
Provable Security in the Computational Model

II – Encryption

David Pointcheval

MPRI – Paris

Ecole normale supérieure/PSL, CNRS & INRIA

ENS/CNRS/INRIA Cascade David Pointcheval 1/68

Outline

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 2/68

Basic Security Notions

Outline

Basic Security Notions

Public-Key Encryption

Signatures

Game-based Proofs

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 3/68

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade David Pointcheval 4/68

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade David Pointcheval 4/68

OW− CPA Security Game

A

ENS/CNRS/INRIA Cascade David Pointcheval 5/68

OW− CPA Security Game

A

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 5/68

OW− CPA Security Game

A

kdke G
m* random
r* random

ENS/CNRS/INRIA Cascade David Pointcheval 5/68

OW− CPA Security Game

A

kdke G
m* random
r* random

Er*
m* c*

ENS/CNRS/INRIA Cascade David Pointcheval 5/68

OW− CPA Security Game

A

kdke G
m* random
r* random

Er*
m* c*

m

ENS/CNRS/INRIA Cascade David Pointcheval 5/68

OW− CPA Security Game

A

kdke G

m

m* random
r* random

m* = m
?

Er*
m* c*

ENS/CNRS/INRIA Cascade David Pointcheval 5/68

OW− CPA Security Game

A

kdke G

m

m* random
r* random

m* = m
?

Er*
m* c*

Succow
S (A) = Pr[(sk ,pk)← K(); m R←M; c = Epk (m) : A(pk , c)→ m]

ENS/CNRS/INRIA Cascade David Pointcheval 5/68

IND− CPA Security Game

A

ENS/CNRS/INRIA Cascade David Pointcheval 6/68

IND− CPA Security Game

A

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 6/68

IND− CPA Security Game

A

m1

m0

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 6/68

IND− CPA Security Game

A

m1

m0

kdke G
b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 6/68

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 6/68

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 6/68

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

b’ = b?

ENS/CNRS/INRIA Cascade David Pointcheval 6/68

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

b’ = b?

(sk ,pk)← K();(m0,m1, state)← A(pk);

b R← {0,1};c = Epk (mb); b′ ← A(state, c)

Advind−cpa
S (A)=

∣∣Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0]
∣∣= ∣∣2× Pr[b′ = b]−1

∣∣
ENS/CNRS/INRIA Cascade David Pointcheval 6/68

Outline

Basic Security Notions

Public-Key Encryption

Signatures

Game-based Proofs

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 7/68

Signature

Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade David Pointcheval 8/68

Signature

Goal: Authentication of the sender

ENS/CNRS/INRIA Cascade David Pointcheval 8/68

EUF− NMA

A

ENS/CNRS/INRIA Cascade David Pointcheval 9/68

EUF− NMA

A

kskv G

ENS/CNRS/INRIA Cascade David Pointcheval 9/68

EUF− NMA

A

kskv G

(m,σ)

ENS/CNRS/INRIA Cascade David Pointcheval 9/68

EUF− NMA

A

kskv G

(m,σ)

V(kv,m,σ)?

ENS/CNRS/INRIA Cascade David Pointcheval 9/68

EUF− NMA

A

kskv G

(m,σ)

V(kv,m,σ)?

Succeuf
SG(A) = Pr[(sk ,pk)← K(); (m, σ)← A(pk) : Vpk (m, σ) = 1]

ENS/CNRS/INRIA Cascade David Pointcheval 9/68

Game-based Proofs

Outline

Basic Security Notions

Game-based Proofs

Provable Security

Game-based Approach

Transition Hops

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 10/68

Provable Security

One can prove that:

• if an adversary is able to break the cryptographic scheme

• then one can break the underlying problem
(integer factoring, discrete logarithm, 3-SAT, etc)

ENS/CNRS/INRIA Cascade David Pointcheval 11/68

Provable Security

One can prove that:

• if an adversary is able to break the cryptographic scheme

• then one can break the underlying problem
(integer factoring, discrete logarithm, 3-SAT, etc)

hard →
instance

→solution

ENS/CNRS/INRIA Cascade David Pointcheval 11/68

Direct Reduction

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

ENS/CNRS/INRIA Cascade David Pointcheval 12/68

Direct Reduction

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Unfortunately

• Security may rely on several assumptions

• Proving that the view of the adversary, generated by the
simulator, in the reduction is the same as in the real attack game
is not easy to do in such a one big step

ENS/CNRS/INRIA Cascade David Pointcheval 12/68

Direct Reduction

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Unfortunately

• Security may rely on several assumptions

• Proving that the view of the adversary, generated by the
simulator, in the reduction is the same as in the real attack game
is not easy to do in such a one big step

ENS/CNRS/INRIA Cascade David Pointcheval 12/68

Direct Reduction

Oracles

ChallengerAdversary 0 / 1

Security Game
Oracles

ChallengerAdversary

Instance

Sim
ulator

Solution

Reduction

Unfortunately

• Security may rely on several assumptions

• Proving that the view of the adversary, generated by the
simulator, in the reduction is the same as in the real attack game
is not easy to do in such a one big step

ENS/CNRS/INRIA Cascade David Pointcheval 12/68

Outline

Basic Security Notions

Game-based Proofs

Provable Security

Game-based Approach

Transition Hops

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 13/68

Sequence of Games

Real Attack Game
The adversary plays a game, against a challenger (security notion)

Oracles

ChallengerAdversary 0 / 1

Game 0

ENS/CNRS/INRIA Cascade David Pointcheval 14/68

Sequence of Games

Simulation
The adversary plays a game, against a sequence of simulators

Oracles

ChallengerAdversary

Distribution 1

Sim
ulator 1

Game 1

0 / 1

ENS/CNRS/INRIA Cascade David Pointcheval 15/68

Sequence of Games

Simulation
The adversary plays a game, against a sequence of simulators

Oracles

ChallengerAdversary

Distribution 2

Sim
ulator 2

Game 2

0 / 1

ENS/CNRS/INRIA Cascade David Pointcheval 16/68

Sequence of Games

Simulation
The adversary plays a game, against a sequence of simulators

Oracles

ChallengerAdversary

Distribution 3

Sim
ulator 3

Game 3

0 / 1

ENS/CNRS/INRIA Cascade David Pointcheval 17/68

Output

• The output of the simulator in Game 1 is related to the output of
the challenger in Game 0 (adversary’s winning probability)

• The output of the simulator in Game 3 is easy to evaluate
(e.g. always zero, always 1, probability of one-half)

• The gaps (Game 1↔ Game 2, Game 2↔ Game 3, etc) are
clearly identified with specific events

ENS/CNRS/INRIA Cascade David Pointcheval 18/68

Output

• The output of the simulator in Game 1 is related to the output of
the challenger in Game 0 (adversary’s winning probability)

• The output of the simulator in Game 3 is easy to evaluate
(e.g. always zero, always 1, probability of one-half)

• The gaps (Game 1↔ Game 2, Game 2↔ Game 3, etc) are
clearly identified with specific events

ENS/CNRS/INRIA Cascade David Pointcheval 18/68

Output

• The output of the simulator in Game 1 is related to the output of
the challenger in Game 0 (adversary’s winning probability)

• The output of the simulator in Game 3 is easy to evaluate
(e.g. always zero, always 1, probability of one-half)

• The gaps (Game 1↔ Game 2, Game 2↔ Game 3, etc) are
clearly identified with specific events

Oracles

ChallengerAdversary

Distribution 1

Sim
ulator 1

Game 1

0 / 1

Oracles

ChallengerAdversary

Distribution 3

Sim
ulator 3

Game 3

0 / 1

ENS/CNRS/INRIA Cascade David Pointcheval 18/68

Outline

Basic Security Notions

Game-based Proofs

Provable Security

Game-based Approach

Transition Hops

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 19/68

Two Simulators

Oracles

ChallengerAdversary

Distribution

Sim
ulator A

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution

Sim
ulator B

Game B

0 / 1

ENS/CNRS/INRIA Cascade David Pointcheval 20/68

Two Simulators

Oracles

ChallengerAdversary

Distribution

Sim
ulator A

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution

Sim
ulator B

Game B

0 / 1

• perfectly identical behaviors [Hop-S-Perfect]

• different behaviors, only if event Ev happens
• Ev is negligible [Hop-S-Negl]

• Ev is non-negligible (but not overwhelming) [Hop-S-Non-Negl]

and independent of the output in GameA

→ Simulator B terminates in case of event Ev

ENS/CNRS/INRIA Cascade David Pointcheval 20/68

Two Simulators

Oracles

ChallengerAdversary

Distribution

Sim
ulator A

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution

Sim
ulator B

Game B

0 / 1

• perfectly identical behaviors [Hop-S-Perfect]

• different behaviors, only if event Ev happens
• Ev is negligible [Hop-S-Negl]

• Ev is non-negligible (but not overwhelming) [Hop-S-Non-Negl]

and independent of the output in GameA

→ Simulator B terminates in case of event Ev

ENS/CNRS/INRIA Cascade David Pointcheval 20/68

Two Simulators

Oracles

ChallengerAdversary

Distribution

Sim
ulator A

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution

Sim
ulator B

Game B

0 / 1

• perfectly identical behaviors [Hop-S-Perfect]

• different behaviors, only if event Ev happens
• Ev is negligible [Hop-S-Negl]

• Ev is non-negligible (but not overwhelming) [Hop-S-Non-Negl]

and independent of the output in GameA

→ Simulator B terminates in case of event Ev

ENS/CNRS/INRIA Cascade David Pointcheval 20/68

Two Simulators

Oracles

ChallengerAdversary

Distribution

Sim
ulator A

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution

Sim
ulator B

Game B

0 / 1

• perfectly identical behaviors [Hop-S-Perfect]

• different behaviors, only if event Ev happens
• Ev is negligible [Hop-S-Negl]

• Ev is non-negligible (but not overwhelming) [Hop-S-Non-Negl]

and independent of the output in GameA

→ Simulator B terminates in case of event Ev

ENS/CNRS/INRIA Cascade David Pointcheval 20/68

Two Distributions

Oracles

ChallengerAdversary

Distribution A

Sim
ulator

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution B

Sim
ulator

Game B

0 / 1

ENS/CNRS/INRIA Cascade David Pointcheval 21/68

Two Distributions

Oracles

ChallengerAdversary

Distribution A

Sim
ulator

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution B

Sim
ulator

Game B

0 / 1

• perfectly identical input distributions [Hop-D-Perfect]

• different distributions
• statistically close [Hop-D-Stat]

• computationally close [Hop-D-Comp]

ENS/CNRS/INRIA Cascade David Pointcheval 21/68

Two Distributions

Oracles

ChallengerAdversary

Distribution A

Sim
ulator

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution B

Sim
ulator

Game B

0 / 1

• perfectly identical input distributions [Hop-D-Perfect]

• different distributions
• statistically close [Hop-D-Stat]

• computationally close [Hop-D-Comp]

ENS/CNRS/INRIA Cascade David Pointcheval 21/68

Two Distributions

Oracles

ChallengerAdversary

Distribution A

Sim
ulator

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution B

Sim
ulator

Game B

0 / 1

• perfectly identical input distributions [Hop-D-Perfect]

• different distributions
• statistically close [Hop-D-Stat]

• computationally close [Hop-D-Comp]

ENS/CNRS/INRIA Cascade David Pointcheval 21/68

Two Distributions

Oracles

ChallengerAdversary

Distribution A

Sim
ulator

Game A

0 / 1

Oracles

ChallengerAdversary

Distribution B

Sim
ulator

Game B

0 / 1

• perfectly identical input distributions [Hop-D-Perfect]

• different distributions
• statistically close [Hop-D-Stat]

• computationally close [Hop-D-Comp]

ENS/CNRS/INRIA Cascade David Pointcheval 21/68

Two Simulations

• Identical behaviors: Pr[GameA]− Pr[GameB] = 0
• The behaviors differ only if Ev happens:

• Ev is negligible, one can ignore it
Shoup’s Lemma: |Pr[GameA]− Pr[GameB]| ≤ Pr[Ev]

|Pr[GameA]− Pr[GameB]|

=

∣∣∣∣∣ Pr[GameA|Ev] Pr[Ev] + Pr[GameA|¬Ev] Pr[¬Ev]

−Pr[GameB|Ev] Pr[Ev]− Pr[GameB|¬Ev] Pr[¬Ev]

∣∣∣∣∣
=

∣∣∣∣∣ (Pr[GameA|Ev]− Pr[GameB|Ev])× Pr[Ev]

+(Pr[GameA|¬Ev]− Pr[GameB|¬Ev])× Pr[¬Ev]

∣∣∣∣∣
≤ |1× Pr[Ev] + 0× Pr[¬Ev]| ≤ Pr[Ev]

• Ev is non-negligible and independent of the output in GameA,
Simulator B terminates in case of event Ev

ENS/CNRS/INRIA Cascade David Pointcheval 22/68

Two Simulations

• Identical behaviors: Pr[GameA]− Pr[GameB] = 0
• The behaviors differ only if Ev happens:

• Ev is negligible, one can ignore it
Shoup’s Lemma: |Pr[GameA]− Pr[GameB]| ≤ Pr[Ev]

|Pr[GameA]− Pr[GameB]|

=

∣∣∣∣∣ Pr[GameA|Ev] Pr[Ev] + Pr[GameA|¬Ev] Pr[¬Ev]

−Pr[GameB|Ev] Pr[Ev]− Pr[GameB|¬Ev] Pr[¬Ev]

∣∣∣∣∣
=

∣∣∣∣∣ (Pr[GameA|Ev]− Pr[GameB|Ev])× Pr[Ev]

+(Pr[GameA|¬Ev]− Pr[GameB|¬Ev])× Pr[¬Ev]

∣∣∣∣∣
≤ |1× Pr[Ev] + 0× Pr[¬Ev]| ≤ Pr[Ev]

• Ev is non-negligible and independent of the output in GameA,
Simulator B terminates in case of event Ev

ENS/CNRS/INRIA Cascade David Pointcheval 22/68

Two Simulations

• Identical behaviors: Pr[GameA]− Pr[GameB] = 0
• The behaviors differ only if Ev happens:

• Ev is negligible, one can ignore it
Shoup’s Lemma: |Pr[GameA]− Pr[GameB]| ≤ Pr[Ev]

|Pr[GameA]− Pr[GameB]|

=

∣∣∣∣∣ Pr[GameA|Ev] Pr[Ev] + Pr[GameA|¬Ev] Pr[¬Ev]

−Pr[GameB|Ev] Pr[Ev]− Pr[GameB|¬Ev] Pr[¬Ev]

∣∣∣∣∣
=

∣∣∣∣∣ (Pr[GameA|Ev]− Pr[GameB|Ev])× Pr[Ev]

+(Pr[GameA|¬Ev]− Pr[GameB|¬Ev])× Pr[¬Ev]

∣∣∣∣∣
≤ |1× Pr[Ev] + 0× Pr[¬Ev]| ≤ Pr[Ev]

• Ev is non-negligible and independent of the output in GameA,
Simulator B terminates in case of event Ev

ENS/CNRS/INRIA Cascade David Pointcheval 22/68

Two Simulations

• Identical behaviors: Pr[GameA]− Pr[GameB] = 0
• The behaviors differ only if Ev happens:

• Ev is negligible, one can ignore it
• Ev is non-negligible and independent of the output in GameA,

Simulator B terminates and outputs 0, in case of event Ev:

Pr[GameB] = Pr[GameB|Ev] Pr[Ev] + Pr[GameB|¬Ev] Pr[¬Ev]

= 0× Pr[Ev] + Pr[GameA|¬Ev]× Pr[¬Ev]

= Pr[GameA]× Pr[¬Ev]

Simulator B terminates and flips a coin, in case of event Ev:

Pr[GameB] = Pr[GameB|Ev] Pr[Ev] + Pr[GameB|¬Ev] Pr[¬Ev]

= 1
2 × Pr[Ev] + Pr[GameA|¬Ev]× Pr[¬Ev]

= 1
2 + (Pr[GameA]− 1

2)× Pr[¬Ev]

ENS/CNRS/INRIA Cascade David Pointcheval 23/68

Two Simulations

• Identical behaviors: Pr[GameA]− Pr[GameB] = 0
• The behaviors differ only if Ev happens:

• Ev is negligible, one can ignore it
• Ev is non-negligible and independent of the output in GameA,

Simulator B terminates in case of event Ev

Event Ev

• Either Ev is negligible, or the output is independent of Ev

• For being able to terminate simulation B in case of event Ev,
this event must be efficiently detectable

• For evaluating Pr[Ev], one re-iterates the above process,
with an initial game that outputs 1 when event Ev happens

ENS/CNRS/INRIA Cascade David Pointcheval 24/68

Two Distributions

Oracles

ChallengerAdversary

Distribution

0 / 1

Distinguisheur

Pr[GameA]− Pr[GameB] ≤ Adv(Doracles)

ENS/CNRS/INRIA Cascade David Pointcheval 25/68

Two Distributions

Pr[GameA]− Pr[GameB] ≤ Adv(Doracles)

• For identical/statistically close distributions, for any oracle:

Pr[GameA]− Pr[GameB] = Dist(DistribA,DistribB) = negl()

• For computationally close distributions, in general, we need to
exclude additional oracle access:

Pr[GameA]− Pr[GameB] ≤ AdvDistrib(t)

where t is the computational time of the distinguisheur

ENS/CNRS/INRIA Cascade David Pointcheval 26/68

Two Distributions

Pr[GameA]− Pr[GameB] ≤ Adv(Doracles)

• For identical/statistically close distributions, for any oracle:

Pr[GameA]− Pr[GameB] = Dist(DistribA,DistribB) = negl()

• For computationally close distributions, in general, we need to
exclude additional oracle access:

Pr[GameA]− Pr[GameB] ≤ AdvDistrib(t)

where t is the computational time of the distinguisheur

ENS/CNRS/INRIA Cascade David Pointcheval 26/68

Two Distributions

Pr[GameA]− Pr[GameB] ≤ Adv(Doracles)

• For identical/statistically close distributions, for any oracle:

Pr[GameA]− Pr[GameB] = Dist(DistribA,DistribB) = negl()

• For computationally close distributions, in general, we need to
exclude additional oracle access:

Pr[GameA]− Pr[GameB] ≤ AdvDistrib(t)

where t is the computational time of the distinguisheur

ENS/CNRS/INRIA Cascade David Pointcheval 26/68

Advanced Security for Encryption

Outline

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions

Cramer-Shoup Encryption Scheme

Generic Conversion

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 27/68

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade David Pointcheval 28/68

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade David Pointcheval 28/68

IND− CPA Security Game

A

ENS/CNRS/INRIA Cascade David Pointcheval 29/68

IND− CPA Security Game

A

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 29/68

IND− CPA Security Game

A

m1

m0

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 29/68

IND− CPA Security Game

A

m1

m0

kdke G
b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 29/68

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 29/68

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

ENS/CNRS/INRIA Cascade David Pointcheval 29/68

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

b’ = b?

ENS/CNRS/INRIA Cascade David Pointcheval 29/68

IND− CPA Security Game

A

m1

m0

kdke G

Er
mb c*

b’

b∈{0,1}
r random

b’ = b?

The adversary cannot get any information about a plaintext of a
specific ciphertext (validity, partial value, etc)

ENS/CNRS/INRIA Cascade David Pointcheval 29/68

Malleability

Semantic security (ciphertext indistinguishability) guarantees that
no information is leaked from c about the plaintext m

But it may be possible to derive a ciphertext c′

such that the plaintext m′ is related to m in a meaningful way:

• ElGamal ciphertext: c1 = gr and c2 = m × y r

• Malleability: c′1 = c1 = gr and c′2 = 2× c2 = (2m)× y r

From an encryption of m, one can build an encryption of 2m, or a
random ciphertext of m, etc.

ENS/CNRS/INRIA Cascade David Pointcheval 30/68

Malleability

Semantic security (ciphertext indistinguishability) guarantees that
no information is leaked from c about the plaintext m

But it may be possible to derive a ciphertext c′

such that the plaintext m′ is related to m in a meaningful way:

• ElGamal ciphertext: c1 = gr and c2 = m × y r

• Malleability: c′1 = c1 = gr and c′2 = 2× c2 = (2m)× y r

From an encryption of m, one can build an encryption of 2m, or a
random ciphertext of m, etc.

ENS/CNRS/INRIA Cascade David Pointcheval 30/68

Malleability

Semantic security (ciphertext indistinguishability) guarantees that
no information is leaked from c about the plaintext m

But it may be possible to derive a ciphertext c′

such that the plaintext m′ is related to m in a meaningful way:

• ElGamal ciphertext: c1 = gr and c2 = m × y r

• Malleability: c′1 = c1 = gr and c′2 = 2× c2 = (2m)× y r

From an encryption of m, one can build an encryption of 2m, or a
random ciphertext of m, etc.

ENS/CNRS/INRIA Cascade David Pointcheval 30/68

Malleability

Semantic security (ciphertext indistinguishability) guarantees that
no information is leaked from c about the plaintext m

But it may be possible to derive a ciphertext c′

such that the plaintext m′ is related to m in a meaningful way:

• ElGamal ciphertext: c1 = gr and c2 = m × y r

• Malleability: c′1 = c1 = gr and c′2 = 2× c2 = (2m)× y r

From an encryption of m, one can build an encryption of 2m, or a
random ciphertext of m, etc.

ENS/CNRS/INRIA Cascade David Pointcheval 30/68

Non-Malleability: NM− CPA Security Game

A

ENS/CNRS/INRIA Cascade David Pointcheval 31/68

Non-Malleability: NM− CPA Security Game

A

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 31/68

Non-Malleability: NM− CPA Security Game

A

D, R

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 31/68

Non-Malleability: NM− CPA Security Game

A

D, R

kdke G

m*, m' ← D
r random

ENS/CNRS/INRIA Cascade David Pointcheval 31/68

Non-Malleability: NM− CPA Security Game

A

D, R

kdke G

Er
m* c*

m*, m' ← D
r random

ENS/CNRS/INRIA Cascade David Pointcheval 31/68

Non-Malleability: NM− CPA Security Game

A

D, R

kdke G

Er
m* c*

c

m*, m' ← D
r random

ENS/CNRS/INRIA Cascade David Pointcheval 31/68

Non-Malleability: NM− CPA Security Game

A

D, R

kdke G

Er
m* c*

c

m*, m' ← D
r random

m = D(c)

ENS/CNRS/INRIA Cascade David Pointcheval 31/68

Non-Malleability: NM− CPA Security Game

A

D, R

kdke G

Er
m* c*

c

m*, m' ← D
r random

R(m*,m)
vs. R(m',m) m = D(c)

ENS/CNRS/INRIA Cascade David Pointcheval 31/68

Non-Malleability: NM− CPA Security Game

A

D, R

kdke G

Er
m* c*

c

m*, m' ← D
r random

R(m*,m)
vs. R(m',m) m = D(c)

Advnm−cpa
S (A) =

∣∣Pr[R(m∗,m)]− Pr[R(m′,m)]
∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 31/68

Additional Information

More information modelled by oracle access

• reaction attacks: oracle which answers, on c,
whether the ciphertext c is valid or not

• plaintext-checking attacks: oracle which answers,
on a pair (m, c), whether the plaintext m is really encrypted in c
or not (whether m = Dsk (c))

• chosen-ciphertext attacks (CCA): decryption oracle
(with the restriction not to use it on the challenge ciphertext)
=⇒ the adversary can obtain the plaintext of any ciphertext of its
choice (excepted the challenge)

• non-adaptive (CCA− 1) [Naor-Yung – STOC ’90]

only before receiving the challenge
• adaptive (CCA− 2) [Rackoff-Simon – Crypto ’91]

unlimited oracle access
ENS/CNRS/INRIA Cascade David Pointcheval 32/68

Additional Information

More information modelled by oracle access

• reaction attacks: oracle which answers, on c,
whether the ciphertext c is valid or not

• plaintext-checking attacks: oracle which answers,
on a pair (m, c), whether the plaintext m is really encrypted in c
or not (whether m = Dsk (c))

• chosen-ciphertext attacks (CCA): decryption oracle
(with the restriction not to use it on the challenge ciphertext)
=⇒ the adversary can obtain the plaintext of any ciphertext of its
choice (excepted the challenge)

• non-adaptive (CCA− 1) [Naor-Yung – STOC ’90]

only before receiving the challenge
• adaptive (CCA− 2) [Rackoff-Simon – Crypto ’91]

unlimited oracle access
ENS/CNRS/INRIA Cascade David Pointcheval 32/68

Additional Information

More information modelled by oracle access

• reaction attacks: oracle which answers, on c,
whether the ciphertext c is valid or not

• plaintext-checking attacks: oracle which answers,
on a pair (m, c), whether the plaintext m is really encrypted in c
or not (whether m = Dsk (c))

• chosen-ciphertext attacks (CCA): decryption oracle
(with the restriction not to use it on the challenge ciphertext)
=⇒ the adversary can obtain the plaintext of any ciphertext of its
choice (excepted the challenge)

• non-adaptive (CCA− 1) [Naor-Yung – STOC ’90]

only before receiving the challenge
• adaptive (CCA− 2) [Rackoff-Simon – Crypto ’91]

unlimited oracle access
ENS/CNRS/INRIA Cascade David Pointcheval 32/68

Additional Information

More information modelled by oracle access

• reaction attacks: oracle which answers, on c,
whether the ciphertext c is valid or not

• plaintext-checking attacks: oracle which answers,
on a pair (m, c), whether the plaintext m is really encrypted in c
or not (whether m = Dsk (c))

• chosen-ciphertext attacks (CCA): decryption oracle
(with the restriction not to use it on the challenge ciphertext)
=⇒ the adversary can obtain the plaintext of any ciphertext of its
choice (excepted the challenge)

• non-adaptive (CCA− 1) [Naor-Yung – STOC ’90]

only before receiving the challenge
• adaptive (CCA− 2) [Rackoff-Simon – Crypto ’91]

unlimited oracle access
ENS/CNRS/INRIA Cascade David Pointcheval 32/68

Additional Information

More information modelled by oracle access

• reaction attacks: oracle which answers, on c,
whether the ciphertext c is valid or not

• plaintext-checking attacks: oracle which answers,
on a pair (m, c), whether the plaintext m is really encrypted in c
or not (whether m = Dsk (c))

• chosen-ciphertext attacks (CCA): decryption oracle
(with the restriction not to use it on the challenge ciphertext)
=⇒ the adversary can obtain the plaintext of any ciphertext of its
choice (excepted the challenge)

• non-adaptive (CCA− 1) [Naor-Yung – STOC ’90]

only before receiving the challenge
• adaptive (CCA− 2) [Rackoff-Simon – Crypto ’91]

unlimited oracle access
ENS/CNRS/INRIA Cascade David Pointcheval 32/68

Additional Information

More information modelled by oracle access

• reaction attacks: oracle which answers, on c,
whether the ciphertext c is valid or not

• plaintext-checking attacks: oracle which answers,
on a pair (m, c), whether the plaintext m is really encrypted in c
or not (whether m = Dsk (c))

• chosen-ciphertext attacks (CCA): decryption oracle
(with the restriction not to use it on the challenge ciphertext)
=⇒ the adversary can obtain the plaintext of any ciphertext of its
choice (excepted the challenge)

• non-adaptive (CCA− 1) [Naor-Yung – STOC ’90]

only before receiving the challenge
• adaptive (CCA− 2) [Rackoff-Simon – Crypto ’91]

unlimited oracle access
ENS/CNRS/INRIA Cascade David Pointcheval 32/68

IND− CCA Security Game

A

ENS/CNRS/INRIA Cascade David Pointcheval 33/68

IND− CCA Security Game

A

kdke G

ENS/CNRS/INRIA Cascade David Pointcheval 33/68

IND− CCA Security Game

A

kdke G

D
c

m

ENS/CNRS/INRIA Cascade David Pointcheval 33/68

IND− CCA Security Game

A
m1

m0

kdke G

D
c

m

ENS/CNRS/INRIA Cascade David Pointcheval 33/68

IND− CCA Security Game

A

b∈{0,1}
r random

m1

m0

kdke G

D
c

m

ENS/CNRS/INRIA Cascade David Pointcheval 33/68

IND− CCA Security Game

AEr
mb c*

b∈{0,1}
r random

m1

m0

kdke G

D
c

m

ENS/CNRS/INRIA Cascade David Pointcheval 33/68

IND− CCA Security Game

AEr
mb c*

b∈{0,1}
r random

m1

m0

kdke G

D
c

m

D
c ≠ c*

m

ENS/CNRS/INRIA Cascade David Pointcheval 33/68

IND− CCA Security Game

AEr
mb c*

b∈{0,1}
r random

m1

m0

kdke G

D
c

m

D
c ≠ c*

m
b’

ENS/CNRS/INRIA Cascade David Pointcheval 33/68

IND− CCA Security Game

AEr
mb c*

b∈{0,1}
r random

m1

m0

kdke G

D
c

m

D
c ≠ c*

m
b’b’ = b?

ENS/CNRS/INRIA Cascade David Pointcheval 33/68

IND− CCA Security Game

AEr
mb c*

b∈{0,1}
r random

m1

m0

kdke G

D
c

m

D
c ≠ c*

m
b’b’ = b?

The adversary can ask any decryption of its choice:
Chosen-Ciphertext Attacks (oracle access)

(sk ,pk)← K();(m0,m1, state)← AD(pk);

b R← {0,1};c = Epk (mb); b′ ← AD(state, c)

Advind−cca
S (A)=

∣∣Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0]
∣∣= ∣∣2× Pr[b′ = b]−1

∣∣
ENS/CNRS/INRIA Cascade David Pointcheval 33/68

Relations [Bellare-Desai-Pointcheval-Rogaway – Crypto ’98]

NM-CPA ⇐ NM-CCA1 ⇐ NM-CCA2

IND-CPA ⇐ IND-CCA1 ⇐ IND-CCA2

strong security:
CCA

minimal
security

weak security

OW-CPA

⇒ ⇔⇒

⇒
ENS/CNRS/INRIA Cascade David Pointcheval 34/68

Outline

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions

Cramer-Shoup Encryption Scheme

Generic Conversion

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 35/68

Cramer-Shoup Encryption Scheme [Cramer-Shoup – Crypto ’98]

Key Generation

• G = (〈g〉,×) group of order q

• sk = (x1, x2, y1, y2, z), where x1, x2, y1, y2, z
R← Zq

• pk = (g1,g2,H, c,d ,h), where
• g1, g2 are independent elements in G
• H a hash function (second-preimage resistant)
• c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , and h = gz

1

Encryption
u1 = gr

1, u2 = gr
2, e = m × hr , v = cr d rα where α = H(u1,u2,e)

ENS/CNRS/INRIA Cascade David Pointcheval 36/68

Cramer-Shoup Encryption Scheme [Cramer-Shoup – Crypto ’98]

Key Generation

• G = (〈g〉,×) group of order q

• sk = (x1, x2, y1, y2, z), where x1, x2, y1, y2, z
R← Zq

• pk = (g1,g2,H, c,d ,h), where
• g1, g2 are independent elements in G
• H a hash function (second-preimage resistant)
• c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , and h = gz

1

Encryption
u1 = gr

1, u2 = gr
2, e = m × hr , v = cr d rα where α = H(u1,u2,e)

ENS/CNRS/INRIA Cascade David Pointcheval 36/68

Cramer-Shoup Encryption Scheme vs. ElGamal

u1 = gr
1, u2 = gr

2, e = m × hr , v = cr d rα where α = H(u1,u2,e)

(u1,e) is an ElGamal ciphertext, with public key h = gz
1

Decryption

• since h = gz
1 , hr = uz

1 , thus m = e/uz
1

• since c = gx1
1 gx2

2 and d = gy1
1 gy2

2

cr = grx1
1 grx2

2 = ux1
1 ux2

2 d r = uy1
1 uy2

2

One thus first checks whether

v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e)

ENS/CNRS/INRIA Cascade David Pointcheval 37/68

Security of the Cramer-Shoup Encryption Scheme

Theorem
The Cramer-Shoup encryption scheme achieves IND− CCA
security, under the DDH assumption, and the second-preimage
resistance of H:

Advind−cca
CS (t) ≤ 2× Advddh

G (t) + SuccH(t) + 3qD/q

Let us prove this theorem, with a sequence of games, in which A is
an IND− CCA adversary against the Cramer-Shoup encryption
scheme.

ENS/CNRS/INRIA Cascade David Pointcheval 38/68

Security of the Cramer-Shoup Encryption Scheme

Theorem
The Cramer-Shoup encryption scheme achieves IND− CCA
security, under the DDH assumption, and the second-preimage
resistance of H:

Advind−cca
CS (t) ≤ 2× Advddh

G (t) + SuccH(t) + 3qD/q

Let us prove this theorem, with a sequence of games, in which A is
an IND− CCA adversary against the Cramer-Shoup encryption
scheme.

ENS/CNRS/INRIA Cascade David Pointcheval 38/68

Real Attack Game

 Challenger

● (pk, sk) ← Setup()
● Chooses a bit b
● c ← E(pk,m

b
)

● if b=b': 1
● else 0

Adversary
0 / 1

Game 0

pk
m0,m1

c

b'

Oracles

DSetup

Key Generation Oracle

x1, x2, y1, y2, z
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z)

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz
1 : pk = (g1,g2,H, c,d ,h)

Decryption Oracle

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz
1

ENS/CNRS/INRIA Cascade David Pointcheval 39/68

Proof: Invalid ciphertexts

• Game0: use of the oracles K, D
• Game1: we abort (with a random output b′)

in case of bad (invalid) accepted ciphertext,
where invalid ciphertext means logg1

u1 6= logg2
u2

Event F
A submits a bad accepted ciphertext

(note: this is not computationally detectable)

The advantage in Game1 is: Pr1[b′ = b|F] = 1/2

Pr
Game0

[F] = Pr
Game1

[F] Pr
Game1

[b′ = b|¬F] = Pr
Game0

[b′ = b|¬F]

=⇒ Hop-S-Negl: AdvGame1 ≥ AdvGame0 − Pr[F]

ENS/CNRS/INRIA Cascade David Pointcheval 40/68

Proof: Invalid ciphertexts

• Game0: use of the oracles K, D
• Game1: we abort (with a random output b′)

in case of bad (invalid) accepted ciphertext,
where invalid ciphertext means logg1

u1 6= logg2
u2

Event F
A submits a bad accepted ciphertext

(note: this is not computationally detectable)

The advantage in Game1 is: Pr1[b′ = b|F] = 1/2

Pr
Game0

[F] = Pr
Game1

[F] Pr
Game1

[b′ = b|¬F] = Pr
Game0

[b′ = b|¬F]

=⇒ Hop-S-Negl: AdvGame1 ≥ AdvGame0 − Pr[F]

ENS/CNRS/INRIA Cascade David Pointcheval 40/68

Proof: Invalid ciphertexts

• Game0: use of the oracles K, D
• Game1: we abort (with a random output b′)

in case of bad (invalid) accepted ciphertext,
where invalid ciphertext means logg1

u1 6= logg2
u2

Event F
A submits a bad accepted ciphertext

(note: this is not computationally detectable)

The advantage in Game1 is: Pr1[b′ = b|F] = 1/2

Pr
Game0

[F] = Pr
Game1

[F] Pr
Game1

[b′ = b|¬F] = Pr
Game0

[b′ = b|¬F]

=⇒ Hop-S-Negl: AdvGame1 ≥ AdvGame0 − Pr[F]

ENS/CNRS/INRIA Cascade David Pointcheval 40/68

Proof: Invalid ciphertexts

• Game0: use of the oracles K, D
• Game1: we abort (with a random output b′)

in case of bad (invalid) accepted ciphertext,
where invalid ciphertext means logg1

u1 6= logg2
u2

Event F
A submits a bad accepted ciphertext

(note: this is not computationally detectable)

The advantage in Game1 is: Pr1[b′ = b|F] = 1/2

Pr
Game0

[F] = Pr
Game1

[F] Pr
Game1

[b′ = b|¬F] = Pr
Game0

[b′ = b|¬F]

=⇒ Hop-S-Negl: AdvGame1 ≥ AdvGame0 − Pr[F]

ENS/CNRS/INRIA Cascade David Pointcheval 40/68

Details: Shoup’s Lemma

AdvGame1 = 2× Pr
Game1

[b′ = b]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 41/68

Details: Shoup’s Lemma

AdvGame1 = 2× Pr
Game1

[b′ = b]− 1

= 2× Pr
Game1

[b′ = b|¬F] Pr
Game1

[¬F]

+2× Pr
Game1

[b′ = b|F] Pr
Game1

[F]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 41/68

Details: Shoup’s Lemma

AdvGame1 = 2× Pr
Game1

[b′ = b]− 1

= 2× Pr
Game1

[b′ = b|¬F] Pr
Game1

[¬F]

+2× Pr
Game1

[b′ = b|F] Pr
Game1

[F]− 1

= 2× Pr
Game0

[b′ = b|¬F] Pr
Game0

[¬F] + Pr
Game0

[F]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 41/68

Details: Shoup’s Lemma

AdvGame1 = 2× Pr
Game1

[b′ = b]− 1

= 2× Pr
Game1

[b′ = b|¬F] Pr
Game1

[¬F]

+2× Pr
Game1

[b′ = b|F] Pr
Game1

[F]− 1

= 2× Pr
Game0

[b′ = b|¬F] Pr
Game0

[¬F] + Pr
Game0

[F]− 1

= 2× Pr
Game0

[b′ = b]− 2× Pr
Game0

[b′ = b|F] Pr
Game0

[F]

+ Pr
Game0

[F]− 1

ENS/CNRS/INRIA Cascade David Pointcheval 41/68

Details: Shoup’s Lemma

AdvGame1 = 2× Pr
Game1

[b′ = b]− 1

= 2× Pr
Game1

[b′ = b|¬F] Pr
Game1

[¬F]

+2× Pr
Game1

[b′ = b|F] Pr
Game1

[F]− 1

= 2× Pr
Game0

[b′ = b|¬F] Pr
Game0

[¬F] + Pr
Game0

[F]− 1

= 2× Pr
Game0

[b′ = b]− 2× Pr
Game0

[b′ = b|F] Pr
Game0

[F]

+ Pr
Game0

[F]− 1

= AdvGame0 − Pr
Game0

[F](2× Pr
Game0

[b′ = b|F]− 1)

ENS/CNRS/INRIA Cascade David Pointcheval 41/68

Details: Shoup’s Lemma

AdvGame1 = 2× Pr
Game1

[b′ = b]− 1

= 2× Pr
Game1

[b′ = b|¬F] Pr
Game1

[¬F]

+2× Pr
Game1

[b′ = b|F] Pr
Game1

[F]− 1

= 2× Pr
Game0

[b′ = b|¬F] Pr
Game0

[¬F] + Pr
Game0

[F]− 1

= 2× Pr
Game0

[b′ = b]− 2× Pr
Game0

[b′ = b|F] Pr
Game0

[F]

+ Pr
Game0

[F]− 1

= AdvGame0 − Pr
Game0

[F](2× Pr
Game0

[b′ = b|F]− 1)

≥ AdvGame0 − Pr
Game0

[F]

ENS/CNRS/INRIA Cascade David Pointcheval 41/68

Details: Bad Accept

In order to evaluate Pr[F], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = ux1+αy1
1 ux2+αy2

2

The adversary just knows the public key:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v = r1(x1 + αy1) + sr2(x2 + αy2)

The system is under-defined: for any v , there are (x1, x2, y1, y2)

that satisfy the system =⇒ v is unpredictable
=⇒ Pr[F] ≤ qD/q =⇒ AdvGame1 ≥ AdvGame0 − qD/q

ENS/CNRS/INRIA Cascade David Pointcheval 42/68

Details: Bad Accept

In order to evaluate Pr[F], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = ux1+αy1
1 ux2+αy2

2

The adversary just knows the public key:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v = r1(x1 + αy1) + sr2(x2 + αy2)

The system is under-defined: for any v , there are (x1, x2, y1, y2)

that satisfy the system =⇒ v is unpredictable
=⇒ Pr[F] ≤ qD/q =⇒ AdvGame1 ≥ AdvGame0 − qD/q

ENS/CNRS/INRIA Cascade David Pointcheval 42/68

Details: Bad Accept

In order to evaluate Pr[F], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = ux1+αy1
1 ux2+αy2

2

The adversary just knows the public key:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v = r1(x1 + αy1) + sr2(x2 + αy2)

The system is under-defined: for any v , there are (x1, x2, y1, y2)

that satisfy the system =⇒ v is unpredictable
=⇒ Pr[F] ≤ qD/q =⇒ AdvGame1 ≥ AdvGame0 − qD/q

ENS/CNRS/INRIA Cascade David Pointcheval 42/68

Details: Bad Accept

In order to evaluate Pr[F], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = ux1+αy1
1 ux2+αy2

2

The adversary just knows the public key:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v = r1(x1 + αy1) + sr2(x2 + αy2)

The system is under-defined: for any v , there are (x1, x2, y1, y2)

that satisfy the system =⇒ v is unpredictable
=⇒ Pr[F] ≤ qD/q =⇒ AdvGame1 ≥ AdvGame0 − qD/q

ENS/CNRS/INRIA Cascade David Pointcheval 42/68

Details: Bad Accept

In order to evaluate Pr[F], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = ux1+αy1
1 ux2+αy2

2

The adversary just knows the public key:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v = r1(x1 + αy1) + sr2(x2 + αy2)

The system is under-defined: for any v , there are (x1, x2, y1, y2)

that satisfy the system =⇒ v is unpredictable
=⇒ Pr[F] ≤ qD/q =⇒ AdvGame1 ≥ AdvGame0 − qD/q

ENS/CNRS/INRIA Cascade David Pointcheval 42/68

Details: Bad Accept

In order to evaluate Pr[F], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = ux1+αy1
1 ux2+αy2

2

The adversary just knows the public key:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v = r1(x1 + αy1) + sr2(x2 + αy2)

The system is under-defined: for any v , there are (x1, x2, y1, y2)

that satisfy the system =⇒ v is unpredictable
=⇒ Pr[F] ≤ qD/q =⇒ AdvGame1 ≥ AdvGame0 − qD/q

ENS/CNRS/INRIA Cascade David Pointcheval 42/68

Details: Bad Accept

In order to evaluate Pr[F], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = ux1+αy1
1 ux2+αy2

2

The adversary just knows the public key:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v = r1(x1 + αy1) + sr2(x2 + αy2)

The system is under-defined: for any v , there are (x1, x2, y1, y2)

that satisfy the system =⇒ v is unpredictable
=⇒ Pr[F] ≤ qD/q =⇒ AdvGame1 ≥ AdvGame0 − qD/q

ENS/CNRS/INRIA Cascade David Pointcheval 42/68

Proof: Simulations

• Game2: we use the simulations

Key Generation Simulation

x1, x2, y1, y2, z1, z2
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z1, z2)

g2 = gs
1

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz1
1 gz2

2 : pk = (g1,g2,H, c,d ,h)

z = z1 + sz2

Distribution of the public key: Identical

Decryption Simulation

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz1
1 uz2

2

Under the assumption of ¬F, perfect simulation
=⇒ Hop-S-Perfect: AdvGame2 = AdvGame1

ENS/CNRS/INRIA Cascade David Pointcheval 43/68

Proof: Simulations

• Game2: we use the simulations

Key Generation Simulation

x1, x2, y1, y2, z1, z2
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z1, z2)

g2 = gs
1

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz1
1 gz2

2 : pk = (g1,g2,H, c,d ,h)

z = z1 + sz2

Distribution of the public key: Identical

Decryption Simulation

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz1
1 uz2

2

Under the assumption of ¬F, perfect simulation
=⇒ Hop-S-Perfect: AdvGame2 = AdvGame1

ENS/CNRS/INRIA Cascade David Pointcheval 43/68

Proof: Simulations

• Game2: we use the simulations

Key Generation Simulation

x1, x2, y1, y2, z1, z2
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z1, z2)

g2 = gs
1

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz1
1 gz2

2 : pk = (g1,g2,H, c,d ,h)

z = z1 + sz2

Distribution of the public key: Identical

Decryption Simulation

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz1
1 uz2

2

Under the assumption of ¬F, perfect simulation
=⇒ Hop-S-Perfect: AdvGame2 = AdvGame1

ENS/CNRS/INRIA Cascade David Pointcheval 43/68

Proof: Simulations

• Game2: we use the simulations

Key Generation Simulation

x1, x2, y1, y2, z1, z2
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z1, z2)

g2 = gs
1

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz1
1 gz2

2 : pk = (g1,g2,H, c,d ,h)

z = z1 + sz2

Distribution of the public key: Identical

Decryption Simulation

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz1
1 uz2

2

Under the assumption of ¬F, perfect simulation
=⇒ Hop-S-Perfect: AdvGame2 = AdvGame1

ENS/CNRS/INRIA Cascade David Pointcheval 43/68

Proof: Simulations

• Game2: we use the simulations

Key Generation Simulation

x1, x2, y1, y2, z1, z2
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z1, z2)

g2 = gs
1

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz1
1 gz2

2 : pk = (g1,g2,H, c,d ,h)

z = z1 + sz2

Distribution of the public key: Identical

Decryption Simulation

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz1
1 uz2

2

Under the assumption of ¬F, perfect simulation
=⇒ Hop-S-Perfect: AdvGame2 = AdvGame1

ENS/CNRS/INRIA Cascade David Pointcheval 43/68

Proof: Simulations

• Game2: we use the simulations

Key Generation Simulation

x1, x2, y1, y2, z1, z2
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z1, z2)

g2 = gs
1

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz1
1 gz2

2 : pk = (g1,g2,H, c,d ,h)

z = z1 + sz2

Distribution of the public key: Identical

Decryption Simulation

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz1
1 uz2

2

Under the assumption of ¬F, perfect simulation
=⇒ Hop-S-Perfect: AdvGame2 = AdvGame1

ENS/CNRS/INRIA Cascade David Pointcheval 43/68

Proof: Computable Adversary

• Game3: we do no longer exclude bad accepted ciphertexts
=⇒ Hop-S-Negl:
AdvGame3 ≥ AdvGame2 − Pr[F] ≥ AdvGame2 − qD/q

This is technical: to make the simulator/adversary computable

ENS/CNRS/INRIA Cascade David Pointcheval 44/68

Proof: Computable Adversary

• Game3: we do no longer exclude bad accepted ciphertexts
=⇒ Hop-S-Negl:
AdvGame3 ≥ AdvGame2 − Pr[F] ≥ AdvGame2 − qD/q

This is technical: to make the simulator/adversary computable

ENS/CNRS/INRIA Cascade David Pointcheval 44/68

Proof: Computable Adversary

• Game3: we do no longer exclude bad accepted ciphertexts
=⇒ Hop-S-Negl:
AdvGame3 ≥ AdvGame2 − Pr[F] ≥ AdvGame2 − qD/q

This is technical: to make the simulator/adversary computable

ENS/CNRS/INRIA Cascade David Pointcheval 44/68

Proof: Computable Adversary

• Game3: we do no longer exclude bad accepted ciphertexts
=⇒ Hop-S-Negl:
AdvGame3 ≥ AdvGame2 − Pr[F] ≥ AdvGame2 − qD/q

This is technical: to make the simulator/adversary computable

ENS/CNRS/INRIA Cascade David Pointcheval 44/68

Proof: DDH Assumption

• Game4: we modify the generation of the challenge ciphertext:

Original Challenge

Random choice: b R← {0,1}, r R← Zq [α = H(u1, u2, e)]

u1 = gr
1, u2 = gr

2, e = mb × hr , v = cr d rα

New Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

With (U = gr
1,V = gr

2): Uz1V z2 = hr and Ux1+αy1V x2+αy2 = cr d rα

=⇒ Hop-S-Perfect: AdvGame4 = AdvGame3

ENS/CNRS/INRIA Cascade David Pointcheval 45/68

Proof: DDH Assumption

• Game4: we modify the generation of the challenge ciphertext:

Original Challenge

Random choice: b R← {0,1}, r R← Zq [α = H(u1, u2, e)]

u1 = gr
1, u2 = gr

2, e = mb × hr , v = cr d rα

New Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

With (U = gr
1,V = gr

2): Uz1V z2 = hr and Ux1+αy1V x2+αy2 = cr d rα

=⇒ Hop-S-Perfect: AdvGame4 = AdvGame3

ENS/CNRS/INRIA Cascade David Pointcheval 45/68

Proof: DDH Assumption

• Game4: we modify the generation of the challenge ciphertext:

Original Challenge

Random choice: b R← {0,1}, r R← Zq [α = H(u1, u2, e)]

u1 = gr
1, u2 = gr

2, e = mb × hr , v = cr d rα

New Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

With (U = gr
1,V = gr

2): Uz1V z2 = hr and Ux1+αy1V x2+αy2 = cr d rα

=⇒ Hop-S-Perfect: AdvGame4 = AdvGame3

ENS/CNRS/INRIA Cascade David Pointcheval 45/68

Proof: DDH Assumption

• Game4: we modify the generation of the challenge ciphertext:

Original Challenge

Random choice: b R← {0,1}, r R← Zq [α = H(u1, u2, e)]

u1 = gr
1, u2 = gr

2, e = mb × hr , v = cr d rα

New Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

With (U = gr
1,V = gr

2): Uz1V z2 = hr and Ux1+αy1V x2+αy2 = cr d rα

=⇒ Hop-S-Perfect: AdvGame4 = AdvGame3

ENS/CNRS/INRIA Cascade David Pointcheval 45/68

Proof: DDH Assumption

• Game4: we modify the generation of the challenge ciphertext:

Original Challenge

Random choice: b R← {0,1}, r R← Zq [α = H(u1, u2, e)]

u1 = gr
1, u2 = gr

2, e = mb × hr , v = cr d rα

New Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

With (U = gr
1,V = gr

2): Uz1V z2 = hr and Ux1+αy1V x2+αy2 = cr d rα

=⇒ Hop-S-Perfect: AdvGame4 = AdvGame3

ENS/CNRS/INRIA Cascade David Pointcheval 45/68

Proof: DDH Assumption

• Game5: we modify the generation of the challenge ciphertext:

Previous Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

New Challenge 2

Given (U = gr1
1 ,V = gr2

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

The input changes from (U = gr
1,V = gr

2) to (U = gr1
1 ,V = gr2

2):
=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 46/68

Proof: DDH Assumption

• Game5: we modify the generation of the challenge ciphertext:

Previous Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

New Challenge 2

Given (U = gr1
1 ,V = gr2

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

The input changes from (U = gr
1,V = gr

2) to (U = gr1
1 ,V = gr2

2):
=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 46/68

Proof: DDH Assumption

• Game5: we modify the generation of the challenge ciphertext:

Previous Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

New Challenge 2

Given (U = gr1
1 ,V = gr2

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

The input changes from (U = gr
1,V = gr

2) to (U = gr1
1 ,V = gr2

2):
=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 46/68

Proof: DDH Assumption

• Game5: we modify the generation of the challenge ciphertext:

Previous Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

New Challenge 2

Given (U = gr1
1 ,V = gr2

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

The input changes from (U = gr
1,V = gr

2) to (U = gr1
1 ,V = gr2

2):
=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 46/68

Proof: DDH Assumption

• Game5: we modify the generation of the challenge ciphertext:

Previous Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

New Challenge 2

Given (U = gr1
1 ,V = gr2

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

The input changes from (U = gr
1,V = gr

2) to (U = gr1
1 ,V = gr2

2):
=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh

G (t)

ENS/CNRS/INRIA Cascade David Pointcheval 46/68

Proof: DDH Assumption

The input from outside changes from (U = gr
1,V = gr

2) (a CDH tuple)
to (U = gr1

1 ,V = gr2
2) (a random tuple):

Pr
Game4

[b′ = b]− Pr
Game5

[b′ = b] ≤ Advddh
G (t)

=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh
G (t)

(Since Adv = 2× Pr[b′ = b]− 1)

ENS/CNRS/INRIA Cascade David Pointcheval 47/68

Proof: DDH Assumption

The input from outside changes from (U = gr
1,V = gr

2) (a CDH tuple)
to (U = gr1

1 ,V = gr2
2) (a random tuple):

Pr
Game4

[b′ = b]− Pr
Game5

[b′ = b] ≤ Advddh
G (t)

=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh
G (t)

(Since Adv = 2× Pr[b′ = b]− 1)

ENS/CNRS/INRIA Cascade David Pointcheval 47/68

Proof: DDH Assumption

The input from outside changes from (U = gr
1,V = gr

2) (a CDH tuple)
to (U = gr1

1 ,V = gr2
2) (a random tuple):

Pr
Game4

[b′ = b]− Pr
Game5

[b′ = b] ≤ Advddh
G (t)

=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh
G (t)

(Since Adv = 2× Pr[b′ = b]− 1)

ENS/CNRS/INRIA Cascade David Pointcheval 47/68

Proof: DDH Assumption

The input from outside changes from (U = gr
1,V = gr

2) (a CDH tuple)
to (U = gr1

1 ,V = gr2
2) (a random tuple):

Pr
Game4

[b′ = b]− Pr
Game5

[b′ = b] ≤ Advddh
G (t)

=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh
G (t)

(Since Adv = 2× Pr[b′ = b]− 1)

ENS/CNRS/INRIA Cascade David Pointcheval 47/68

Proof: Collision

• Game6: we abort (with a random output b′)
in case of second pre-image with a decryption query

Event FH

A submits a ciphertext with the same α as the challenge ciphertext,
but a different initial triple: (u1,u2,e) 6= (u∗1,u

∗
2,e
∗), but α = α∗, were

“*” are for all the elements related to the challenge ciphertext.

Second pre-image of H: =⇒ Pr[FH] ≤ SuccH(t)

The advantage in Game6 is: PrGame6 [b′ = b|FH] = 1/2

Pr
Game5

[FH] = Pr
Game6

[FH] Pr
Game6

[b′ = b|¬FH] = Pr
Game5

[b′ = b|¬FH]

=⇒ Hop-S-Negl: AdvGame6 ≥ AdvGame5 − Pr[FH]

AdvGame6 ≥ AdvGame5 − SuccH(t)
ENS/CNRS/INRIA Cascade David Pointcheval 48/68

Proof: Collision

• Game6: we abort (with a random output b′)
in case of second pre-image with a decryption query

Event FH

A submits a ciphertext with the same α as the challenge ciphertext,
but a different initial triple: (u1,u2,e) 6= (u∗1,u

∗
2,e
∗), but α = α∗, were

“*” are for all the elements related to the challenge ciphertext.

Second pre-image of H: =⇒ Pr[FH] ≤ SuccH(t)

The advantage in Game6 is: PrGame6 [b′ = b|FH] = 1/2

Pr
Game5

[FH] = Pr
Game6

[FH] Pr
Game6

[b′ = b|¬FH] = Pr
Game5

[b′ = b|¬FH]

=⇒ Hop-S-Negl: AdvGame6 ≥ AdvGame5 − Pr[FH]

AdvGame6 ≥ AdvGame5 − SuccH(t)
ENS/CNRS/INRIA Cascade David Pointcheval 48/68

Proof: Collision

• Game6: we abort (with a random output b′)
in case of second pre-image with a decryption query

Event FH

A submits a ciphertext with the same α as the challenge ciphertext,
but a different initial triple: (u1,u2,e) 6= (u∗1,u

∗
2,e
∗), but α = α∗, were

“*” are for all the elements related to the challenge ciphertext.

Second pre-image of H: =⇒ Pr[FH] ≤ SuccH(t)

The advantage in Game6 is: PrGame6 [b′ = b|FH] = 1/2

Pr
Game5

[FH] = Pr
Game6

[FH] Pr
Game6

[b′ = b|¬FH] = Pr
Game5

[b′ = b|¬FH]

=⇒ Hop-S-Negl: AdvGame6 ≥ AdvGame5 − Pr[FH]

AdvGame6 ≥ AdvGame5 − SuccH(t)
ENS/CNRS/INRIA Cascade David Pointcheval 48/68

Proof: Collision

• Game6: we abort (with a random output b′)
in case of second pre-image with a decryption query

Event FH

A submits a ciphertext with the same α as the challenge ciphertext,
but a different initial triple: (u1,u2,e) 6= (u∗1,u

∗
2,e
∗), but α = α∗, were

“*” are for all the elements related to the challenge ciphertext.

Second pre-image of H: =⇒ Pr[FH] ≤ SuccH(t)

The advantage in Game6 is: PrGame6 [b′ = b|FH] = 1/2

Pr
Game5

[FH] = Pr
Game6

[FH] Pr
Game6

[b′ = b|¬FH] = Pr
Game5

[b′ = b|¬FH]

=⇒ Hop-S-Negl: AdvGame6 ≥ AdvGame5 − Pr[FH]

AdvGame6 ≥ AdvGame5 − SuccH(t)
ENS/CNRS/INRIA Cascade David Pointcheval 48/68

Proof: Invalid ciphertexts

• Game7: we abort (with a random output b′)
in case of bad accepted ciphertext,
we do as in Game1

Event F′

A submits a bad accepted ciphertext
(note: this is not computationally detectable)

The advantage in Game7 is: PrGame7 [b′ = b|F′] = 1/2

Pr
Game6

[F′] = Pr
Game7

[F′] Pr
Game7

[b′ = b|¬F′] = Pr
Game6

[b′ = b|¬F′]

=⇒ Hop-S-Negl: AdvGame7 ≥ AdvGame6 − Pr[F′]

ENS/CNRS/INRIA Cascade David Pointcheval 49/68

Proof: Invalid ciphertexts

• Game7: we abort (with a random output b′)
in case of bad accepted ciphertext,
we do as in Game1

Event F′

A submits a bad accepted ciphertext
(note: this is not computationally detectable)

The advantage in Game7 is: PrGame7 [b′ = b|F′] = 1/2

Pr
Game6

[F′] = Pr
Game7

[F′] Pr
Game7

[b′ = b|¬F′] = Pr
Game6

[b′ = b|¬F′]

=⇒ Hop-S-Negl: AdvGame7 ≥ AdvGame6 − Pr[F′]

ENS/CNRS/INRIA Cascade David Pointcheval 49/68

Proof: Invalid ciphertexts

• Game7: we abort (with a random output b′)
in case of bad accepted ciphertext,
we do as in Game1

Event F′

A submits a bad accepted ciphertext
(note: this is not computationally detectable)

The advantage in Game7 is: PrGame7 [b′ = b|F′] = 1/2

Pr
Game6

[F′] = Pr
Game7

[F′] Pr
Game7

[b′ = b|¬F′] = Pr
Game6

[b′ = b|¬F′]

=⇒ Hop-S-Negl: AdvGame7 ≥ AdvGame6 − Pr[F′]

ENS/CNRS/INRIA Cascade David Pointcheval 49/68

Details: Bad Accept

In order to evaluate Pr[F′], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = u1
x1+αy1u2

x2+αy2

Let us use “*” for all the elements related to the challenge ciphertext.

Three cases may appear:

• Case 1: (u1,u2,e) = (u∗1,u
∗
2,e
∗), then necessarily

v 6= v∗ = Ux1+α
∗y1V x2+α

∗y2 = u∗1
x1+α

∗y1u∗2
x2+α

∗y2

Then, the ciphertext is rejected =⇒ Pr[F′1] = 0

• Case 2: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), but α = α∗:

From the previous game, Aborts =⇒ Pr[F′2] = 0

• Case 3: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), and α 6= α∗

ENS/CNRS/INRIA Cascade David Pointcheval 50/68

Details: Bad Accept

In order to evaluate Pr[F′], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = u1
x1+αy1u2

x2+αy2

Let us use “*” for all the elements related to the challenge ciphertext.

Three cases may appear:

• Case 1: (u1,u2,e) = (u∗1,u
∗
2,e
∗), then necessarily

v 6= v∗ = Ux1+α
∗y1V x2+α

∗y2 = u∗1
x1+α

∗y1u∗2
x2+α

∗y2

Then, the ciphertext is rejected =⇒ Pr[F′1] = 0

• Case 2: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), but α = α∗:

From the previous game, Aborts =⇒ Pr[F′2] = 0

• Case 3: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), and α 6= α∗

ENS/CNRS/INRIA Cascade David Pointcheval 50/68

Details: Bad Accept

In order to evaluate Pr[F′], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = u1
x1+αy1u2

x2+αy2

Let us use “*” for all the elements related to the challenge ciphertext.

Three cases may appear:

• Case 1: (u1,u2,e) = (u∗1,u
∗
2,e
∗), then necessarily

v 6= v∗ = Ux1+α
∗y1V x2+α

∗y2 = u∗1
x1+α

∗y1u∗2
x2+α

∗y2

Then, the ciphertext is rejected =⇒ Pr[F′1] = 0

• Case 2: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), but α = α∗:

From the previous game, Aborts =⇒ Pr[F′2] = 0

• Case 3: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), and α 6= α∗

ENS/CNRS/INRIA Cascade David Pointcheval 50/68

Details: Bad Accept

In order to evaluate Pr[F′], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = u1
x1+αy1u2

x2+αy2

Let us use “*” for all the elements related to the challenge ciphertext.

Three cases may appear:

• Case 1: (u1,u2,e) = (u∗1,u
∗
2,e
∗), then necessarily

v 6= v∗ = Ux1+α
∗y1V x2+α

∗y2 = u∗1
x1+α

∗y1u∗2
x2+α

∗y2

Then, the ciphertext is rejected =⇒ Pr[F′1] = 0

• Case 2: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), but α = α∗:

From the previous game, Aborts =⇒ Pr[F′2] = 0

• Case 3: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), and α 6= α∗

ENS/CNRS/INRIA Cascade David Pointcheval 50/68

Details: Bad Accept

In order to evaluate Pr[F′], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = u1
x1+αy1u2

x2+αy2

Let us use “*” for all the elements related to the challenge ciphertext.

Three cases may appear:

• Case 1: (u1,u2,e) = (u∗1,u
∗
2,e
∗), then necessarily

v 6= v∗ = Ux1+α
∗y1V x2+α

∗y2 = u∗1
x1+α

∗y1u∗2
x2+α

∗y2

Then, the ciphertext is rejected =⇒ Pr[F′1] = 0

• Case 2: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), but α = α∗:

From the previous game, Aborts =⇒ Pr[F′2] = 0

• Case 3: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), and α 6= α∗

ENS/CNRS/INRIA Cascade David Pointcheval 50/68

Details: Bad Accept

In order to evaluate Pr[F′], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = u1
x1+αy1u2

x2+αy2

Let us use “*” for all the elements related to the challenge ciphertext.

Three cases may appear:

• Case 1: (u1,u2,e) = (u∗1,u
∗
2,e
∗), then necessarily

v 6= v∗ = Ux1+α
∗y1V x2+α

∗y2 = u∗1
x1+α

∗y1u∗2
x2+α

∗y2

Then, the ciphertext is rejected =⇒ Pr[F′1] = 0

• Case 2: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), but α = α∗:

From the previous game, Aborts =⇒ Pr[F′2] = 0

• Case 3: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), and α 6= α∗

ENS/CNRS/INRIA Cascade David Pointcheval 50/68

Details: Bad Accept

In order to evaluate Pr[F′], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = u1
x1+αy1u2

x2+αy2

Let us use “*” for all the elements related to the challenge ciphertext.

Three cases may appear:

• Case 1: (u1,u2,e) = (u∗1,u
∗
2,e
∗), then necessarily

v 6= v∗ = Ux1+α
∗y1V x2+α

∗y2 = u∗1
x1+α

∗y1u∗2
x2+α

∗y2

Then, the ciphertext is rejected =⇒ Pr[F′1] = 0

• Case 2: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), but α = α∗:

From the previous game, Aborts =⇒ Pr[F′2] = 0

• Case 3: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), and α 6= α∗

ENS/CNRS/INRIA Cascade David Pointcheval 50/68

Details: Bad Accept

In order to evaluate Pr[F′], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = u1
x1+αy1u2

x2+αy2

Let us use “*” for all the elements related to the challenge ciphertext.

Three cases may appear:

• Case 1: (u1,u2,e) = (u∗1,u
∗
2,e
∗), then necessarily

v 6= v∗ = Ux1+α
∗y1V x2+α

∗y2 = u∗1
x1+α

∗y1u∗2
x2+α

∗y2

Then, the ciphertext is rejected =⇒ Pr[F′1] = 0

• Case 2: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), but α = α∗:

From the previous game, Aborts =⇒ Pr[F′2] = 0

• Case 3: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), and α 6= α∗

ENS/CNRS/INRIA Cascade David Pointcheval 50/68

Details: Bad Accept (Case 3)

The adversary knows the public key, and the (invalid) challenge
ciphertext:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

v∗ = Ux1+α
∗y1V x2+α

∗y2 = gr∗1 (x1+α
∗y1)

1 gr∗2 (x2+α
∗y2)

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v∗ = r∗1 (x1 + α∗y1) + sr∗2 (x2 + α∗y2)

log v = r1(x1 + αy1) + sr2(x2 + αy2)

ENS/CNRS/INRIA Cascade David Pointcheval 51/68

Details: Bad Accept (Case 3)

The adversary knows the public key, and the (invalid) challenge
ciphertext:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

v∗ = Ux1+α
∗y1V x2+α

∗y2 = gr∗1 (x1+α
∗y1)

1 gr∗2 (x2+α
∗y2)

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v∗ = r∗1 (x1 + α∗y1) + sr∗2 (x2 + α∗y2)

log v = r1(x1 + αy1) + sr2(x2 + αy2)

ENS/CNRS/INRIA Cascade David Pointcheval 51/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ =

∣∣∣∣∣∣∣∣∣
1 s 0 0
0 0 1 s
r∗1 sr∗2 r∗1α

∗ sr∗2α
∗

r1 sr2 r1α sr2α

∣∣∣∣∣∣∣∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ =

∣∣∣∣∣∣∣∣∣
1 s 0 0
0 0 1 s
r∗1 sr∗2 r∗1α

∗ sr∗2α
∗

r1 sr2 r1α sr2α

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
0 1 s

sr∗2 r∗1α
∗ sr∗2α

∗

sr2 r1α sr2α

∣∣∣∣∣∣∣− s ×

∣∣∣∣∣∣∣
0 1 s
r∗1 r∗1α

∗ sr∗2α
∗

r1 r1α sr2α

∣∣∣∣∣∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ =

∣∣∣∣∣∣∣
0 1 s

sr∗2 r∗1α
∗ sr∗2α

∗

sr2 r1α sr2α

∣∣∣∣∣∣∣− s ×

∣∣∣∣∣∣∣
0 1 s
r∗1 r∗1α

∗ sr∗2α
∗

r1 r1α sr2α

∣∣∣∣∣∣∣

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ =

∣∣∣∣∣∣∣
0 1 s

sr∗2 r∗1α
∗ sr∗2α

∗

sr2 r1α sr2α

∣∣∣∣∣∣∣− s ×

∣∣∣∣∣∣∣
0 1 s
r∗1 r∗1α

∗ sr∗2α
∗

r1 r1α sr2α

∣∣∣∣∣∣∣
= s2 ×


∣∣∣∣∣∣∣

0 1 1
r∗2 r∗1α

∗ r∗2α
∗

r2 r1α r2α

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

0 1 1
r∗1 r∗1α

∗ r∗2α
∗

r1 r1α r2α

∣∣∣∣∣∣∣


ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 ×


∣∣∣∣∣∣∣

0 1 1
r∗2 r∗1α

∗ r∗2α
∗

r2 r1α r2α

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

0 1 1
r∗1 r∗1α

∗ r∗2α
∗

r1 r1α r2α

∣∣∣∣∣∣∣


ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 ×


∣∣∣∣∣∣∣

0 1 1
r∗2 r∗1α

∗ r∗2α
∗

r2 r1α r2α

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

0 1 1
r∗1 r∗1α

∗ r∗2α
∗

r1 r1α r2α

∣∣∣∣∣∣∣


= s2 ×


r2 ×

∣∣∣∣∣ 1 1
r∗1α
∗ r∗2α

∗

∣∣∣∣∣ − r∗2 ×

∣∣∣∣∣ 1 1
r1α r2α

∣∣∣∣∣
−r1 ×

∣∣∣∣∣ 1 1
r∗1α
∗ r∗2α

∗

∣∣∣∣∣ + r∗1 ×

∣∣∣∣∣ 1 1
r1α r2α

∣∣∣∣∣



ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 ×


r2 ×

∣∣∣∣∣ 1 1
r∗1α
∗ r∗2α

∗

∣∣∣∣∣ − r∗2 ×

∣∣∣∣∣ 1 1
r1α r2α

∣∣∣∣∣
−r1 ×

∣∣∣∣∣ 1 1
r∗1α
∗ r∗2α

∗

∣∣∣∣∣ + r∗1 ×

∣∣∣∣∣ 1 1
r1α r2α

∣∣∣∣∣



ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 ×


r2 ×

∣∣∣∣∣ 1 1
r∗1α
∗ r∗2α

∗

∣∣∣∣∣ − r∗2 ×

∣∣∣∣∣ 1 1
r1α r2α

∣∣∣∣∣
−r1 ×

∣∣∣∣∣ 1 1
r∗1α
∗ r∗2α

∗

∣∣∣∣∣ + r∗1 ×

∣∣∣∣∣ 1 1
r1α r2α

∣∣∣∣∣


= s2 ×

(
r2 × (r∗2 − r∗1)× α∗ − r∗2 × (r2 − r1)× α
−r1 × (r∗2 − r∗1)× α∗ + r∗1 × (r2 − r1)× α

)

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 ×

(
r2 × (r∗2 − r∗1)× α∗ − r∗2 × (r2 − r1)× α
−r1 × (r∗2 − r∗1)× α∗ + r∗1 × (r2 − r1)× α

)

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 ×

(
r2 × (r∗2 − r∗1)× α∗ − r∗2 × (r2 − r1)× α
−r1 × (r∗2 − r∗1)× α∗ + r∗1 × (r2 − r1)× α

)
= s2 × ((r2 − r1)× (r∗2 − r∗1)× α∗ − (r∗2 − r∗1)× (r2 − r1)× α)

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 × ((r2 − r1)× (r∗2 − r∗1)× α∗ − (r∗2 − r∗1)× (r2 − r1)× α)

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 × ((r2 − r1)× (r∗2 − r∗1)× α∗ − (r∗2 − r∗1)× (r2 − r1)× α)

= s2 × (r2 − r1)× (r∗2 − r∗1)× (α∗ − α)

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 × (r2 − r1)× (r∗2 − r∗1)× (α∗ − α)

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 × (r2 − r1)× (r∗2 − r∗1)× (α∗ − α)

6= 0

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 × (r2 − r1)× (r∗2 − r∗1)× (α∗ − α)

6= 0

The system is under-defined:
for any v , there are (x1, x2, y1, y2) that satisfy the system

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 × (r2 − r1)× (r∗2 − r∗1)× (α∗ − α)

6= 0

The system is under-defined:
for any v , there are (x1, x2, y1, y2) that satisfy the system

=⇒ v is unpredictable

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 × (r2 − r1)× (r∗2 − r∗1)× (α∗ − α)

6= 0

The system is under-defined:
for any v , there are (x1, x2, y1, y2) that satisfy the system

=⇒ v is unpredictable =⇒ Pr[F′3] ≤ qD/q

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 × (r2 − r1)× (r∗2 − r∗1)× (α∗ − α)

6= 0

The system is under-defined:
for any v , there are (x1, x2, y1, y2) that satisfy the system

=⇒ v is unpredictable =⇒ Pr[F′3] ≤ qD/q

=⇒ AdvGame7 ≥ AdvGame6 − qD/q

ENS/CNRS/INRIA Cascade David Pointcheval 52/68

Proof: Analysis of the Final Game

In the final Game7:

• only valid ciphertexts are decrypted

• the challenge ciphertext contains
e = mb × Uz1V z2

• the public key contains
h = gz1

1 gz2
2

Again, the system is under-defined:
for any mb, there are (z1, z2) that satisfy the system
=⇒ mb is unpredictable =⇒ b is unpredictable
=⇒ AdvGame7 = 0

ENS/CNRS/INRIA Cascade David Pointcheval 53/68

Proof: Analysis of the Final Game

In the final Game7:

• only valid ciphertexts are decrypted

• the challenge ciphertext contains
e = mb × Uz1V z2

• the public key contains
h = gz1

1 gz2
2

Again, the system is under-defined:
for any mb, there are (z1, z2) that satisfy the system
=⇒ mb is unpredictable =⇒ b is unpredictable
=⇒ AdvGame7 = 0

ENS/CNRS/INRIA Cascade David Pointcheval 53/68

Proof: Analysis of the Final Game

In the final Game7:

• only valid ciphertexts are decrypted

• the challenge ciphertext contains
e = mb × Uz1V z2

• the public key contains
h = gz1

1 gz2
2

Again, the system is under-defined:
for any mb, there are (z1, z2) that satisfy the system
=⇒ mb is unpredictable =⇒ b is unpredictable
=⇒ AdvGame7 = 0

ENS/CNRS/INRIA Cascade David Pointcheval 53/68

Proof: Analysis of the Final Game

In the final Game7:

• only valid ciphertexts are decrypted

• the challenge ciphertext contains
e = mb × Uz1V z2

• the public key contains
h = gz1

1 gz2
2

Again, the system is under-defined:
for any mb, there are (z1, z2) that satisfy the system
=⇒ mb is unpredictable =⇒ b is unpredictable
=⇒ AdvGame7 = 0

ENS/CNRS/INRIA Cascade David Pointcheval 53/68

Proof: Analysis of the Final Game

In the final Game7:

• only valid ciphertexts are decrypted

• the challenge ciphertext contains
e = mb × Uz1V z2

• the public key contains
h = gz1

1 gz2
2

Again, the system is under-defined:
for any mb, there are (z1, z2) that satisfy the system
=⇒ mb is unpredictable =⇒ b is unpredictable
=⇒ AdvGame7 = 0

ENS/CNRS/INRIA Cascade David Pointcheval 53/68

Proof: Analysis of the Final Game

In the final Game7:

• only valid ciphertexts are decrypted

• the challenge ciphertext contains
e = mb × Uz1V z2

• the public key contains
h = gz1

1 gz2
2

Again, the system is under-defined:
for any mb, there are (z1, z2) that satisfy the system
=⇒ mb is unpredictable =⇒ b is unpredictable
=⇒ AdvGame7 = 0

ENS/CNRS/INRIA Cascade David Pointcheval 53/68

Proof: Analysis of the Final Game

In the final Game7:

• only valid ciphertexts are decrypted

• the challenge ciphertext contains
e = mb × Uz1V z2

• the public key contains
h = gz1

1 gz2
2

Again, the system is under-defined:
for any mb, there are (z1, z2) that satisfy the system
=⇒ mb is unpredictable =⇒ b is unpredictable
=⇒ AdvGame7 = 0

ENS/CNRS/INRIA Cascade David Pointcheval 53/68

Proof: Analysis of the Final Game

In the final Game7:

• only valid ciphertexts are decrypted

• the challenge ciphertext contains
e = mb × Uz1V z2

• the public key contains
h = gz1

1 gz2
2

Again, the system is under-defined:
for any mb, there are (z1, z2) that satisfy the system
=⇒ mb is unpredictable =⇒ b is unpredictable
=⇒ AdvGame7 = 0

ENS/CNRS/INRIA Cascade David Pointcheval 53/68

Conclusion

AdvGame7 = 0

AdvGame7 ≥ AdvGame6 − qD/q

AdvGame6 ≥ AdvGame5 − SuccH(t)

AdvGame5 ≥ AdvGame4 − 2× Advddh
G (t)

AdvGame4 = AdvGame3

AdvGame3 ≥ AdvGame2 − qD/q

AdvGame2 = AdvGame1

AdvGame1 ≥ AdvGame0 − qD/q

AdvGame0 = Advind−cca
CS (A)

Advind−cca
CS (A) ≤ 2× Advddh

G (t) + SuccH(t) + 3qD/q
ENS/CNRS/INRIA Cascade David Pointcheval 54/68

Conclusion

AdvGame7 = 0

AdvGame7 ≥ AdvGame6 − qD/q

AdvGame6 ≥ AdvGame5 − SuccH(t)

AdvGame5 ≥ AdvGame4 − 2× Advddh
G (t)

AdvGame4 = AdvGame3

AdvGame3 ≥ AdvGame2 − qD/q

AdvGame2 = AdvGame1

AdvGame1 ≥ AdvGame0 − qD/q

AdvGame0 = Advind−cca
CS (A)

Advind−cca
CS (A) ≤ 2× Advddh

G (t) + SuccH(t) + 3qD/q
ENS/CNRS/INRIA Cascade David Pointcheval 54/68

Outline

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions

Cramer-Shoup Encryption Scheme

Generic Conversion

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 55/68

First Generic Conversion [Bellare-Rogaway – Eurocrypt ’93]

For efficiency: random oracle model

Setup

• A trapdoor one-way permutation family {(f ,g)} onto the set X

• Two hash functions, for the security parameter k1,

G : X −→ {0,1}n and H : {0,1}? −→ {0,1}k1 ,

where n is the bit-length of the plaintexts.

Key Generation
One chooses a random element in the family

• f is the public key

• the inverse g is the private key

ENS/CNRS/INRIA Cascade David Pointcheval 56/68

First Generic Conversion [Bellare-Rogaway – Eurocrypt ’93]

For efficiency: random oracle model

Setup

• A trapdoor one-way permutation family {(f ,g)} onto the set X

• Two hash functions, for the security parameter k1,

G : X −→ {0,1}n and H : {0,1}? −→ {0,1}k1 ,

where n is the bit-length of the plaintexts.

Key Generation
One chooses a random element in the family

• f is the public key

• the inverse g is the private key

ENS/CNRS/INRIA Cascade David Pointcheval 56/68

First Generic Conversion (Cont’ed)

Encryption
One chooses a random element r ∈ X

a = f (r), b = m ⊕ G(r), c = H(m, r)

Decryption
Given (a,b, c), and the private key g,

• one first recovers r = g(a)

• one gets m = b ⊕ G(r)

• one then checks whether c ?
= H(m, r)

If the equality holds, one returns m,
otherwise one rejects the ciphertext

ENS/CNRS/INRIA Cascade David Pointcheval 57/68

First Generic Conversion (Cont’ed)

Encryption
One chooses a random element r ∈ X

a = f (r), b = m ⊕ G(r), c = H(m, r)

Decryption
Given (a,b, c), and the private key g,

• one first recovers r = g(a)

• one gets m = b ⊕ G(r)

• one then checks whether c ?
= H(m, r)

If the equality holds, one returns m,
otherwise one rejects the ciphertext

ENS/CNRS/INRIA Cascade David Pointcheval 57/68

Security of the Bellare-Rogaway Conversion

Theorem
The Bellare-Rogaway conversion achieves IND− CCA security,
under the one-wayness of the trapdoor permutation f :

Advind−cca
BR (t) ≤ 2× Succow

f (T) +
4qD

2k1
,

where T ≤ t + (qG + qH) · Tf .

Let us prove this theorem, with a sequence of games, in which A is
an IND− CCA adversary against the Bellare-Rogaway conversion.

ENS/CNRS/INRIA Cascade David Pointcheval 58/68

Security of the Bellare-Rogaway Conversion

Theorem
The Bellare-Rogaway conversion achieves IND− CCA security,
under the one-wayness of the trapdoor permutation f :

Advind−cca
BR (t) ≤ 2× Succow

f (T) +
4qD

2k1
,

where T ≤ t + (qG + qH) · Tf .

Let us prove this theorem, with a sequence of games, in which A is
an IND− CCA adversary against the Bellare-Rogaway conversion.

ENS/CNRS/INRIA Cascade David Pointcheval 58/68

Real Attack Game

H

 Challenger

● (pk, sk) ← Setup()
● Chooses a bit b
● c ← E(pk,m

b
)

● if b=b': 1
● else 0

Adversary
0 / 1

Game 0

pk
m0,m1

c

b'

Oracles

DSetup

Key Generation Oracle
Random permutation f , and its inverse g

Decryption Oracle
Compute r = g(a), and then m = b ⊕ G(r)

if c = H(m, r), outputs m, otherwise reject

ENS/CNRS/INRIA Cascade David Pointcheval 59/68

Simulation of the Random Oracles

• Game0: use of the perfect oracles

Challenge Ciphertext
Random r , random bit b: a = f (r), b = mb ⊕ G(r), c = H(m, r)

AdvGame0 = 2× Pr
Game0

[b′ = b]− 1 = ε

• Game1: use of the simulation of the random oracles

Random Oracles
For any new query, a new random output: management of lists

AdvGame1 = AdvGame0

ENS/CNRS/INRIA Cascade David Pointcheval 60/68

Simulation of the Random Oracles

• Game0: use of the perfect oracles

Challenge Ciphertext
Random r , random bit b: a = f (r), b = mb ⊕ G(r), c = H(m, r)

AdvGame0 = 2× Pr
Game0

[b′ = b]− 1 = ε

• Game1: use of the simulation of the random oracles

Random Oracles
For any new query, a new random output: management of lists

AdvGame1 = AdvGame0

ENS/CNRS/INRIA Cascade David Pointcheval 60/68

Simulation of the Challenge Ciphertext

• Game2: use of an independent random value h+

Challenge Ciphertext

Random r , random bit b: a = f (r), b = mb ⊕ G(r), c = h+

This game is indistinguishable from the previous one, unless
(mb, r) is queried to H: event AskMR (it can only be asked by
the adversary, since such a query by the decryption oracle would
be for the challenge ciphertext).
Note that in case of AskMR, we stop the simulation with a
random output:

AdvGame2 ≥ AdvGame1 − 2× Pr
Game2

[AskMR]

ENS/CNRS/INRIA Cascade David Pointcheval 61/68

Simulation of the Decryption Oracle

• Game3: reject if (m, r) not queried to H

Decryption Oracle
Look in the H-list for (m, r) such that c = H(m, r).
If not found: reject,
if for one pair, a = f (r) and b = m ⊕ G(r), output m

This makes a difference if this value c, without having been
asked to H, is correct: for each attempt, the probability is
bounded by 1/2k1 :

AdvGame3 ≥ AdvGame2 − 2qD/2k1

Pr
Game3

[AskMR] ≥ Pr
Game2

[AskMR]− qD/2k1

ENS/CNRS/INRIA Cascade David Pointcheval 62/68

Simulation of the Challenge Ciphertext

• Game4: use of an independent random value g+ (and h+)

Challenge Ciphertext

Random r , random bit b: a = f (r), b = mb ⊕ g+, c = h+

This game is indistinguishable from the previous one, unless r is
queried to G by the adversary or by the decryption oracle. We
denote by AskR the event that r is asked to G or H by the
adversary (which includes AskMR). But r cannot be asked to G
by the decryption oracle without AskR: only possible if r is in the
H-list, and thus asked by the adversary:

AdvGame4 ≥ AdvGame3 − 2× Pr
Game3

[AskR ∧ ¬AskMR]

Pr
Game4

[AskR] = Pr
Game3

[AskMR] + Pr
Game3

[AskR ∧ ¬AskMR]

ENS/CNRS/INRIA Cascade David Pointcheval 63/68

Simulation of the Challenge Ciphertext

• Game5: use of an independent random value a+ (and g+, h+)

Challenge Ciphertext

random bit b: a = a+, b = mb ⊕ g+, c = h+

This determines r , the unique value such that a+ = f (r), which
allows to detect event AskR.
This game is perfectly indistinguishable from the previous one:

AdvGame5 = AdvGame4

Pr
Game5

[AskR] = Pr
Game4

[AskR]

ENS/CNRS/INRIA Cascade David Pointcheval 64/68

Inversion of the Permutation

Since we can assume that a+ is a given challenge for inverting the
permutation f , when one looks in the G-list or the H-list, one can find
r , the pre-image of a+:

Pr
Game5

[AskR] ≤ Succow
f (t + (qG + qH) · Tf)

But clearly, in the last game, because of g+ that perfectly hides mb:

AdvGame5 = 0

ENS/CNRS/INRIA Cascade David Pointcheval 65/68

Conclusion

As a consequence, 0 = AdvGame5

= AdvGame4 ≥ AdvGame3 − 2× Pr
Game3

[AskR ∧ ¬AskMR]

≥ AdvGame2 − 2× Pr
Game3

[AskR ∧ ¬AskMR]− 2qD/2k1

≥ AdvGame1 − 2× Pr
Game2

[AskMR]− 2× Pr
Game3

[AskR ∧ ¬AskMR]− 2qD/2k1

≥ AdvGame0 − 2× Pr
Game3

[AskMR]− 2× Pr
Game3

[AskR ∧ ¬AskMR]− 4qD/2k1

≥ AdvGame0 − 2× Pr
Game4

[AskR]− 4qD/2k1

≥ AdvGame0 − 2× Pr
Game5

[AskR]− 4qD/2k1

And then,

AdvGame0 ≤ 4qD/2k1 + 2× Succow
f (T)

ENS/CNRS/INRIA Cascade David Pointcheval 66/68

Conclusion

Outline

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 67/68

Conclusion

Game-based Methodology: the story of OAEP [Bellare-Rogaway EC ’94]

ENS/CNRS/INRIA Cascade David Pointcheval 68/68

Conclusion

Game-based Methodology: the story of OAEP [Bellare-Rogaway EC ’94]

• Reduction proven indistinguishable for an IND-CCA adversary
(actually IND-CCA1, and not IND-CCA2) but widely believed for
IND-CCA2, without any further analysis of the reduction
The direct-reduction methodology

• [Shoup - Crypto ’01]

Shoup showed the gap for IND-CCA2, under the OWP
Granted his new game-based methodology

• [Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

FOPS proved the security for IND-CCA2, under the PD-OWP
Using the game-based methodology

ENS/CNRS/INRIA Cascade David Pointcheval 68/68

Conclusion

Game-based Methodology: the story of OAEP [Bellare-Rogaway EC ’94]

• Reduction proven indistinguishable for an IND-CCA adversary
(actually IND-CCA1, and not IND-CCA2) but widely believed for
IND-CCA2, without any further analysis of the reduction
The direct-reduction methodology

• [Shoup - Crypto ’01]

Shoup showed the gap for IND-CCA2, under the OWP
Granted his new game-based methodology

• [Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

FOPS proved the security for IND-CCA2, under the PD-OWP
Using the game-based methodology

ENS/CNRS/INRIA Cascade David Pointcheval 68/68

Conclusion

Game-based Methodology: the story of OAEP [Bellare-Rogaway EC ’94]

• Reduction proven indistinguishable for an IND-CCA adversary
(actually IND-CCA1, and not IND-CCA2) but widely believed for
IND-CCA2, without any further analysis of the reduction
The direct-reduction methodology

• [Shoup - Crypto ’01]

Shoup showed the gap for IND-CCA2, under the OWP
Granted his new game-based methodology

• [Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

FOPS proved the security for IND-CCA2, under the PD-OWP
Using the game-based methodology

ENS/CNRS/INRIA Cascade David Pointcheval 68/68

	Main Part
	Basic Security Notions
	Public-Key Encryption
	Signatures

	Game-based Proofs
	Provable Security
	Game-based Approach
	Transition Hops

	Advanced Security for Encryption
	Advanced Security Notions
	Cramer-Shoup Encryption Scheme
	Generic Conversion

	Conclusion
	Conclusion

