III – Distributed Cryptography

David Pointcheval
Ecole normale supérieure/PSL, CNRS & INRIA
Secret Sharing

- Introduction
- Shamir Secret Sharing
- Verifiable Secret Sharing

Distributed Cryptography

- Introduction
- Distributed Decryption
- Distributed Signature
- Distributed Key Generation
Secret Sharing
Outline

Secret Sharing

Introduction

Shamir Secret Sharing

Verifiable Secret Sharing

Distributed Cryptography
Key Management

In case of a critical private key (decryption or signing key)

- **Abuse**: one user can use the secret key alone
- **Loss**: in case of loss of the key (destruction)

⇒ share the secret key between several users
Let $S \in \{0, 1\}^\ell$ be a secret bit-string to be shared between two people (Alice and Bob):

- one chooses a random $S_1 \in \{0, 1\}^\ell$, and sends it to Alice
- one computes $S_2 = S \oplus S_1$, and sends it to Bob

Security:

- Alice knows a random value
- Bob knows a value masked by a random value: a random value!

\Rightarrow individually, they have no information on S

Together, they can recover $S = S_1 \oplus S_2$
Secret Sharing Schemes

Let $S \in \{0,1\}^\ell$ be a secret bit-string to be shared between n people (U_1, \ldots, U_n):

- one chooses random values $S_i \in \{0,1\}^\ell$, for $i = 1, \ldots, n-1$ and sends S_i to U_i
- one computes $S_n = S \oplus S_1 \oplus \ldots \oplus S_{n-1}$, and sends it to U_n

Security:

- U_1, \ldots, U_{n-1} know random values
- U_n knows a value masked by random values: a random value!

\implies individually, they have no information on S

\implies but also, any subgroup of $(n-1)$ people has no information on S

All together, they can recover $S = S_1 \oplus \ldots \oplus S_n$
Unconditional Security

Any subgroup of \((n - 1)\) people has no information on \(S\!\)

\[\implies\text{ if one people does not want / is not able to cooperate:}\]

\[S\text{ is lost forever!}\]

Threshold Secret Sharing

\((n, k)\)-Threshold Secret Sharing

A secret \(S\) is shared among \(n\) users:

- any subgroup of \(k\) people (or more) can recover \(S\)
- any subgroup of less than \(k\) people has no information about \(S\)
Lagrange Interpolation of Polynomials

Let us be given k points $(x_1, y_1), \ldots, (x_k, y_k)$, with distinct abscissa. There exists a unique polynomial P

- of degree $k - 1$
- such that $P(x_i) = y_i$ for $i = 1, \ldots, k$

$$L_j(X) = \prod_{\substack{i=1\,\,i\neq j}}^{i=k} \frac{X - x_i}{x_j - x_i} \left\{ \begin{array}{l} L_j(x_j) = 1 \\ L_j(x_i) = 0 \quad \text{for all } i \neq j \end{array} \right.$$

As a consequence:

$$P(X) = \sum_{j=1}^{k} y_j L_j(X) \text{ satisfies } \left\{ \begin{array}{l} \text{deg}(P) = k - 1 \\ P(x_i) = y_i \quad \forall i = 1, \ldots, k \end{array} \right.$$
Shamir Secret Sharing: \((n, k)\)-Threshold

For any subset \(S\) of \(k\) indices:

\[
L_{S,j}(X) = \prod_{i \in S, i \neq j} \frac{X - x_i}{x_j - x_i} \quad \left\{ \begin{array}{l}
L_{S,j}(x_j) = 1 \\
L_{S,j}(x_i) = 0 \quad \text{for all } i \in S, i \neq j
\end{array} \right.
\]

and

\[
P(X) = \sum_{j \in S} y_j L_{S,j}(X) : S = P(0) = \sum_{j \in S} y_j L_{S,j}(0)
\]

If one notes \(\lambda_{S,j} = L_{S,j}(0)\) (that can be publicly computed)

\[
x = \sum_{j \in S} y_j \lambda_{S,j}.
\]
Secret Sharing

Introduction

Shamir Secret Sharing

Verifiable Secret Sharing

Distributed Cryptography
If Eve claims she shared her decryption key: how can we trust her?

- we try to recover the key?
- how to do without revealing additional information?

⇒ Verifiable Secret Sharing

For DL Keys

Eve’s keys are, in a group $\mathbb{G} = \langle g \rangle$ of prime order q,

$$sk = x \quad pk = y = g^x$$

(n, k)-Secret sharing: $x = P(0)$ for $P(X) = \sum_{i=0}^{k-1} a_i X^i$

⇒ $S_i = P(i)$ for $i = 1 \ldots, n$

For any subset S of k indices:

- $x = \sum_{j \in S} S_j \lambda_{S,j}$
- $y = g^x = g^{\sum_{j \in S} S_j \lambda_{S,j}} = \prod_{j \in S} (g^{S_j})^{S_{S,j}} = \prod_{j \in S} v_j^{\lambda_{S,j}}$ for $v_j = g^{S_j}$
Verifiable Secret Sharing for DL Keys

For DL Keys

Eve’s keys are, in a group $\mathbb{G} = \langle g \rangle$ of prime order q,

$$\begin{align*}
 sk &= x \\
pk &= y = g^x
\end{align*}$$

(n, k)-Secret sharing: $x = P(0)$ for $P(X) = \sum_{i=0}^{k-1} a_i X^i$

- Eve computes $S_i = P(i)$ for $i = 1, \ldots, n$ and $v_i = g^{S_i}$
- Eve sends each S_i privately to each U_i
- Eve publishes $v_i = g^{S_i}$ for $i = 1, \ldots, n$
- Each U_i can then check its own v_i w.r.t. to its S_i
- Anybody can check

$$y = \prod_{j \in S} v_j^{\lambda_{S,j}}$$

for any subset S of size k
Distributed Cryptography
Outline

Secret Sharing

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation
Secret Sharing vs. Distributed Cryptography

If Eve shares her decryption key sk, the (U_i) will have to cooperate to recover the key sk and then decrypt the ciphertext.

But then, they all know the decryption key sk!

How can the (U_i) use their shares (S_i) to decrypt (or sign), without leaking any additional information about sk?

\Rightarrow Multi-party computation

Let us try on ElGamal decryption (with shared DL keys)
Secret Sharing

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation
ElGamal Encryption

In a group $\mathbb{G} = \langle g \rangle$ of order q

- $K(\mathbb{G}, g, q)$: $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $E_{pk}(m)$: $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m$. Then, the ciphertext is $c = (c_1, c_2)$
- $D_{sk}(c)$ outputs c_2 / c_1^x

We assume an (n, k)-secret sharing of x and a qualified set S: $x = \sum_{j \in S} S_j \lambda_{S,j}$

$D_{sk}(c) = c_2 / c_1^x$: one needs to compute c_1^x

$$c_1^x = c_1^{\sum_{j \in S} S_j \lambda_{S,j}} = \prod_{j \in S} (c_1^{S_j})^{\lambda_{S,j}}$$

Each user computes $C_j = c_1^{S_j}$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda_{S,j}}$
Robustness

In a group $\mathbb{G} = \langle g \rangle$ of order q

- $\mathcal{K}(\mathbb{G}, g, q)$: $x \leftarrow \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $\mathcal{E}_{pk}(m)$: $r \leftarrow \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m$. Then, the ciphertext is $c = (c_1, c_2)$
- $\mathcal{D}_{sk}(c)$ outputs c_2/c_1^x

Given a qualified set S: $x = \sum_{j \in S} S_j \lambda_{S,j}$

Each user computes $C_j = c_1^{S_j}$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda_{S,j}}$

Assume Charlie a.k.a. U_1, sends a random C_1:

- the others will compute a wrong decryption
- Charlie will be able to extract the plaintext!
Each user computes $C_j = c_1^{S_j}$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda S_{j}}$.

But U_1, sends a random C_1: instead of $c_1^{S_1}$, knowing also $v_1 = g^{S_1}$.

\implies Decide a DDH tuple (g, c_1, v_1, C_1)

Robustness

A defrauder can be detected

\implies Proof of DDH membership for the tuple (g, c_1, v_1, C_1), without leakage of any information about S_1
In a group $\mathbb{G} = \langle g \rangle$ of prime order q,

the DDH(g, h) assumption states it is hard to distinguish

$L = (u = g^x, v = h^x)$ from $\mathbb{G}^2 = (u = g^x, v = h^y)$

- P knows x, such that $(u = g^x, v = h^x)$ and wants to prove it
- P chooses $k \overset{R}{\leftarrow} \mathbb{Z}_q^*$, sets $U = g^k$ and $V = h^k$
- P computes $h = \mathcal{H}(g, h, u, v, U, V) \in \mathbb{Z}_q$
- P computes $s = k - xh \mod q$

The proof consists of the pair (h, s):

anybody can check whether $h = \mathcal{H}(g, h, u, v, g^s u^h, h^s v^h)$

This proof allows to detect the defrauder
Secret Sharing

Distributed Cryptography

Introduction
Distributed Decryption
Distributed Signature
Distributed Key Generation
Schnorr Signature

- \(\mathbb{G} = \langle g \rangle \) of order \(q \) and \(\mathcal{H}: \{0,1\}^* \rightarrow \mathbb{Z}_q \)
- Key Generation \(\rightarrow (y, x): x \in \mathbb{Z}_q^* \) and \(y = g^{-x} \)
- Signature of \(m \rightarrow (r, h, s) \)
 \[k \leftarrow \mathbb{Z}_q^* \quad r = g^k \quad h = \mathcal{H}(m, r) \quad s = k + xh \mod q \]
- Verification of \((m, r, s) \)
 compute \(h = \mathcal{H}(m, r) \) and check \(r \stackrel{?}{=} g^s y^h \)

We assume an \((n, k)\)-secret sharing of \(x \) (with the \(v_i \)) and a qualified set \(S: x = \sum_{j \in S} S_j \lambda S, j \)

The users generate a common \(r \) and then sign \((m, r)\) with a partial signature \(s_i \) under \(v_i \):
\[\Longrightarrow \] the linearity leads to a global signature
Distributed Schnorr Signature

- $\mathbb{G} = \langle g \rangle$ of order q and $\mathcal{H}: \{0, 1\}^* \rightarrow \mathbb{Z}_q$

- Key Generation $\rightarrow (y, x): x \in \mathbb{Z}_q^*$ and $y = g^{-x}$
 We assume an (n, k)-secret sharing of x (with the $v_i = g^{S_i}$)
 and a qualified set S: $x = \sum_{j \in S} S_j \lambda_{S,j}$

- Signature of $m \rightarrow (r, h, s)$
 - each U_i chooses $k_i \leftarrow \mathbb{Z}_q^*$ and publishes $r_i = g^{k_i}$
 - they all compute $r = \prod_{i} r_i^{\lambda_{S,i}}$ and $h = \mathcal{H}(m, r)$
 - each U_i computes and publishes $s_i = k_i + S_i h \mod q$

 Then, $s = \sum s_i \lambda_{S,i}$

- Verification of (m, r, s)
 compute $h = \mathcal{H}(m, r)$ and check $r \overset{?}{=} g^s y^h$

Each partial signature (m, r_i, s_i) can be checked: $r_i \overset{?}{=} g^{s_i} v_i^h$
Outline

Secret Sharing

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation
Distributed Key Generation

In the previous schemes (ElGamal encryption and Schnorr signature) the keys are generated in a centralized way:
someone knows the secret key!

Distributed cryptography should include a distributed key generation:
the secret key should never exist in one place.

\((n, n)\)-Threshold DL Key Generation

- \(G = \langle g \rangle\) of order \(q\)
- Key Generation \(\rightarrow (y, x)\):
 - each \(U_i\) chooses \(x_i \leftarrow \mathbb{Z}_q^*\) and publishes \(y_i = g^{x_i}\)
 - anybody can compute \(y = \prod y_i = g^{\sum x_i}\)

The public key \(y\) corresponds to the “virtual” secret key

\[x = \sum x_i \mod q \]
Distributed Key Generation

\((n, k)\)-Threshold DL Key Generation

- \(\mathbb{G} = \langle g \rangle \) of order \(q \)

- Key Generation \(\to (y, x) \):
 - each \(U_i \) chooses a polynomial \(P_i \) of degree \(k - 1 \),
 and sends \(S_{i,j} = P_i(j) \) to \(U_j \)
 - each \(U_j \) can then compute \(S_j = \sum_i S_{i,j} = \sum_i P_i(j) = P(j) \),
 where \(P = \sum_i P_i \)
 - each \(U_j \) computes and publishes \(v_j = g^{S_j} \)

The \((S_j)_j\) are an \((n, k)\)-secret sharing of the “virtual” secret key \(x \),
 corresponding to the public key \(y \), that anybody can compute:

For any qualified set \(S \):

- Secretly: \(x = \sum_{j \in S} S_j \lambda_{S,j} \mod q \)
- Publicly: \(y = \prod_{j \in S} v_j^{\lambda_{S,j}} \)