Outline

1 Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting

2 Oblivious Transfer
 - Definition
 - Examples

3 Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness

Secure Function Evaluation

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$, for public functions f_i so that
- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- \ldots and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Secure Function Evaluation

t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs.

Note that the knowledge of y_i can leak some information on the x_j's.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from t users.
- **Malicious users**: the adversary controls a fixed set of t players.
- **Dynamic adversary**: the adversary dynamically chooses the (up to) t players it controls.

Electronic Voting

Private Evaluation of the Sum

For all i: $x_i \in \{0, 1\}$ and $f_i(x_1, \ldots, x_n) = \sum_j x_j$

Example (Homomorphic Encryption)

- P_i encrypts $C_i = E(x_i)$ with an additively homomorphic encryption scheme.
- They all compute $C = E(\sum x_i)$.
- They jointly decrypt C to get $y = \sum x_i$ using a distributed decryption.

Electronic Voting

Privacy: Limitations

In case of unanimity (i.e. $\sum x_i = n$), one learns all the x_i's, even in the honest-but-curious setting.

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner.

Replay Attacks

A malicious adversary could try to amplify P_1's vote, replaying its message C_1 by t corrupted players: this can leak P_1's vote x_1.

This can be avoided with non-malleable encryption.
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Equality Test

Alice owns a value $x \in [A, B]$ and Bob owns a value $y \in [A, B]$, in the end, they both learn whether $x = y$ or not.

With Homomorphic Encryption

- Alice encrypts $C = E(x)$ with an additively homomorphic encryption scheme.
- Bob computes $C' = E(r(x - y))$, for a random element r.
- Alice computes $C'' = E(r'(x - y))$, for a random element r'.
- They jointly decrypt C'': the value is 0 iff $x = y$ (or random).

Yao Millionaires’ Problem

Alice owns an integer $x \in [0, 2^n[$ and Bob owns an integer $y \in [0, 2^n[$,
in the end, they both learn whether $x \leq y$ or not.

Theorem [Lin-Tzeng – 2005]

Given $x = x_{n-1} \ldots x_0, y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

$$T^1_x = \{x_{n-1} \ldots x_i | x_i = 1\} \quad T^0_y = \{y_{n-1} \ldots y_{i+1} | y_i = 0\}$$

$$x > y \iff T^1_x \cap T^0_y \neq \emptyset$$

Equality Test

We fill and order the sets by length: $\bar{T}^1_x = \{X_i\}$ and $\bar{T}^0_y = \{Y_i\}$ where for $i = 0, \ldots, n$:

- if $x_i = 0$, $X_i = 2^n$, otherwise $X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}[$
- if $y_i = 1$, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \ldots y_{i+1} \in [0, 2^{n-i}[$

$$x > y \iff \exists i < n, X_i = Y_i$$

With Homomorphic Encryption

- Alice encrypts $C_i = E(X_i)$ with an additively homomorphic encryption scheme.
- Bob computes $C'_i = E(r_i(X_i - Y_i))$, for random elements r_i and sends them in random order.
- Alice computes $C''_i = E(r'_i(X_i - Y_i))$, for random elements r'_i.
- They jointly decrypt the C''_i: one value is 0 iff $x > y$.

Yao Millionaires’ Problem

Alice owns an integer $x \in [0, 2^n[$ and Bob owns an integer $y \in [0, 2^n[$,
in the end, they both learn whether $x \leq y$ or not.

Theorem [Lin-Tzeng – 2005]

Given $x = x_{n-1} \ldots x_0, y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

$$T^1_x = \{x_{n-1} \ldots x_i | x_i = 1\} \quad T^0_y = \{y_{n-1} \ldots y_{i+1} | y_i = 0\}$$

$$x > y \iff \exists i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j)$$

Yao Millionaires’ Problem

We fill and order the sets by length: $\bar{T}^1_x = \{X_i\}$ and $\bar{T}^0_y = \{Y_i\}$ where for $i = 0, \ldots, n$:

- if $x_i = 0$, $X_i = 2^n$, otherwise $X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}[$
- if $y_i = 1$, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \ldots y_{i+1} \in [0, 2^{n-i}[$

$$x > y \iff \exists i < n, X_i = Y_i$$

With Homomorphic Encryption

- Alice encrypts $C_i = E(X_i)$ with an additively homomorphic encryption scheme.
- Bob computes $C'_i = E(r_i(X_i - Y_i))$, for random elements r_i and sends them in random order.
- Alice computes $C''_i = E(r'_i(X_i - Y_i))$, for random elements r'_i.
- They jointly decrypt the C''_i: one value is 0 iff $x > y$.
Secure Function Evaluation

Introduction
Examples
Malicious Setting

Oblivious Transfer

Definition
Examples

Garbled Circuits

Secure 2-Party Computation

The 2-party particular case: on Alice's input x and Bob's input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Oblivious Transfer

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing:

$x = (x_0, x_1)$ and $y = b$, then $f((x_0, x_1), b) = x_b$ and $g((x_0, x_1), b) = \bot$.

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation.
Oblivious Transfer

Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting \((\mathbb{G}, g, p)\), for \(x_0, x_1 \in \mathbb{G}\)

- Alice chooses \(c \leftarrow \mathbb{G}\) and sends it to Bob
- Bob chooses \(k \leftarrow \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice
- Alice checks \(pk_0 \cdot pk_1 = c\) and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal: \(C_i \leftarrow g^r_i\) and \(C'_i \leftarrow x_i \cdot pk'_i\), for \(r_i \leftarrow \mathbb{Z}_p\)
- Bob can decrypt \((C_b, C'_b)\) using \(k\)

Because of the random \(c\) (unknown discrete logarithm), Bob should not be able to infer any information about \(x_{1-b}\)
This is provably secure in the honest-but-curious setting

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting \((\mathbb{G}, g, p)\), for \(x_0, x_1 \in \mathbb{G}\)

- Bob chooses \(r, s, t \leftarrow \mathbb{Z}_p\), sets \(X \leftarrow g^r, Y \leftarrow g^s, Z_b \leftarrow g^{rs}\), \(Z_{1-b} \leftarrow g^t\), and sends \((X, Y, Z_0, Z_1)\) to Bob
- Alice checks \(Z_0 \neq Z_1\), and re-randomizes the tuples:
 \[T_0 \leftarrow (X, Y'_0 = Y^{u_0}g^{v_0}, Z'_0 = Z_0^{u_0}X^{v_0})\]
 \[T_1 \leftarrow (X, Y'_1 = Y^{u_1}g^{v_1}, Z'_1 = Z_1^{u_1}X^{v_1})\]
 for \(u_0, v_0, u_1, v_1 \leftarrow \mathbb{Z}_p\)
- Alice encrypts \(x_i\) under \(T_i\): \(C_i = Y'_i\) and \(C'_i = x_i \cdot Z'_i\)
- Bob can decrypt \((C_b, C'_b)\) using \(r\)

The re-randomization keeps the DH-tuple \(T_b\), but perfectly removes information in \(T_{1-b}\)
This is provably secure in the malicious setting
Boolean Circuit

Boolean circuit, Alice’s inputs \((x_1, x_2, x_3)\), and Bob’s inputs \((y_1, y_2, y_3)\):

They both learn \(z\) in the end, but nothing else

Outline

1 Secure Function Evaluation
2 Oblivious Transfer
3 Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness

Garbled Gates

Alice converts the circuit into a generic circuit: 1-input or 2-input gates

A = \[
\begin{bmatrix}
1 & 0 \\
0 & 0 \\
0 & 1 \\
1 & 1
\end{bmatrix}
\] not

B = \[
\begin{bmatrix}
0 & 0 \\
0 & 1 \\
0 & 1 \\
1 & 1
\end{bmatrix}
\] and

C = \[
\begin{bmatrix}
0 & 1 \\
0 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix}
\] or

D = \[
\begin{bmatrix}
0 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix}
\] line

E = \[
\begin{bmatrix}
0 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix}
\] or

F = \[
\begin{bmatrix}
0 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix}
\] and

G = \[
\begin{bmatrix}
0 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix}
\] or

1-Input Garbled Gate

For the gate A (not): 4 random secret keys \(I_A^0, J_A^0, O_A^0, O_A^1\)

\(A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^0), C_A^1 = \text{Encrypt}(I_A^1, O_A^1)\)

2-Input Garbled Gate

For the gate B (and): 8 random secret keys \(I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1\)

\(B = \begin{bmatrix} 0 & 0 \\
0 & 1 \\
\end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0||J_B^0, O_B^0), C_B^{01} = \text{Encrypt}(I_B^0||J_B^1, O_B^0)
\)

\(C_B^{00} = \text{Encrypt}(I_B^0||J_B^0, O_B^0), C_B^{01} = \text{Encrypt}(I_B^0||J_B^1, O_B^0)\)
Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate.

Alice publishes the keys corresponding to her inputs:
- for x_1, she sends I_{x_1}
- for x_2, she sends J_{x_2}
- for x_3, she sends J_{x_3}

Bob’s Inputs

\[
A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)
\]

Oblivious Transfer

Alice owns I_A^0, I_A^1 and Bob owns $y_1 \in \{0, 1\}$
- Using an OT, Bob gets $I_A^{y_1}$, while Alice learns nothing
- From the ciphertexts $(C_A^b)_b$, Bob gets $O_A^{y_B}$

Internal Garbled Gates

For the gate E (or): 2 new random secret keys O_E^0, O_E^1
while $I_E^0 \leftarrow O_A^0, I_E^1 \leftarrow O_A^1, J_E^0 \leftarrow O_B^0, J_E^1 \leftarrow O_B^1$

\[
E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^0 = \text{Encrypt}(I_E^0, O_E^0, O_E^1) \quad C_E^1 = \text{Encrypt}(I_E^1, O_E^0, O_E^1)
\]
\[
C_E^0 = \text{Encrypt}(I_E^0, J_E^0, O_B^0) \quad C_E^1 = \text{Encrypt}(I_E^0, J_E^1, O_B^1)
\]
\[
C_E^1 = \text{Encrypt}(I_E^1, J_E^0, O_B^1) \quad C_E^1 = \text{Encrypt}(I_E^1, J_E^1, O_B^0)
\]
Evaluation of Internal Gates

\[E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : \]

\[C_{E}^{00} = \text{Encrypt}(I_{E}^{0} || J_{E}^{0}, O_{E}^{0}) \]
\[C_{E}^{01} = \text{Encrypt}(I_{E}^{1} || J_{E}^{0}, O_{E}^{1}) \]
\[C_{E}^{10} = \text{Encrypt}(I_{E}^{1} || J_{E}^{0}, O_{E}^{1}) \]
\[C_{E}^{11} = \text{Encrypt}(I_{E}^{0} || J_{E}^{1}, O_{E}^{1}) \]

Evaluation of Gate E

Bob knows \(I_{E}^{y_{A}} = O_{E}^{y_{A}} \) and \(J_{E}^{y_{B}} = O_{E}^{y_{B}} \)

From the ciphertexts \((C_{E}^{bb'})_{bb'} \), Bob gets \(O_{E}^{y_{E}} \)

Output Garbled Gates

\[G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : \]

\[C_{G}^{00} = \text{Encrypt}(I_{G}^{0} || J_{G}^{0}, 0) \]
\[C_{G}^{01} = \text{Encrypt}(I_{G}^{0} || J_{G}^{1}, 1) \]
\[C_{G}^{10} = \text{Encrypt}(I_{G}^{1} || J_{G}^{0}, 1) \]
\[C_{G}^{11} = \text{Encrypt}(I_{G}^{1} || J_{G}^{1}, 1) \]

Evaluation of Gate G

Bob knows \(I_{G}^{y_{E}} = O_{G}^{y_{E}} \) and \(J_{G}^{y_{F}} = O_{G}^{y_{F}} \)

From the ciphertexts \((C_{G}^{bb'})_{bb'} \), Bob gets \(z \in \{0, 1\} \)

Bob can then transmit \(z \) to Alice

Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow \text{Redundancy is added to the plaintext} \]
 \[\Rightarrow \text{(or authenticated encryption)} \]

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow \text{Cut-and-choose technique} \]

- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow \text{Inputs are committed, checked during the cut-and-choose,} \]
 \[\Rightarrow \text{and ZK proofs are done during the OT} \]

- Bob sends back the correct value \(z \)
 \[\Rightarrow \text{Random tags are appended to the final results 0 and 1} \]
 \[\Rightarrow \text{that Bob cannot guess} \]