
16. Commiments Schemes

The goal of this part is to study various commitment schemes.

A commitment scheme is an essential primitive in cryptography, since it allows the committer
to put a value in a box, so that nobody has any idea about the actual value (hiding property),
but the committer cannot open the commitment in two different ways (binding property). It
is also possible to prove relations between committed values, without revealing any additional
information about them, excepted the fact that they satisfy these relations (zero-knowledge
proofs).
More formally, a non-interactive commitment scheme is defined by three algorithms:

• Setup(1k) outputs the public parameters of the system for a given security parameter k;

• Commit(m, r) takes the message m to commit to with some random coins r as inputs,
and outputs the commitment c and an opening value d;

• Verify(c,m, d) takes the commitment c, the message m and an opening value d, and
outputs yes or no, whether the verification succeeds or not.

The commitment c is sent to the receiver at the commit time, and the opening value d is sent
together with the message m at the opening time, to allow verification.

The hiding property says that the commitment c does not leak information about m (either
perfect secrecy, or computational indistinguishability), while the binding property says that no
adversary (either powerful or computationally bounded) can generate c, m 6= m′ and d, d′ such
that both Verify(c,m, d) and Verify(c,m′, d′) accept.

In the following, we start with two simple commitment schemes, with complementary properties.
The last part combines them to get a more powerful commitment scheme.

16.1 Pedersen Commitment

Let us consider G = 〈g〉, a cyclic group of prime order q, and two random generators g, h ∈ G.
The Pedersen commitment scheme allows to commit to scalar elements from Zq:

Commitment: to commit to a scalar m ∈ Zq, one chooses a random r
$← Zq, and sets

c← gmhr, while the opening value is set to r;

Opening: to open a commitment c ∈ G, one reveals the pair (m, r). If c = gmhr, the receiver
accepts the opening to m, otherwise it refuses.

Q-1. Show that this commitment scheme is perfectly hiding : even a powerful adver-
sary cannot have any idea about the committed value.

Q-2. Show that this commitment scheme is computationally binding : unless one
can break a problem (to be specified), not adversary can open a commitment in two
different ways.

Q-3. Show that this commitment scheme is equivocal : using a trapdoor (known to the
simulator only, at the time of generation of the parameters (g, h), with an alternative
but indistinguishable Setup algorithm), the simulator can generate a commitment
c ∈ G so that it can open it later in any way of its choice.

Q-4. Under which condition can we use the binding property and the equivocality in
a security proof?

Q-5. Under which condition can we use the hiding property and the equivocality in
a security proof?

1



16.2 ElGamal Commitment

Let us consider G = 〈g〉, a cyclic group of prime order q, and two random generators g, h ∈ G.
The ElGamal commitment scheme allows to commit to group elements from G:

Commitment: to commit to a group element M ∈ G, one chooses a random r
$← Zq, and

sets c← (c0 = gr, c1 = Mhr), while the opening value is set to r;

Opening: to open a commitment c ∈ G, one reveals the pair (M, r). If c = (gr,Mhr), the
receiver accepts the opening to M , otherwise it refuses.

Q-6. Show that this commitment scheme is perfecly binding : even a powerful adver-
sary cannot open a commitment in two different ways.

Q-7. Show that this commitment scheme is computationally hiding : unless one can
break a problem (to be specified), no adversary can distinguish commitments to M0

or M1 of its choice.

Q-8. Show that this commitment scheme is extractable: using a trapdoor ((known to
the simulator only, at the time of generation of the parameters (g, h), with an alterna-
tive but indistinguishable Setup algorithm), the simulator can extract the committed
value in any c ∈ G.

Q-9. Under which condition can we use the binding property and the extractability
in a security proof?

Q-10. Under which condition can we use the hiding property and the extractability
in a security proof?

Q-11. This commitment scheme is called “ElGamal” Commitment, since this is the
ElGamal encryption. How one could make the hiding property and the extractability
compatible without any limitation?

16.3 Non-Interactive Commitments
Q-12. Show that a non-interactive commitment cannot be both perfectly hiding
and perfectly binding (which would mean both hiding and binding against powerful
adversaries).

An efficient construction in the random oracle model is c = Commit(m, r) = H(m, r), for a
hash function H : {0, 1}∗ → {0, 1}2k, on the message m ∈ {0, 1}∗ to commit, with random
coins r ∈ {0, 1}3k, for a security parameter k, while the opening value is set to r.

Q-13. Show that this is indeed a non-interactive commitment scheme (hiding and
binding), and say under which assumptions (some limit or not on the number of
queries to the random oracle).

Q-14. Show that it is also extractable and equivocal for a simulator that can ac-
cess the list of query-answer pairs and that can program the random oracle in an
indistinguishable way.

In order to build such an equivocal and extractable commitment scheme, in the standard model
(without random oracles), let us start with two commitment schemes:

• an equivocal bit-commitment scheme Commiteq(b, r), for a bit b ∈ {0, 1} and random coins
r, that outputs a commitment c, and the opening value d ∈ {0, 1}2k;

2



• an extractable commitment scheme Commitext(D, r′), for a bitstring D ∈ {0, 1}2k and
random coins r′, that outputs a commitment c′, and the opening value O.

We stress that the unique condition between the two commitment schemes is that the opening
values of the former one can be committed with the latter (both in the same space {0, 1}2k).

On a message m = (m1, . . . ,m`) ∈ {0, 1}` the commitment algorithm Commit(m, ((ri)i, (D
′
i)i, (r

′
i,b)i,b))

works as follows:

• for random coins ri for i = 1, . . . , `, set (ci, Di)← Commiteq(mi, ri);

• for random coins D′i
$← {0, 1}2k, set di,mi

← Di and di,1−mi
← D′i, for i = 1, . . . , `;

• for random coins r′i,b, set (c′i,b, Oi,b)← Commitext(di,b, r
′
i,b), for i = 1, . . . , ` and b = 0, 1;

• output the commitment (ci, (c
′
i,b)b)i, while the opening value is (di,mi

, Oi,mi
)i.

Q-15. Explain how works the Verify algorithm.

Q-16. Show this is indeed a commitment scheme: with both hiding and binding
properties.

Q-17. Show this commitment scheme is also both equivocal and extractable.

3


