IV – Secure Function Evaluation and Secure 2-Party Computation

David Pointcheval
Ecole normale supérieure/PSL, CNRS & INRIA
Secure Function Evaluation
Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits
Secure Function Evaluation

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$, for public functions f_i so that

- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- ... and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Secure Function Evaluation

t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs.

Note that the knowledge of y_i can leak some information on the x_j's.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from t users.
- **Malicious users**: the adversary controls a fixed set of t players.
- **Dynamic adversary**: the adversary dynamically chooses the (up to) t players it controls.
Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits
Electronic Voting

Private Evaluation of the Sum

For all i: $x_i \in \{0, 1\}$ and $f_i(x_1, \ldots, x_n) = \sum_j x_j$

Example (Homomorphic Encryption)

- P_i encrypts $C_i = E(x_i)$ with an additively homomorphic encryption scheme
- They all compute $C = E(\sum x_i)$
- They jointly decrypt C to get $y = \sum x_i$ using a distributed decryption
Electronic Voting

Privacy: Limitations

In case of unanimity (i.e. $\sum x_i = n$), one learns all the x_i’s, even in the honest-but-curious setting.

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner.

Replay Attacks

A malicious adversary could try to amplify P_1’s vote, replaying its message C_1 by t corrupted players: this can leak P_1’s vote x_1.

This can be avoided with non-malleable encryption.
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Equality Test

| Alice owns a value x and Bob owns a value y, |
| in the end, they both learn whether $x = y$ or not |

Yao Millionaires’ Problem

| Alice owns an integer x and Bob owns an integer y, |
| in the end, they both learn whether $x \leq y$ or not |

Alice owns a value $x \in [A, B]$ and Bob owns a value $y \in [A, B]$, in the end, they both learn whether $x = y$ or not.

With Homomorphic Encryption

- Alice encrypts $C = E(x)$ with an additively homomorphic encryption scheme.
- Bob computes $C' = E(r(x - y))$, for a random element r plus the randomization of the ciphertext.
- Alice computes $C'' = E(rr'(x - y))$, for a random element r' plus the randomization of the ciphertext.
- They jointly decrypt C'': the value is 0 iff $x = y$ (or random).
Yao Millionaires’ Problem

Alice owns an integer $x \in [0, 2^n]$ and Bob owns an integer $y \in [0, 2^n]$, in the end, they both learn whether $x \leq y$ or not

Theorem

[Lin-Tzeng – 2005]

Given $x = x_{n-1} \ldots x_0, y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

$$T^1_x = \{x_{n-1} \ldots x_i | x_i = 1\} \quad T^0_y = \{y_{n-1} \ldots y_{i+1} | y_i = 0\}$$

$$x > y \iff T^1_x \cap T^0_y \neq \emptyset$$

$$x > y \iff \exists! i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j)$$

$$\iff \exists! i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j)$$

$$\iff \exists! i < n, (y_i = 0) \land (x_{n-1} \ldots x_i = y_{n-1} \ldots y_{i+1})$$

$$\iff |T^1_x \cap T^0_y| = 1$$
Yao Millionaires’ Problem

We fill and order the sets by length: $\bar{T}^1_x = \{X_i\}$ and $\bar{T}^0_y = \{Y_i\}$ where

- if $x_i = 0$, $X_i = 2^n$, otherwise $X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}]$
- if $y_i = 1$, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \ldots y_{i+1}1 \in [0, 2^{n-i}]$

$$x > y \iff \exists! i < n, X_i = Y_i$$

With Homomorphic Encryption

- Alice encrypts $C_i = E(X_i)$ with an additively homomorphic encryption scheme
- Bob computes $C'_i = E(r_i(X_i - Y_i))$, for random elements r_i randomizes them, and sends them in random order
- Alice computes $C''_i = E(r_ir'_i(X_i - Y_i))$, for random elements r'_i randomizes them, and sends them in random order
- They jointly decrypt the C''_i’s: one value is 0 iff $x > y$
Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits
<table>
<thead>
<tr>
<th>GMW Compiler</th>
<th>[Goldreich-Micali-Wigderson – STOC 1987]</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Commitment of the inputs</td>
<td></td>
</tr>
<tr>
<td>• Secure coin tossing</td>
<td></td>
</tr>
<tr>
<td>• Zero-knowledge proofs of correct behavior</td>
<td></td>
</tr>
</tbody>
</table>
Oblivious Transfer
Secure Function Evaluation

Oblivious Transfer

Definition

Examples

Garbled Circuits
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

<table>
<thead>
<tr>
<th>Oblivious Transfer</th>
<th>[Rabin – 1981]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice owns two values x_0, x_1 and Bob owns a bit $b \in {0, 1}$, so that in the end, Bob learns x_b and Alice gets nothing: $x = (x_0, x_1)$ and $y = b$, then $g((x_0, x_1), b) = x_b$ and $f((x_0, x_1), b) = \bot$.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oblivious Transfer</th>
<th>[Kilian – STOC 1988]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oblivious Transfer is equivalent to Secure 2-Party Computation</td>
<td></td>
</tr>
</tbody>
</table>

From an Oblivious Transfer Protocol,

one can implement any 2-Party Secure Function Evaluation
Outline

Secure Function Evaluation

Oblivious Transfer

Definition

Examples

Garbled Circuits
Oblivious Transfer

Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting \((\mathbb{G}, g, p)\), for \(x_0, x_1 \in \mathbb{G}\)

- Alice chooses \(c \xleftarrow{R} \mathbb{G}\) and sends it to Bob
- Bob chooses \(k \xleftarrow{R} \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice
- Alice checks \(pk_0 \cdot pk_1 = c\)
 and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal:
 \[
 C_i \leftarrow g^{r_i} \quad \text{and} \quad C'_i \leftarrow x_i \cdot pk_i^{r_i}, \text{for } r_i \xleftarrow{R} \mathbb{Z}_p
 \]
- Bob can decrypt \((C_b, C'_b)\) using \(k\)

Because of the random \(c\) (unknown discrete logarithm),

Bob should not be able to infer any information about \(x_{1-b}\)

This is provably secure in the **honest-but-curious setting**
Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting \((\mathbb{G}, g, p)\), for \(x_0, x_1 \in \mathbb{G}\)

- Bob chooses \(r, s, t \leftarrow \mathbb{Z}_p\), sets \(X \leftarrow g^r\), \(Y \leftarrow g^s\), \(Z_b \leftarrow g^{rs}\), \(Z_{1-b} \leftarrow g^t\), and sends \((X, Y, Z_0, Z_1)\) to Alice

- Alice checks \(Z_0 \neq Z_1\), and re-randomizes the tuples:

 \[T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0})\] and

 \[T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1}),\] for \(u_0, v_0, u_1, v_1 \leftarrow \mathbb{Z}_p\)

- Alice encrypts \(x_i\) under \(T_i\): \(C_i = Y'_i\) and \(C'_i = x_i \cdot Z'_i\)

- Bob can decrypt \((C_b, C'_b)\) using \(r\)

The re-randomization keeps the DH-tuple \(T_b\),
but perfectly removes information in \(T_{1-b}\)

This is provably secure in the malicious setting
Garbled Circuits
Outline

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness
Boolean circuit, Alice’s inputs \((x_1, x_2, x_3)\), and Bob’s inputs \((y_1, y_2, y_3)\):

They both learn \(z\) in the end, but nothing else.
Outline

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness
Alice converts the circuit into a generic circuit: 1-input or 2-input gates

\[
A = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad \text{not}
\]

\[
B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and}
\]

\[
C = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{or}
\]

\[
D = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad \text{line}
\]

\[
E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{or}
\]

\[
F = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and}
\]

\[
G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{or}
\]
Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate
For the gate A (not): 4 random secret keys $I^0_A, I^1_A, O^0_A, O^1_A$

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix}: C^0_A = \text{Encrypt}(I^0_A, O^1_A) \quad C^1_A = \text{Encrypt}(I^1_A, O^0_A)$$

2-Input Garbled Gate
For the gate B (and): 8 random secret keys $I^0_B, I^1_B, J^0_B, J^1_B, O^0_B, O^1_B$

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}: C^{00}_B = \text{Encrypt}(I^0_B || J^0_B, O^0_B) \quad C^{01}_B = \text{Encrypt}(I^0_B || J^1_B, O^0_B)$$

$$C^{10}_B = \text{Encrypt}(I^1_B || J^0_B, O^0_B) \quad C^{11}_B = \text{Encrypt}(I^1_B || J^1_B, O^1_B)$$
Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate.

Alice publishes the keys corresponding to her inputs:

- for x_1, she sends $I_{D}^{x_1}$
- for x_2, she sends $J_{B}^{x_2}$
- for x_3, she sends $J_{C}^{x_3}$
Bob’s Inputs

\[
A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)
\]

Oblivious Transfer

Alice owns \(I_A^0, I_A^1\) and Bob owns \(y_1 \in \{0, 1\}\)

- Using an OT, Bob gets \(I_A^{y_1}\), while Alice learns nothing
- From the ciphertexts \((C_A^b)_b\), Bob gets \(O_A^{y_A}\)
Bob’s Inputs

\[B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C^0_0 = \text{Encrypt}(I^0_B || J^0_B, O^0_B) \quad C^0_1 = \text{Encrypt}(I^0_B || J^1_B, O^0_B) \]
\[C^{10}_B = \text{Encrypt}(I^1_B || J^0_B, O^0_B) \quad C^{11}_B = \text{Encrypt}(I^1_B || J^1_B, O^1_B) \]

Oblivious Transfer

Alice owns \(I^0_B, I^1_B \), and Bob owns \(y_2 \in \{0, 1\} \)

- Using an OT, Bob gets \(I^{y_2}_B \), while Alice learns nothing
- Bob additionally knows \(J^{x_2}_B \)
- From the ciphertexts \((C^{bb'}_B)_{bb'} \), Bob gets \(O^{y_B}_B \)
Internal Garbled Gates

For the gate E (or): 2 new random secret keys O_{E}^{0}, O_{E}^{1}
while $I_{E}^{0} \leftarrow O_{A}^{0}$, $I_{E}^{1} \leftarrow O_{A}^{1}$, $J_{E}^{0} \leftarrow O_{B}^{0}$, $J_{E}^{1} \leftarrow O_{B}^{1}$

\[E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_{E}^{00} = \text{Encrypt}(I_{E}^{0} || J_{E}^{0}, O_{E}^{0}) \quad C_{E}^{01} = \text{Encrypt}(I_{E}^{0} || J_{E}^{1}, O_{E}^{1}) \]
\[C_{E}^{10} = \text{Encrypt}(I_{E}^{1} || J_{E}^{0}, O_{E}^{1}) \quad C_{E}^{11} = \text{Encrypt}(I_{E}^{1} || J_{E}^{1}, O_{E}^{1}) \]
Evaluation of Internal Gates

\[E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \text{Encrypt}(I_E^0 || J_E^0, O_E^0) \quad C_E^{01} = \text{Encrypt}(I_E^0 || J_E^1, O_E^1) \]
\[C_E^{10} = \text{Encrypt}(I_E^1 || J_E^0, O_E^1) \quad C_E^{11} = \text{Encrypt}(I_E^1 || J_E^1, O_E^1) \]

Evaluation of Gate E

Bob knows \(I_E^{y_A} = O_A^{y_A} \) and \(J_E^{y_B} = O_B^{y_B} \)

From the ciphertexts \((C_E^{bb'})_{bb'} \), Bob gets \(O_E^{y_E} \)
Output Garbled Gates

For the gate G (or): $I_G^0 \leftarrow O_E^0$, $I_G^1 \leftarrow O_E^1$, $J_G^0 \leftarrow O_F^0$, $J_G^1 \leftarrow O_F^1$

$$G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_G^{00} = \text{Encrypt}(I_G^0 || J_G^0, 0) \quad C_G^{01} = \text{Encrypt}(I_G^0 || J_G^1, 1)$$

$$C_G^{10} = \text{Encrypt}(I_G^1 || J_G^0, 1) \quad C_G^{11} = \text{Encrypt}(I_G^1 || J_G^1, 1)$$
Evaluation of Internal Gates

\[G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_G^{00} = \text{Encrypt}(I_G^0 || J_G^0, 0) \quad C_G^{01} = \text{Encrypt}(I_G^0 || J_G^1, 1) \]
\[C_G^{10} = \text{Encrypt}(I_G^1 || J_G^0, 1) \quad C_G^{11} = \text{Encrypt}(I_G^1 || J_G^1, 1) \]

Evaluation of Gate G

Bob knows \(I_G^{YE} = O_E^{YE} \) and \(J_G^{yF} = O_F^{yF} \)

From the ciphertexts \((C_G^{bb'})_{bb'} \), Bob gets \(z \in \{0, 1\} \)

Bob can then transmit \(z \) to Alice
Garbled Circuits

Introduction

Garbled Circuits

Correctness
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\implies\] Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\implies\] Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
 \[\implies\] Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT
- Bob sends back the correct value \(z\)
 \[\implies\] Random tags are appended to the final results 0 and 1 that Bob cannot guess