \langle z, Tw \rangle \leftarrow z(s) + r(s, a) + w(\varphi_a(s))
5: \hspace{1em} \textbf{for} \(i = 1 \) \textbf{to} \(k \) \textbf{do}
6: \hspace{2em} \(g \leftarrow \nabla z(s) + \nabla r(s, a) + J_{\varphi_a(s)}^\top \nabla w(\varphi_a(s)) \)
7: \hspace{2em} \(s \leftarrow s + \xi g \)
8: \hspace{2em} \(f \leftarrow z(s) + r(s, a) + w(\varphi_a(s)) \)
9: \hspace{2em} \langle z, Tw \rangle \leftarrow \max\{f, \langle z, Tw \rangle\}

Reduced value iteration:

10: \(\alpha \leftarrow 0 \)
11: \textbf{repeat}
12: \hspace{1em} \textbf{for} \(z \in Z \) \textbf{do}
13: \hspace{2em} \(\beta(z) \leftarrow \max_{w \in W} \gamma \alpha(w) + \langle z, Tw \rangle \)
14: \hspace{1em} \textbf{for} \(w \in W \) \textbf{do}
15: \hspace{2em} \(\alpha(w) \leftarrow \min_{z \in Z} \beta(z) - \langle z, w \rangle \)
16: \hspace{1em} \textbf{until} convergence
17: \textbf{return} \(V = W \alpha \)
The Bellman operator T can be replaced by T^ρ for $\rho \geq 1$, replacing accordingly γ by γ^ρ. This makes sense if one time step has a small effect compared to the scale of the basis functions, e.g. in clustering if one time step is not enough to cross different clusters.

This makes the computation of $\langle z, T^\rho w \rangle$ more complicated, as it requires to run $|A|^\rho$ gradient ascents. A simplification is to consider only sequences of constant actions for ρ steps.
Decomposition of Errors

Theorem (Approximation of the optimal value function)

Let V^* be the optimal value function of the MDP, $\hat{V} = W\hat{\alpha}$, where $\hat{\alpha}$ is the fixed point of $M \circ \hat{K}$, and

$$\|\hat{K} - K\|_\infty := \sup_{z \in Z, w \in W} |\hat{K}_{z,w} - K_{z,w}|.$$

Then:

$$\|\hat{V} - V^*\|_\infty \leq \frac{1}{1 - \gamma} \left(\|WW^+V^* - V^*\|_\infty + \|Z^T + Z^TV^* - V^*\|_\infty + \|\hat{K} - K\|_\infty\right).$$
Proposition \textit{(Approximation properties of soft-indicators)}

Let $c > 0$ and (A_1, \ldots, A_n) a partition of S where each A_i is convex, compact and non-empty, and let $D = \max_{1 \leq i \leq n} \text{diam}(A_i)$.

Let $W_1 = \{w^1_1, \ldots, w^1_n\}$ and $W_2 = \{w^2_1, \ldots, w^2_n\}$ defined by:

$$
\forall i \in \{1, \ldots, n\}, \forall s \in S, \quad \begin{cases}
 w^1_i(s) = -c_1 \text{dist}(s, A_i) \\
 w^2_i(s) = -c_2 \text{dist}(s, A_i)^2.
\end{cases}
$$

If V has Lipschitz constant L and $c_1 \geq L$, $c_2 \geq \frac{L}{4D}$, then

$$
\|V - W_1 W_1^+ V\|_\infty \leq LD
$$

$$
\|V - W_2 W_2^+ V\|_\infty \leq LD + \frac{L^2}{4c_2} \leq 2LD.
$$

No dependency in c in the bound, for c large enough.
1 Introduction

2 Max-Plus Linear Approximation

3 Approximate Value Iteration

4 Error Analysis

5 Adaptive Function Dictionaries

6 Experiments
Greedy Basis Selection

From a partition \((A_1, ..., A_n)\) of the state space, we define a dictionary \(\mathcal{W} = \mathcal{Z}\) of soft-indicators \(w_i(\cdot) = -c\text{dist}(\cdot, A_i)^2\). Starting from a coarse partition, we compute the approximate value function, and then we select one of the \((A_i)_{1\leq i \leq n}\) that we want to refine. Then we split this cluster into new sub-clusters.

A simple splitting strategy is to subdivide it into \(2^d\) smaller parallelepipeds, by a middle cut along each dimension. This corresponds to building a quadtree.

Following the idea of matching pursuit, a simple heuristic is to split the cluster with highest Bellman error \(|TV(s) − V(s)|\).
Mountain MDP ($d = 2$)
Approximate value function obtained with the algorithm
Results

Average performance of the three approximation methods on Mountain as a function of the number of parameters.

To get an efficient controller, the max-plus discretization does not need to be as sharp as the naive discretization. The adaptive discretization gives an even sparser representation of the MDP.
On an MDP with state dimension 4:

Average performance of the three approximation methods on Cartpole as a function of the number of parameters.
Naïve vs max-plus discretization

Coarse Discretization

Tight Discretization

Naive Discretization

Max-Plus Discretization
Conclusion

We adapted the approximation method of [AGL08] designed for control systems to MDPs. It provides intuitive state-space discretizations with a reasonable number of parameters.

Possible future directions:

- generalization to Q-function approximation.
- a more efficient adaptive algorithm, with some exploration mechanism, e.g. with upper confidence bounds?
- how to deal with stochastic MDPs, without becoming computationally intractable?
- how to extend to Q-learning (model-free reinforcement learning)?

→ [Gon21] proposed a first online learning approach, “following the philosophy of reinforcement learning: explore the environment, receive the rewards and use this information to improve the knowledge of the value function.”

