IV – Secure Function Evaluation and Secure 2-Party Computation

David Pointcheval
ENS – Paris
Ecole normale supérieure, CNRS & INRIA
Secure Function Evaluation
Outline

Secure Function Evaluation

Introduction
Examples
Malicious Setting

Oblivious Transfer

Garbled Circuits
Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$, for public functions f_i so that

- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- ... and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Secure Function Evaluation

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$, for public functions f_i so that

- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- \ldots and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Secure Function Evaluation

t-Privacy
If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs.

Note that the knowledge of y_i can leak some information on the x_j’s.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from t users.
- **Malicious users**: the adversary controls a fixed set of t players.
- **Dynamic adversary**: the adversary dynamically chooses the (up to) t players it controls.
Secure Function Evaluation

t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs.

Note that the knowledge of y_i can leak some information on the x_j's.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from t users.
- **Malicious users**: the adversary controls a fixed set of t players.
- **Dynamic adversary**: the adversary dynamically chooses the (up to) t players it controls.
Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits
Private Evaluation of the Sum

For all i: $x_i \in \{0, 1\}$ and $f_i(x_1, \ldots, x_n) = \sum_j x_j$

Example (Homomorphic Encryption)

- P_i encrypts $C_i = E(x_i)$ with an additively homomorphic encryption scheme.
- They all compute $C = E(\sum x_i)$.
- They jointly decrypt C to get $y = \sum x_i$ using a distributed decryption.
Electronic Voting

Private Evaluation of the Sum

For all i: $x_i \in \{0, 1\}$ and $f_i(x_1, \ldots, x_n) = \sum_j x_j$

Example (Homomorphic Encryption)

- P_i encrypts $C_i = E(x_i)$
 with an additively homomorphic encryption scheme
- They all compute $C = E(\sum x_i)$
- They jointly decrypt C to get $y = \sum x_i$
 using a distributed decryption
Privacy: Limitations

In case of unanimity (i.e. $\sum x_i = n$), one learns all the x_i’s, even in the honest-but-curious setting.

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner.

Replay Attacks

A malicious adversary could try to amplify P_1’s vote, replaying its message C_1 by t corrupted players: this can leak P_1’s vote x_1.

This can be avoided with non-malleable encryption.
Electronic Voting

Privacy: Limitations

In case of unanimity (i.e. \(\sum x_i = n \)), one learns all the \(x_i \)'s, even in the honest-but-curious setting.

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner.

Replay Attacks

A malicious adversary could try to amplify \(P_1 \)'s vote, replaying its message \(C_1 \) by \(t \) corrupted players: this can leak \(P_1 \)'s vote \(x_1 \).

This can be avoided with non-malleable encryption.
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Equality Test

Alice owns a value x and Bob owns a value y,
in the end, they both learn whether $x = y$ or not

Yao Millionaires’ Problem

Alice owns an integer x and Bob owns an integer y,
in the end, they both learn whether $x \leq y$ or not
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Equality Test

| Alice owns a value x and Bob owns a value y, |
| in the end, they both learn whether $x = y$ or not |

Yao Millionaires’ Problem

| Alice owns an integer x and Bob owns an integer y, |
| in the end, they both learn whether $x \leq y$ or not |
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Equality Test

| Alice owns a value x and Bob owns a value y, |
| in the end, they both learn whether $x = y$ or not |

Yao Millionaires’ Problem

| Alice owns an integer x and Bob owns an integer y, |
| in the end, they both learn whether $x \leq y$ or not |
Alice owns a value \(x \in [A, B] \) and Bob owns a value \(y \in [A, B] \),
in the end, they both learn whether \(x = y \) or not

With Homomorphic Encryption

- Alice encrypts \(C = E(x) \) with an additively homomorphic encryption scheme
- Bob computes \(C' = E(r(x - y)) \), for a random element \(r \)
- Alice computes \(C'' = E(rr'(x - y)) \), for a random element \(r' \)
- They jointly decrypt \(C'' \): the value is 0 iff \(x = y \) (or random)
Alice owns a value \(x \in [A, B] \) and Bob owns a value \(y \in [A, B] \),
in the end, they both learn whether \(x = y \) or not

With Homomorphic Encryption

- Alice encrypts \(C = E(x) \)
 with an additively homomorphic encryption scheme
- Bob computes \(C' = E(r(x - y)) \), for a random element \(r \)
- Alice computes \(C'' = E(rr' (x - y)) \), for a random element \(r' \)
- They jointly decrypt \(C'' \): the value is 0 iff \(x = y \) (or random)
Alice owns an integer $x \in [0, 2^n]$ and Bob owns an integer $y \in [0, 2^n]$, in the end, they both learn whether $x \leq y$ or not.

Theorem [Lin-Tzeng – 2005]

Given $x = x_{n-1} \ldots x_0$, $y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

$$T^1_x = \{x_{n-1} \ldots x_i | x_i = 1\} \quad T^0_y = \{y_{n-1} \ldots y_{i+1} | y_i = 0\}$$

$$x > y \iff T^1_x \cap T^0_y \neq \emptyset$$

$x > y \iff \exists ! i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j)$

$\iff \exists ! i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j)$

$\iff \exists ! i < n, (y_i = 0) \land (x_{n-1} \ldots x_i = y_{n-1} \ldots y_{i+1})$

$\iff |T^1_x \cap T^0_y| = 1$
Yao Millionaires’ Problem

Alice owns an integer $x \in [0, 2^n]$ and Bob owns an integer $y \in [0, 2^n]$, in the end, they both learn whether $x \leq y$ or not.

Theorem [Lin-Tzeng – 2005]

Given $x = x_{n-1} \ldots x_0, y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

$$T^1_x = \{x_{n-1} \ldots x_i | x_i = 1\} \quad T^0_y = \{y_{n-1} \ldots y_{i+1} | y_i = 0\}$$

$$x > y \iff T^1_x \cap T^0_y \neq \emptyset$$

$$x > y \iff \exists! i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j)$$

$$\iff \exists! i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j)$$

$$\iff \exists! i < n, (y_i = 0) \land (x_{n-1} \ldots x_i = y_{n-1} \ldots y_{i+1})$$

$$\iff |T^1_x \cap T^0_y| = 1$$
Yao Millionaires’ Problem

We fill and order the sets by length: \(\bar{T}_x^1 = \{X_i\} \) and \(\bar{T}_y^0 = \{Y_i\} \) where

- if \(x_i = 0 \), \(X_i = 2^n \), otherwise \(X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}] \)
- if \(y_i = 1 \), \(Y_i = 2^n + 1 \), otherwise \(Y_i = y_{n-1} \ldots y_{i+1} \in [0, 2^{n-i}] \)

\[x > y \iff \exists! i < n, X_i = Y_i \]

With Homomorphic Encryption

- Alice encrypts \(C_i = E(X_i) \)
 with an additively homomorphic encryption scheme
- Bob computes \(C_i' = E(r_i(X_i - Y_i)) \), for random elements \(r_i \)
 and sends them in random order
- Alice computes \(C_i'' = E(r_i' r_i(X_i - Y_i)) \), for random elements \(r_i' \)
- They jointly decrypt the \(C_i'' \)'s: one value is 0 iff \(x > y \)
We fill and order the sets by length: $T^1_x = \{X_i\}$ and $T^0_y = \{Y_i\}$ where:

- if $x_i = 0$, $X_i = 2^n$, otherwise $X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}]$
- if $y_i = 1$, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \ldots y_{i+1}1 \in [0, 2^{n-i}]$

\[x > y \iff \exists i < n, X_i = Y_i \]

With Homomorphic Encryption

- Alice encrypts $C_i = E(X_i)$ with an additively homomorphically encryption scheme.
- Bob computes $C'_i = E(r_i(X_i - Y_i))$, for random elements r_i and sends them in random order.
- Alice computes $C''_i = E(r_ir'_i(X_i - Y_i))$, for random elements r'_i.
- They jointly decrypt the C''_i's: one value is 0 iff $x > y$.

Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits
GMW Compiler

- Commitment of the inputs
- Secure coin tossing
- Zero-knowledge proofs of correct behavior
Oblivious Transfer
Outline

Secure Function Evaluation

Oblivious Transfer
 Definition
 Examples

Garbled Circuits
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Oblivious Transfer

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing:

$x = (x_0, x_1)$ and $y = b$, then $f((x_0, x_1), b) = x_b$ and $g((x_0, x_1), b) = \bot$

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Oblivious Transfer

Oblivious Transfer

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing:

$x = (x_0, x_1)$ and $y = b$, then $f((x_0, x_1), b) = x_b$ and $g((x_0, x_1), b) = \perp$

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation

Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Oblivious Transfer

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing:

$x = (x_0, x_1)$ and $y = b$, then $f((x_0, x_1), b) = x_b$ and $g((x_0, x_1), b) = \bot$.

Oblivious Transfer is equivalent to **Secure 2-Party Computation**

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation.
Secure Function Evaluation

Oblivious Transfer

Definition

Examples

Garbled Circuits
Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\):

- Alice chooses \(c \leftarrow G\) and sends it to Bob.
- Bob chooses \(k \leftarrow \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice.
- Alice checks \(pk_0 \cdot pk_1 = c\)
 and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal:
 \[C_i \leftarrow g^{r_i}\] and \[C'_i \leftarrow x_i \cdot pk_i^{r_i},\] for \(r_i \leftarrow \mathbb{Z}_p\).
- Bob can decrypt \((C_b, C'_b)\) using \(k\).

Because of the random \(c\) (unknown discrete logarithm), Bob should not be able to infer any information about \(x_{1-b}\).

This is provably secure in the honest-but-curious setting.
Oblivious Transfer

Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\):

- Alice chooses \(c \leftarrow G\) and sends it to Bob
- Bob chooses \(k \leftarrow \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice
- Alice checks \(pk_0 \cdot pk_1 = c\) and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal:
 \[
 C_i \leftarrow g^{r_i} \text{ and } C'_i \leftarrow x_i \cdot pk_i^{r_i}, \text{ for } r_i \leftarrow \mathbb{Z}_p
 \]
- Bob can decrypt \((C_b, C'_b)\) using \(k\)

Because of the random \(c\) (unknown discrete logarithm), Bob should not be able to infer any information about \(x_{1-b}\)

This is provably secure in the honest-but-curious setting.
Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\):

- Alice chooses \(c \leftarrow G\) and sends it to Bob.
- Bob chooses \(k \leftarrow \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice.
- Alice checks \(pk_0 \cdot pk_1 = c\) and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal:
 \[
 C_i \leftarrow g^{r_i} \quad \text{and} \quad C'_i \leftarrow x_i \cdot pk_i^{r_i}, \quad \text{for} \quad r_i \leftarrow \mathbb{Z}_p
 \]
- Bob can decrypt \((C_b, C'_b)\) using \(k\).

Because of the random \(c\) (unknown discrete logarithm),
Bob should not be able to infer any information about \(x_{1-b}\).

This is provably secure in the **honest-but-curious setting**.
Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\),

- Bob chooses \(r, s, t \leftarrow \mathbb{Z}_p\), sets \(X \leftarrow g^r, Y \leftarrow g^s, Z_b \leftarrow g^{rs}, Z_{1-b} \leftarrow g^t\), and sends \((X, Y, Z_0, Z_1)\) to Bob.
- Alice checks \(Z_0 \neq Z_1\), and re-randomizes the tuples:
 \[T_0 \leftarrow (X, Y_0' = Y^{u_0} g^{v_0}, Z_0' = Z_0^{u_0} X^{v_0}) \text{ and} \]
 \[T_1 \leftarrow (X, Y_1' = Y^{u_1} g^{v_1}, Z_1' = Z_1^{u_1} X^{v_1}) \text{, for } u_0, v_0, u_1, v_1 \leftarrow \mathbb{Z}_p \]
- Alice encrypts \(x_i\) under \(T_i\): \(C_i = Y_i'\) and \(C_i' = x_i \cdot Z_i'\).
- Bob can decrypt \((C_b, C_b')\) using \(r\).

The re-randomization keeps the DH-tuple \(T_b\),
but perfectly removes information in \(T_{1-b}\).

This is provably secure in the malicious setting.
Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting \((\mathbb{G}, g, p)\), for \(x_0, x_1 \in \mathbb{G}\)

- Bob chooses \(r, s, t \leftarrow \mathbb{Z}_p\), sets \(X \leftarrow g^r\), \(Y \leftarrow g^s\), \(Z_b \leftarrow g^{rs}\), \(Z_{1-b} \leftarrow g^t\), and sends \((X, Y, Z_0, Z_1)\) to Bob

- Alice checks \(Z_0 \neq Z_1\), and re-randomizes the tuples:
 \(
 T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0})
 \)
 \(
 T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1})
 \)
 for \(u_0, v_0, u_1, v_1 \leftarrow \mathbb{Z}_p\)

- Alice encrypts \(x_i\) under \(T_i\): \(C_i = Y'_i\) and \(C'_i = x_i \cdot Z'_i\)

- Bob can decrypt \((C_b, C'_b)\) using \(r\)

The re-randomization keeps the DH-tuple \(T_b\),

but perfectly removes information in \(T_{1-b}\)
Oblivious Transfer

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting \((\mathbb{G}, g, p)\), for \(x_0, x_1 \in \mathbb{G}\):

- Bob chooses \(r, s, t \leftarrow \mathbb{Z}_p\), sets \(X \leftarrow g^r, Y \leftarrow g^s, Z_b \leftarrow g^{rs}, Z_{1-b} \leftarrow g^t\), and sends \((X, Y, Z_0, Z_1)\) to Bob.

- Alice checks \(Z_0 \neq Z_1\), and re-randomizes the tuples:
 \[T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0})\] and
 \[T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1})\], for \(u_0, v_0, u_1, v_1 \leftarrow \mathbb{Z}_p\).

- Alice encrypts \(x_i\) under \(T_i\): \(C_i = Y'_i\) and \(C'_i = x_i \cdot Z'_i\).

- Bob can decrypt \((C_b, C'_b)\) using \(r\).

The re-randomization keeps the DH-tuple \(T_b\), but perfectly removes information in \(T_{1-b}\).

This is provably secure in the **malicious setting**.
Garbled Circuits
Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness
Boolean circuit, Alice’s inputs \((x_1, x_2, x_3)\), and Bob’s inputs \((y_1, y_2, y_3)\):

They both learn \(z\) in the end, but nothing else.
Outline

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits
 Introduction
 Garbled Circuits
 Correctness
Alice converts the circuit into a generic circuit: 1-input or 2-input gates

\[
A = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad \text{not}
\]
\[
B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and}
\]
\[
C = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{or}
\]
\[
D = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{line}
\]
\[
E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{or}
\]
\[
F = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and}
\]
\[
G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{or}
\]
Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not):

- 4 random secret keys I_A^0, I_A^1, O_A^0, O_A^1

$$ A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0) $$

2-Input Garbled Gate

For the gate B (and):

- 8 random secret keys I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1

$$ B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 || J_B^1, O_B^0) $$

$$ C_B^{10} = \text{Encrypt}(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 || J_B^1, O_B^1) $$
Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys $I_A^0, I_A^1, O_A^0, O_A^1$

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix}: \quad C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$$

2-Input Garbled Gate

For the gate B (and): 8 random secret keys $I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1$

$$B = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}: \quad C_B^{00} = \text{Encrypt}(I_B^0 \| J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 \| J_B^1, O_B^0)$$

$$C_B^{10} = \text{Encrypt}(I_B^1 \| J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 \| J_B^1, O_B^1)$$
Alice generates the garbled gates

1-Input Garbled Gate
For the gate A (not): 4 random secret keys $I_A^0, I_A^1, O_A^0, O_A^1$

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$$

2-Input Garbled Gate
For the gate B (and): 8 random secret keys $I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1$

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0 \| J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 \| J_B^1, O_B^0)$$

$$C_B^{10} = \text{Encrypt}(I_B^1 \| J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 \| J_B^1, O_B^1)$$
Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate.

Alice publishes the keys corresponding to her inputs:

- for x_1, she sends $I_{D}^{x_1}$
- for x_2, she sends $J_{B}^{x_2}$
- for x_3, she sends $J_{C}^{x_3}$
Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate.

Alice publishes the keys corresponding to her inputs:

- for \(x_1 \), she sends \(I_{D}^{x_1} \)
- for \(x_2 \), she sends \(J_{B}^{x_2} \)
- for \(x_3 \), she sends \(J_{C}^{x_3} \)
Bob’s Inputs

\[A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0) \]

Oblivious Transfer

Alice owns \(I_A^0, I_A^1 \) and Bob owns \(y_1 \in \{0, 1\} \)

- Using an OT, Bob gets \(I_A^{y_1} \), while Alice learns nothing
- From the ciphertexts \((C_A^b) \), Bob gets \(O_A^{y_A} \)
Bob’s Inputs

\[A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0) \]

Oblivious Transfer

Alice owns \(I_A^0, I_A^1 \) and Bob owns \(y_1 \in \{0, 1\} \)

- Using an OT, Bob gets \(I_A^{y_1} \), while Alice learns nothing
- From the ciphertexts \((C_A^b)_b\), Bob gets \(O_A^{y_A} \)
Bob’s Inputs

\[B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \]

\[C_{B}^{00} = \text{Encrypt}(I_{B}^0 || J_{B}^0, O_{B}^0) \quad C_{B}^{01} = \text{Encrypt}(I_{B}^0 || J_{B}^1, O_{B}^0) \]

\[C_{B}^{10} = \text{Encrypt}(I_{B}^1 || J_{B}^0, O_{B}^0) \quad C_{B}^{11} = \text{Encrypt}(I_{B}^1 || J_{B}^1, O_{B}^1) \]

Oblivious Transfer

Alice owns \(I_{B}^0, I_{B}^1 \), and Bob owns \(y_2 \in \{0, 1\} \)

- Using an OT, Bob gets \(I_{B}^{y_2} \), while Alice learns nothing
- Bob additionally knows \(J_{B}^{x_2} \)
- From the ciphertexts \((C_{B}^{bb'})_{bb'} \), Bob gets \(O_{B}^{y_B} \)
Bob’s Inputs

\[B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_{B}^{00} = \text{Encrypt}(I_{B}^{0} || J_{B}^{0}, O_{B}^{0}) \quad C_{B}^{01} = \text{Encrypt}(I_{B}^{0} || J_{B}^{1}, O_{B}^{0}) \]
\[C_{B}^{10} = \text{Encrypt}(I_{B}^{1} || J_{B}^{0}, O_{B}^{0}) \quad C_{B}^{11} = \text{Encrypt}(I_{B}^{1} || J_{B}^{1}, O_{B}^{1}) \]

Oblivious Transfer

Alice owns \(I_{B}^{0}, I_{B}^{1} \), and Bob owns \(y_{2} \in \{0, 1\} \)

- Using an OT, Bob gets \(I_{B}^{y_{2}} \), while Alice learns nothing
- Bob additionally knows \(J_{B}^{x_{2}} \)
- From the ciphertexts \((C_{B}^{bb'})_{bb'} \), Bob gets \(O_{B}^{y_{B}} \)
Internal Garbled Gates

For the gate E (or): 2 new random secret keys O^0_E, O^1_E
while $I^0_E \leftarrow O^0_A$, $I^1_E \leftarrow O^1_A$, $J^0_E \leftarrow O^0_B$, $J^1_E \leftarrow O^1_B$

$$E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : \begin{align*}
C^{00}_E &= \text{Encrypt}(I^0_E \parallel J^0_E, O^0_E) \\
C^{01}_E &= \text{Encrypt}(I^0_E \parallel J^1_E, O^1_E) \\
C^{10}_E &= \text{Encrypt}(I^1_E \parallel J^0_E, O^1_E) \\
C^{11}_E &= \text{Encrypt}(I^1_E \parallel J^1_E, O^1_E)
\end{align*}$$
Internal Garbled Gate

For the gate E (or): 2 new random secret keys O^0_E, O^1_E
while $I^0_E \leftarrow O^0_A$, $I^1_E \leftarrow O^1_A$, $J^0_E \leftarrow O^0_B$, $J^1_E \leftarrow O^1_B$

$E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$: $C^{00}_E = \text{Encrypt}(I^0_E || J^0_E, O^0_E)$
$C^{01}_E = \text{Encrypt}(I^0_E || J^1_E, O^1_E)$
$C^{10}_E = \text{Encrypt}(I^1_E || J^0_E, O^1_E)$
$C^{11}_E = \text{Encrypt}(I^1_E || J^1_E, O^1_E)$
Evaluation of Internal Gates

\[E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_{E}^{00} = \text{Encrypt}(I_{E}^{0} \parallel J_{E}^{0}, O_{E}^{0}) \quad C_{E}^{01} = \text{Encrypt}(I_{E}^{0} \parallel J_{E}^{1}, O_{E}^{1}) \]
\[C_{E}^{10} = \text{Encrypt}(I_{E}^{1} \parallel J_{E}^{0}, O_{E}^{1}) \quad C_{E}^{11} = \text{Encrypt}(I_{E}^{1} \parallel J_{E}^{1}, O_{E}^{1}) \]

Evaluation of Gate E

Bob knows \(I_{E}^{y_A} = O_{A}^{y_A} \) and \(J_{E}^{y_B} = O_{B}^{y_B} \)

From the ciphertexts \((C_{E}^{bb'})_{bb'} \), Bob gets \(O_{E}^{y_E} \)
Evaluation of Internal Gates

\[E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \]

\[C_E^{00} = \text{Encrypt}(I_E^0 \| J_E^0, O_E^0) \quad C_E^{01} = \text{Encrypt}(I_E^0 \| J_E^1, O_E^1) \]

\[C_E^{10} = \text{Encrypt}(I_E^1 \| J_E^0, O_E^1) \quad C_E^{11} = \text{Encrypt}(I_E^1 \| J_E^1, O_E^1) \]

Evaluation of Gate E

Bob knows \(I_E^{yA} = O_A^{yA} \) and \(J_E^{yB} = O_B^{yB} \)

From the ciphertexts \((C_E^{bb'})_{bb'}\), Bob gets \(O_E^{yE} \)
Output Garbled Gates

For the gate G (or):

\[
\begin{align*}
I_0^G & \leftarrow O_0^E, \quad I_1^G \leftarrow O_1^E, \quad J_0^G \leftarrow O_0^F, \quad J_1^G \leftarrow O_1^F \\
G & = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}: \quad C_{G}^{00} = \text{Encrypt}(I_0^G || J_0^G, 0) \quad C_{G}^{01} = \text{Encrypt}(I_0^G || J_1^G, 1) \\
C_{G}^{10} = \text{Encrypt}(I_1^G || J_0^G, 1) \quad C_{G}^{11} = \text{Encrypt}(I_1^G || J_1^G, 1)
\end{align*}
\]
Output Garbled Gates

For the gate G (or):

\[I_G^0 \leftarrow O_E^0, \quad I_G^1 \leftarrow O_E^1, \quad J_G^0 \leftarrow O_F^0, \quad J_G^1 \leftarrow O_F^1 \]

\[
G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} :
\begin{align*}
C_G^{00} &= \text{Encrypt}(I_G^0 || J_G^0, 0) \\
C_G^{01} &= \text{Encrypt}(I_G^0 || J_G^1, 1) \\
C_G^{10} &= \text{Encrypt}(I_G^1 || J_G^0, 1) \\
C_G^{11} &= \text{Encrypt}(I_G^1 || J_G^1, 1)
\end{align*}
\]
Evaluation of Internal Gates

G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}: C_{G}^{00} = \text{Encrypt}(I_{G}^{0}\|J_{G}^{0}, 0) \quad C_{G}^{01} = \text{Encrypt}(I_{G}^{0}\|J_{G}^{1}, 1)
\quad C_{G}^{10} = \text{Encrypt}(I_{G}^{1}\|J_{G}^{0}, 1) \quad C_{G}^{11} = \text{Encrypt}(I_{G}^{1}\|J_{G}^{1}, 1)

Evaluation of Gate G

Bob knows I_{G}^{yE} = O_{E}^{yE} and J_{G}^{yF} = O_{F}^{yF}

From the ciphertexts \((C_{G}^{bb'})_{bb'}\), Bob gets \(z \in \{0, 1\}\)

Bob can then transmit \(z\) to Alice
Evaluation of Internal Gates

\[
G = \begin{bmatrix}
0 & 1 \\
1 & 1
\end{bmatrix} : C_G^{00} = \text{Encrypt}(I_G^0 || J_G^0, 0) \quad C_G^{01} = \text{Encrypt}(I_G^0 || J_G^1, 1) \\
C_G^{10} = \text{Encrypt}(I_G^1 || J_G^0, 1) \quad C_G^{11} = \text{Encrypt}(I_G^1 || J_G^1, 1)
\]

Evaluation of Gate G

Bob knows \(I_G^{ye} = O_E^{ye} \) and \(J_G^{yf} = O_F^{yf} \)

From the ciphertexts \((C_G^{bb'})_{bb'}\), Bob gets \(z \in \{0, 1\}\)

Bob can then transmit \(z \) to Alice
Outline

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness
The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\implies \text{Redundancy is added to the plaintext} \]
 \(\text{(or authenticated encryption)}\)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
- Alice plays the oblivious transfer protocols with correct inputs
- Bob sends back the correct value \(z\)
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \(\Rightarrow\) Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct

- Alice plays the oblivious transfer protocols with correct inputs

- Bob sends back the correct value \(z\)
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow\text{Redundancy is added to the plaintext}\]
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow\text{Cut-and-choose technique}\]
- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow\text{Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT}\]
- Bob sends back the correct value \(z\)
 \[\Rightarrow\text{Random tags are appended to the final results 0 and 1 that Bob cannot guess}\]
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow \text{Redundancy is added to the plaintext} \]
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow \text{Cut-and-choose technique} \]
- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow \text{Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT} \]
- Bob sends back the correct value \(z \)
 \[\Rightarrow \text{Random tags are appended to the final results 0 and 1 that Bob cannot guess} \]
The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\implies \text{Redundancy is added to the plaintext} \]
 \[
 \text{(or authenticated encryption)}
 \]

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\implies \text{Cut-and-choose technique} \]
- Alice plays the oblivious transfer protocols with correct inputs
 \[\implies \text{Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT} \]
- Bob sends back the correct value \(z \)
 \[\implies \text{Random tags are appended to the final results 0 and 1 that Bob cannot guess} \]
The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow\text{Redundancy is added to the plaintext}\]
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow\text{Cut-and-choose technique}\]
- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow\text{Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT}\]
- Bob sends back the correct value \(z\)
 \[\Rightarrow\text{Random tags are appended to the final results 0 and 1 that Bob cannot guess}\]
Honest-but-Curious and Malicious

The previous construction assumes that

• Bob extracts the correct plaintext among the multiple candidates
 \[\implies\] Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

• Alice correctly builds garbled gates: the ciphertexts are correct
 \[\implies\] Cut-and-choose technique

• Alice plays the oblivious transfer protocols with correct inputs
 \[\implies\] Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT

• Bob sends back the correct value \(z\)
 \[\implies\] Random tags are appended to the final results 0 and 1 that Bob cannot guess
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow\] Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow\] Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow\] Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT
- Bob sends back the correct value \(z\)
 \[\Rightarrow\] Random tags are appended to the final results 0 and 1 that Bob cannot guess