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(sk ,pk)← K();(m0,m1, state)← A(pk);

b R← {0,1};c = Epk (mb); b′ ← A(state, c)

Advind−cpa
S (A)=

∣∣Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0]
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One can prove that:
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• then one can break the underlying problem
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Output

• The output of the simulator in Game 1 is related to the output of
the challenger in Game 0 (adversary’s winning probability)

• The output of the simulator in Game 3 is easy to evaluate
(e.g. always zero, always 1, probability of one-half)

• The gaps (Game 1↔ Game 2, Game 2↔ Game 3, etc) are
clearly identified with specific events
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Two Simulations

• Identical behaviors: Pr[GameA]− Pr[GameB] = 0
• The behaviors differ only if Ev happens:

• Ev is negligible, one can ignore it
Shoup’s Lemma: |Pr[GameA]− Pr[GameB]| ≤ Pr[Ev]

|Pr[GameA]− Pr[GameB]|

=

∣∣∣∣∣ Pr[GameA|Ev] Pr[Ev] + Pr[GameA|¬Ev] Pr[¬Ev]

−Pr[GameB|Ev] Pr[Ev]− Pr[GameB|¬Ev] Pr[¬Ev]

∣∣∣∣∣
=

∣∣∣∣∣ (Pr[GameA|Ev]− Pr[GameB|Ev])× Pr[Ev]

+(Pr[GameA|¬Ev]− Pr[GameB|¬Ev])× Pr[¬Ev]

∣∣∣∣∣
≤ |1× Pr[Ev] + 0× Pr[¬Ev]| ≤ Pr[Ev]

• Ev is non-negligible and independent of the output in GameA,
Simulator B terminates in case of event Ev
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Two Simulations

• Identical behaviors: Pr[GameA]− Pr[GameB] = 0
• The behaviors differ only if Ev happens:

• Ev is negligible, one can ignore it
• Ev is non-negligible and independent of the output in GameA,

Simulator B terminates and outputs 0, in case of event Ev:

Pr[GameB] = Pr[GameB|Ev] Pr[Ev] + Pr[GameB|¬Ev] Pr[¬Ev]

= 0× Pr[Ev] + Pr[GameA|¬Ev]× Pr[¬Ev]

= Pr[GameA]× Pr[¬Ev]

Simulator B terminates and flips a coin, in case of event Ev:

Pr[GameB] = Pr[GameB|Ev] Pr[Ev] + Pr[GameB|¬Ev] Pr[¬Ev]

= 1
2 × Pr[Ev] + Pr[GameA|¬Ev]× Pr[¬Ev]

= 1
2 + (Pr[GameA]− 1

2 )× Pr[¬Ev]
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Two Simulations

• Identical behaviors: Pr[GameA]− Pr[GameB] = 0
• The behaviors differ only if Ev happens:

• Ev is negligible, one can ignore it
• Ev is non-negligible and independent of the output in GameA,

Simulator B terminates in case of event Ev

Event Ev

• Either Ev is negligible, or the output is independent of Ev

• For being able to terminate simulation B in case of event Ev,
this event must be efficiently detectable

• For evaluating Pr[Ev], one re-iterates the above process,
with an initial game that outputs 1 when event Ev happens
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• For computationally close distributions, in general, we need to
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The adversary cannot get any information about a plaintext of a
specific ciphertext (validity, partial value, etc)
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Malleability

Semantic security (ciphertext indistinguishability) guarantees that
no information is leaked from c about the plaintext m

But it may be possible to derive a ciphertext c′

such that the plaintext m′ is related to m in a meaningful way:

• ElGamal ciphertext: c1 = gr and c2 = m × y r

• Malleability: c′1 = c1 = gr and c′2 = 2× c2 = (2m)× y r

From an encryption of m, one can build an encryption of 2m, or a
random ciphertext of m, etc.
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Additional Information

More information modelled by oracle access

• reaction attacks: oracle which answers, on c,
whether the ciphertext c is valid or not

• plaintext-checking attacks: oracle which answers,
on a pair (m, c), whether the plaintext m is really encrypted in c
or not (whether m = Dsk (c))

• chosen-ciphertext attacks (CCA): decryption oracle
(with the restriction not to use it on the challenge ciphertext)
=⇒ the adversary can obtain the plaintext of any ciphertext of its
choice (excepted the challenge)

• non-adaptive (CCA− 1) [Naor-Yung – STOC ’90]

only before receiving the challenge
• adaptive (CCA− 2) [Rackoff-Simon – Crypto ’91]

unlimited oracle access
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AEr
mb c*

b∈{0,1}
r random

m1

m0

kdke G

D
c

m

D
c ≠ c*

m
b’b’ = b?

The adversary can ask any decryption of its choice:
Chosen-Ciphertext Attacks (oracle access)

(sk ,pk)← K();(m0,m1, state)← AD(pk);

b R← {0,1};c = Epk (mb); b′ ← AD(state, c)

Advind−cca
S (A)=

∣∣Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0]
∣∣= ∣∣2× Pr[b′ = b]−1

∣∣
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Relations [Bellare-Desai-Pointcheval-Rogaway – Crypto ’98]

NM-CPA ⇐ NM-CCA1 ⇐ NM-CCA2
   

IND-CPA ⇐ IND-CCA1 ⇐ IND-CCA2

strong security: 
CCA

minimal
security

weak security

OW-CPA

⇒ ⇔⇒

⇒
ENS/CNRS/INRIA Cascade David Pointcheval 34/68
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Cramer-Shoup Encryption Scheme [Cramer-Shoup – Crypto ’98]

Key Generation

• G = (〈g〉,×) group of order q

• sk = (x1, x2, y1, y2, z), where x1, x2, y1, y2, z
R← Zq

• pk = (g1,g2,H, c,d ,h), where
• g1, g2 are independent elements in G
• H a hash function (second-preimage resistant)
• c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , and h = gz

1

Encryption
u1 = gr

1, u2 = gr
2, e = m × hr , v = cr d rα where α = H(u1,u2,e)
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Cramer-Shoup Encryption Scheme vs. ElGamal

u1 = gr
1, u2 = gr

2, e = m × hr , v = cr d rα where α = H(u1,u2,e)

(u1,e) is an ElGamal ciphertext, with public key h = gz
1

Decryption

• since h = gz
1 , hr = uz

1 , thus m = e/uz
1

• since c = gx1
1 gx2

2 and d = gy1
1 gy2

2

cr = grx1
1 grx2

2 = ux1
1 ux2

2 d r = uy1
1 uy2

2

One thus first checks whether

v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e)
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Security of the Cramer-Shoup Encryption Scheme

Theorem
The Cramer-Shoup encryption scheme achieves IND− CCA
security, under the DDH assumption, and the second-preimage
resistance of H:

Advind−cca
CS (t) ≤ 2× Advddh

G (t) + SuccH(t) + 3qD/q

Let us prove this theorem, with a sequence of games, in which A is
an IND− CCA adversary against the Cramer-Shoup encryption
scheme.
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Real Attack Game

 Challenger

● (pk, sk) ← Setup()
● Chooses a bit b
● c ← E(pk,m

b
)

● if b=b': 1
● else 0

Adversary
0 / 1

Game 0

pk
m0,m1

c

b'

Oracles

DSetup

Key Generation Oracle

x1, x2, y1, y2, z
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z)

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz
1 : pk = (g1,g2,H, c,d ,h)

Decryption Oracle

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz
1
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Proof: Invalid ciphertexts

• Game0: use of the oracles K, D
• Game1: we abort (with a random output b′)

in case of bad (invalid) accepted ciphertext,
where invalid ciphertext means logg1

u1 6= logg2
u2

Event F
A submits a bad accepted ciphertext

(note: this is not computationally detectable)

The advantage in Game1 is: Pr1[b′ = b|F] = 1/2

Pr
Game0

[F] = Pr
Game1

[F] Pr
Game1

[b′ = b|¬F] = Pr
Game0

[b′ = b|¬F]

=⇒ Hop-S-Negl: AdvGame1 ≥ AdvGame0 − Pr[F]
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Details: Shoup’s Lemma

AdvGame1 = 2× Pr
Game1

[b′ = b]− 1
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Details: Bad Accept

In order to evaluate Pr[F], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = ux1+αy1
1 ux2+αy2

2

The adversary just knows the public key:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v = r1(x1 + αy1) + sr2(x2 + αy2)

The system is under-defined: for any v , there are (x1, x2, y1, y2)

that satisfy the system =⇒ v is unpredictable
=⇒ Pr[F] ≤ qD/q =⇒ AdvGame1 ≥ AdvGame0 − qD/q
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Proof: Simulations

• Game2: we use the simulations

Key Generation Simulation

x1, x2, y1, y2, z1, z2
R← Zq, g1,g2

R← G: sk = (x1, x2, y1, y2, z1, z2)

g2 = gs
1

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz1
1 gz2

2 : pk = (g1,g2,H, c,d ,h)

z = z1 + sz2

Distribution of the public key: Identical

Decryption Simulation

If v = ux1+αy1
1 ux2+αy2

2 where α = H(u1,u2,e): m = e/uz1
1 uz2

2

Under the assumption of ¬F, perfect simulation
=⇒ Hop-S-Perfect: AdvGame2 = AdvGame1
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Proof: Computable Adversary

• Game3: we do no longer exclude bad accepted ciphertexts
=⇒ Hop-S-Negl:
AdvGame3 ≥ AdvGame2 − Pr[F] ≥ AdvGame2 − qD/q

This is technical: to make the simulator/adversary computable
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Proof: DDH Assumption

• Game4: we modify the generation of the challenge ciphertext:

Original Challenge

Random choice: b R← {0,1}, r R← Zq [α = H(u1, u2, e)]

u1 = gr
1, u2 = gr

2, e = mb × hr , v = cr d rα

New Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

With (U = gr
1,V = gr

2): Uz1V z2 = hr and Ux1+αy1V x2+αy2 = cr d rα

=⇒ Hop-S-Perfect: AdvGame4 = AdvGame3
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Proof: DDH Assumption

• Game5: we modify the generation of the challenge ciphertext:

Previous Challenge 1

Given (U = gr
1,V = gr

2) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

New Challenge 2

Given (U = gr1
1 ,V = gr2

2 ) and random choice b R← {0,1}

u1 = U, u2 = V , e = mb × Uz1V z2 , v = Ux1+αy1V x2+αy2

The input changes from (U = gr
1,V = gr

2) to (U = gr1
1 ,V = gr2

2 ):
=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh

G (t)
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Proof: DDH Assumption

The input from outside changes from (U = gr
1,V = gr

2) (a CDH tuple)
to (U = gr1

1 ,V = gr2
2 ) (a random tuple):

Pr
Game4

[b′ = b]− Pr
Game5

[b′ = b] ≤ Advddh
G (t)

=⇒ Hop-D-Comp: AdvGame5 ≥ AdvGame4 − 2× Advddh
G (t)

(Since Adv = 2× Pr[b′ = b]− 1)
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Proof: Collision

• Game6: we abort (with a random output b′)
in case of second pre-image with a decryption query

Event FH

A submits a ciphertext with the same α as the challenge ciphertext,
but a different initial triple: (u1,u2,e) 6= (u∗1,u

∗
2,e
∗), but α = α∗, were

“*” are for all the elements related to the challenge ciphertext.

Second pre-image of H: =⇒ Pr[FH ] ≤ SuccH(t)

The advantage in Game6 is: PrGame6 [b′ = b|FH ] = 1/2

Pr
Game5

[FH ] = Pr
Game6

[FH ] Pr
Game6

[b′ = b|¬FH ] = Pr
Game5

[b′ = b|¬FH ]

=⇒ Hop-S-Negl: AdvGame6 ≥ AdvGame5 − Pr[FH ]

AdvGame6 ≥ AdvGame5 − SuccH(t)
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Proof: Invalid ciphertexts

• Game7: we abort (with a random output b′)
in case of bad accepted ciphertext,
we do as in Game1

Event F′

A submits a bad accepted ciphertext
(note: this is not computationally detectable)

The advantage in Game7 is: PrGame7 [b′ = b|F′] = 1/2

Pr
Game6

[F′] = Pr
Game7

[F′] Pr
Game7

[b′ = b|¬F′] = Pr
Game6

[b′ = b|¬F′]

=⇒ Hop-S-Negl: AdvGame7 ≥ AdvGame6 − Pr[F′]
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Details: Bad Accept

In order to evaluate Pr[F′], we study the probability that

• r1 = logg1
u1 6= logg2

u2 = r2,

• whereas v = u1
x1+αy1u2

x2+αy2

Let us use “*” for all the elements related to the challenge ciphertext.

Three cases may appear:

• Case 1: (u1,u2,e) = (u∗1,u
∗
2,e
∗), then necessarily

v 6= v∗ = Ux1+α
∗y1V x2+α

∗y2 = u∗1
x1+α

∗y1u∗2
x2+α

∗y2

Then, the ciphertext is rejected =⇒ Pr[F′1] = 0

• Case 2: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), but α = α∗:

From the previous game, Aborts =⇒ Pr[F′2] = 0

• Case 3: (u1,u2,e) 6= (u∗1,u
∗
2,e
∗), and α 6= α∗
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Details: Bad Accept (Case 3)

The adversary knows the public key, and the (invalid) challenge
ciphertext:

c = gx1
1 gx2

2 d = gy1
1 gy2

2

v∗ = Ux1+α
∗y1V x2+α

∗y2 = gr∗1 (x1+α
∗y1)

1 gr∗2 (x2+α
∗y2)

2

Let us move to the exponents, in basis g1, with g2 = gs
1:

log c = x1 + sx2

log d = y1 + sy2

log v∗ = r∗1 (x1 + α∗y1) + sr∗2 (x2 + α∗y2)

log v = r1(x1 + αy1) + sr2(x2 + αy2)
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Details: Bad Accept (Case 3)

The determinant of the system is

∆ =

∣∣∣∣∣∣∣∣∣
1 s 0 0
0 0 1 s
r∗1 sr∗2 r∗1α

∗ sr∗2α
∗

r1 sr2 r1α sr2α

∣∣∣∣∣∣∣∣∣
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Details: Bad Accept (Case 3)

The determinant of the system is
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6= 0
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Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 × (r2 − r1)× (r∗2 − r∗1 )× (α∗ − α)

6= 0

The system is under-defined:
for any v , there are (x1, x2, y1, y2) that satisfy the system
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Details: Bad Accept (Case 3)

The determinant of the system is

∆ = s2 × (r2 − r1)× (r∗2 − r∗1 )× (α∗ − α)

6= 0

The system is under-defined:
for any v , there are (x1, x2, y1, y2) that satisfy the system

=⇒ v is unpredictable =⇒ Pr[F′3] ≤ qD/q

=⇒ AdvGame7 ≥ AdvGame6 − qD/q
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Proof: Analysis of the Final Game

In the final Game7:

• only valid ciphertexts are decrypted

• the challenge ciphertext contains
e = mb × Uz1V z2

• the public key contains
h = gz1

1 gz2
2

Again, the system is under-defined:
for any mb, there are (z1, z2) that satisfy the system
=⇒ mb is unpredictable =⇒ b is unpredictable
=⇒ AdvGame7 = 0
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Conclusion

AdvGame7 = 0

AdvGame7 ≥ AdvGame6 − qD/q

AdvGame6 ≥ AdvGame5 − SuccH(t)

AdvGame5 ≥ AdvGame4 − 2× Advddh
G (t)

AdvGame4 = AdvGame3

AdvGame3 ≥ AdvGame2 − qD/q

AdvGame2 = AdvGame1

AdvGame1 ≥ AdvGame0 − qD/q

AdvGame0 = Advind−cca
CS (A)

Advind−cca
CS (A) ≤ 2× Advddh

G (t) + SuccH(t) + 3qD/q
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Outline

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions

Cramer-Shoup Encryption Scheme

Generic Conversion

Conclusion
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First Generic Conversion [Bellare-Rogaway – Eurocrypt ’93]

For efficiency: random oracle model

Setup

• A trapdoor one-way permutation family {(f ,g)} onto the set X

• Two hash functions, for the security parameter k1,

G : X −→ {0,1}n and H : {0,1}? −→ {0,1}k1 ,

where n is the bit-length of the plaintexts.

Key Generation
One chooses a random element in the family

• f is the public key

• the inverse g is the private key
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First Generic Conversion (Cont’ed)

Encryption
One chooses a random element r ∈ X

a = f (r), b = m ⊕ G(r), c = H(m, r)

Decryption
Given (a,b, c), and the private key g,

• one first recovers r = g(a)

• one gets m = b ⊕ G(r)

• one then checks whether c ?
= H(m, r)

If the equality holds, one returns m,
otherwise one rejects the ciphertext
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Security of the Bellare-Rogaway Conversion

Theorem
The Bellare-Rogaway conversion achieves IND− CCA security,
under the one-wayness of the trapdoor permutation f :

Advind−cca
BR (t) ≤ 2× Succow

f (T ) +
4qD

2k1
,

where T ≤ t + (qG + qH) · Tf .

Let us prove this theorem, with a sequence of games, in which A is
an IND− CCA adversary against the Bellare-Rogaway conversion.
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Real Attack Game

H

 Challenger

● (pk, sk) ← Setup()
● Chooses a bit b
● c ← E(pk,m

b
)

● if b=b': 1
● else 0

Adversary
0 / 1

Game 0

pk
m0,m1

c

b'

Oracles

DSetup

Key Generation Oracle
Random permutation f , and its inverse g

Decryption Oracle
Compute r = g(a), and then m = b ⊕ G(r)

if c = H(m, r), outputs m, otherwise reject
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Simulation of the Random Oracles

• Game0: use of the perfect oracles

Challenge Ciphertext
Random r , random bit b: a = f (r), b = mb ⊕ G(r), c = H(m, r)

AdvGame0 = 2× Pr
Game0

[b′ = b]− 1 = ε

• Game1: use of the simulation of the random oracles

Random Oracles
For any new query, a new random output: management of lists

AdvGame1 = AdvGame0
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Simulation of the Challenge Ciphertext

• Game2: use of an independent random value h+

Challenge Ciphertext

Random r , random bit b: a = f (r), b = mb ⊕ G(r), c = h+

This game is indistinguishable from the previous one, unless
(mb, r) is queried to H: event AskMR (it can only be asked by
the adversary, since such a query by the decryption oracle would
be for the challenge ciphertext).
Note that in case of AskMR, we stop the simulation with a
random output:

AdvGame2 ≥ AdvGame1 − 2× Pr
Game2

[AskMR]
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Simulation of the Decryption Oracle

• Game3: reject if (m, r) not queried to H

Decryption Oracle
Look in the H-list for (m, r) such that c = H(m, r).
If not found: reject,
if for one pair, a = f (r) and b = m ⊕ G(r), output m

This makes a difference if this value c, without having been
asked to H, is correct: for each attempt, the probability is
bounded by 1/2k1 :

AdvGame3 ≥ AdvGame2 − 2qD/2k1

Pr
Game3

[AskMR] ≥ Pr
Game2

[AskMR]− qD/2k1
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Simulation of the Challenge Ciphertext

• Game4: use of an independent random value g+ (and h+)

Challenge Ciphertext

Random r , random bit b: a = f (r), b = mb ⊕ g+, c = h+

This game is indistinguishable from the previous one, unless r is
queried to G by the adversary or by the decryption oracle. We
denote by AskR the event that r is asked to G or H by the
adversary (which includes AskMR). But r cannot be asked to G
by the decryption oracle without AskR: only possible if r is in the
H-list, and thus asked by the adversary:

AdvGame4 ≥ AdvGame3 − 2× Pr
Game3

[AskR ∧ ¬AskMR]

Pr
Game4

[AskR] = Pr
Game3

[AskMR] + Pr
Game3

[AskR ∧ ¬AskMR]
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Simulation of the Challenge Ciphertext

• Game5: use of an independent random value a+ (and g+, h+)

Challenge Ciphertext

random bit b: a = a+, b = mb ⊕ g+, c = h+

This determines r , the unique value such that a+ = f (r), which
allows to detect event AskR.
This game is perfectly indistinguishable from the previous one:

AdvGame5 = AdvGame4

Pr
Game5

[AskR] = Pr
Game4

[AskR]
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Inversion of the Permutation

Since we can assume that a+ is a given challenge for inverting the
permutation f , when one looks in the G-list or the H-list, one can find
r , the pre-image of a+:

Pr
Game5

[AskR] ≤ Succow
f (t + (qG + qH) · Tf )

But clearly, in the last game, because of g+ that perfectly hides mb:

AdvGame5 = 0
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Conclusion

As a consequence, 0 = AdvGame5

= AdvGame4 ≥ AdvGame3 − 2× Pr
Game3

[AskR ∧ ¬AskMR]

≥ AdvGame2 − 2× Pr
Game3

[AskR ∧ ¬AskMR]− 2qD/2k1

≥ AdvGame1 − 2× Pr
Game2

[AskMR]− 2× Pr
Game3

[AskR ∧ ¬AskMR]− 2qD/2k1

≥ AdvGame0 − 2× Pr
Game3

[AskMR]− 2× Pr
Game3

[AskR ∧ ¬AskMR]− 4qD/2k1

≥ AdvGame0 − 2× Pr
Game4

[AskR]− 4qD/2k1

≥ AdvGame0 − 2× Pr
Game5

[AskR]− 4qD/2k1

And then,

AdvGame0 ≤ 4qD/2k1 + 2× Succow
f (T )
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Conclusion
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• Reduction proven indistinguishable for an IND-CCA adversary
(actually IND-CCA1, and not IND-CCA2) but widely believed for
IND-CCA2, without any further analysis of the reduction
The direct-reduction methodology

• [Shoup - Crypto ’01]

Shoup showed the gap for IND-CCA2, under the OWP
Granted his new game-based methodology

• [Fujisaki-Okamoto-Pointcheval-Stern – Crypto ’01]

FOPS proved the security for IND-CCA2, under the PD-OWP
Using the game-based methodology
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