III – Pairing-based Cryptography

David Pointcheval

Ecole normale supérieure, CNRS & INRIA

ENS – Paris – 2020

Outline

1 Introduction
 - Gap Groups
 - Pairings
 - Short Signatures

2 Identity-Based Encryption
 - Security

3 Without Random Oracles
 - BB Signature/IBE
 - Extension

Gap Groups

Definition (Pairing Setting)

Let G_1 and G_2 be two cyclic groups of prime order p.
Let g_1 and g_2 be generators of G_1 and G_2 respectively.
Let $e : G_1 \times G_2 \rightarrow G_T$, be a bilinear map.

Definition (Various Cases)

1 The symmetric case: $G_1 = G_2$.
2 There exists an isomorphism ψ, from G_2 onto G_1:
 1 ψ is efficiently computable; as well as ψ^{-1}
 2 ψ is efficiently computable;
 but no efficient isomorphism from G_1 onto G_2
 3 no efficiently computable isomorphism in any direction
Gap Groups

Definition (co-Diffie-Hellman Problems)

Let \((p, G_1, g_1, G_2, g_2, G_T, e)\) be a pairing setting

- **co-CDH** in \((G_1, G_2)\): Given \(g, g^a \in G_2\) and \(h \in G_1\), compute \(h^a\)
- **co-DDH** in \((G_1, G_2)\): Given \(g, g^a \in G_2\) and \(h, h^b \in G_1\), decide whether \(a = b\) or not

Note: when \(G_1 = G_2 = G\), **co-CDH** in \((G_1, G_2)\) is **CDH** in \(G\), and **co-DDH** in \((G_1, G_2)\) is **DDH** in \(G\)

Definition (Gap Groups)

We say that a group \(G\) is a **gap group** if **CDH** in \(G\) is hard, whereas **DDH** in \(G\) is simple.

Outline

1. **Introduction**
 - Gap Groups
 - Pairings
 - Short Signatures
2. **Identity-Based Encryption**
3. **Without Random Oracles**

Admissible Bilinear Map

Definition (Admissible Bilinear Map)

Let \((p, G_1, g_1, G_2, g_2, G_T, e)\) be a pairing setting, with \(e: G_1 \times G_2 \rightarrow G_T\) a non-degenerated bilinear map

- **Bilinear**: for any \(g \in G_1\), \(h \in G_2\) and \(u, v \in \mathbb{Z}\),

 \[e(g^u, h^v) = e(g, h)^{uv}\]

- **Non-degenerated**: \(e(g_1, g_2) \neq 1\)

co-DDH in \((G_1, G_2)\) **easy**

Given \(g, g^a \in G_2\) and \(h, h^b \in G_1\)

\[a = b \mod p \iff e(h, g^a) = e(h^b, g)\]

Bilinear Diffie-Hellman Problems

We now focus on the symmetric case: \(G_1 = G_2 = G\).

Diffie-Hellman Problems

- **CDH** in \(G\): Given \(g, g^a, g^b \in G\), compute \(g^{ab}\)
- **DDH** in \(G\): Given \(g, g^a, g^b, g^c \in G\), decide whether \(c = ab\) or not

CDH can be hard to solve, but **DDH** is easy in gap-groups.

Bilinear Diffie-Hellman Problems

- **CBDH** in \(G\): Given \(g, g^a, g^b, g^c \in G\), compute \(e(g, g)^{abc}\)
- **DBDH** in \(G\): Given \(g, g^a, g^b, g^c \in G\) and \(h \in G_T\), decide whether \(h \stackrel{?}{=} e(g, g)^{abc}\)
Signature in Gap Groups

Let \mathbb{G} be a gap-group of prime order p, with a generator g.

Signature Scheme

- Key generation: choose $x \in \mathbb{Z}_p$, and set $y = g^x$;
- Signature of $M \in \mathbb{G}$: $\sigma = M^x$;
- Verification of (M, σ): check $\text{DDH}(g, y, M, \sigma)$.

Full-Domain Hash

$H : \{0, 1\}^* \rightarrow \mathbb{G}$

- In order to sign m, one first computes $M = H(m) \in \mathbb{G}$
- Then $\sigma = M^x = \text{CDH}(g, y, H(m))$

The signature of a message m is thus an element $\sigma \in \mathbb{G}$.

Identity-Based Cryptography

Public-Key Cryptography

Each user ID owns
- a public key pk
- a certificate that guarantees the link between ID and pk
- a private key sk, related to pk

One has to access a dictionary in order to get pk, the public key of ID, together with the certificate, in order to encrypt a message to ID.

Identity-Based Cryptography

Each user ID owns
- a private key sk, related to ID
- the public key pk is indeed ID itself

Key Computation

Public-Key Cryptography

- User ID chooses his private key sk
- derives his public key pk
- asks a TTP for the certification of pk w.r.t. ID

Identity-Based Cryptography

- Each user ID asks a TTP for the computation of the private key sk, related to ID
 \Rightarrow extraction

Note

For signature, the two scenarios are quite similar.
Identity-Based Encryption

Setup

The authority generates a master secret key msk, and publishes the public parameters, PK.

Extraction

Given an identity ID, the authority computes the private key sk granted the master secret key msk.

Encryption

Any one can encrypt a message m to a user ID using only m, ID and the public parameters PK.

Decryption

Given a ciphertext, user ID can recover the plaintext, with his secret key sk.

Security Model: IND − ID − CCA

Definition (IND − ID − CCA Security)

The adversary
- receives the global parameters
- asks any extraction-query, and any decryption-query
- outputs a target identity ID^* and two messages (m_0, m_1)

The challenger flips a bit b, and encrypts m_b for ID^* into c^*, then the adversary
- asks any extraction-query, and any decryption-query
- outputs its guess b' for b

\[
\text{Adv}^\text{ind-id-cca} = 2 \times \Pr[b' = b] - 1
\]

Restrictions

IND − ID − CCA: semantic security, full-identity, chosen-ciphertext attacks

The adversary is just restricted not to ask:
- the target identity ID^* to the extraction-oracle,
- nor the challenge ciphertext c^* to the decryption-oracle with ID^*

sID: selective-identity

The adversary provides the target identity ID^* before receiving the global parameters.

CPA: chosen-plaintext attacks

The adversary does not have access to the decryption-oracle.
Identity-Based Encryption

Setup
- The authority sets up a gap-group framework:
 - a group G of prime order p, with a generator g,
 - with an admissible bilinear map $e : G \times G \to G^T$
- It selects a master secret key $msk = s \in \mathbb{Z}_p$
- It publishes the public parameters: $PK = (p, G, e, g, P = g^s)$

Extraction
Given an identity ID, the authority computes the private key $sk = H(ID)^s$
Note that sk is a BLS signature of ID, which can be checked by the user: $e(sk, g) \overset{?}{=} e(H(ID), P)$

BF IBE Security Analysis

Theorem
The BF IBE is IND – ID – CPA secure under the DBDH problem, in the random oracle model.

By masking m with $H(K): B = m \oplus H(K)$, the BF IBE is IND – ID – CPA secure under the CBDH problem, in the random oracle model

CCA Security
- [Fujisaki-Okamoto – Crypto ’01]

Outline
- 1 Introduction
- 2 Identity-Based Encryption
- 3 Without Random Oracles
 - BB Signature/IBE
 - Extension

Encryption
In order to encrypt a message m to a user ID
- one chooses a random $r \in \mathbb{Z}_p$
- computes $A = g^r$ and $K = e(P, H(ID)^r)$
- sends $(A, B = K \times m)$

\[
K = e(P, H(ID)^r) = e(g^s, H(ID)^r) = e(g^r, H(ID)^s) = e(A, sk)
\]

Decryption
Upon reception of (A, B), user ID
- computes $K = e(A, sk)$
- gets $m = B/K$
Boneh-Boyen’s Signature

Let G be a cyclic group of prime order p, with two independent generators g, h, equipped with an admissible bilinear map $e : G \times G \to G^T$

For any message $m \in \mathbb{Z}_p$ (output by a hash function), we define $F(m) = uv^m$, where u and v are independent public elements in G.

Boneh-Boyen’s Signature: Security Analysis

Theorem (Selected-Message CMA)

For a message m^* chosen ahead, before having seen the parameters and the public key, signing m^* under a chosen-message attack is intractable under the CDH problem in G.

Simulation: Selected-Message Forgery

Let us be given $g, G = g^a$ and $h = g^b$, we want to extract $H = h^a = g^{ab}$.

We set $u = G^{-m^*}g^\beta$ for a random β:

$$F(m) = G^m u = G^{m - m^*} g^\beta$$

$F(m^*) = g^\beta$

A forgery for m^*: (σ_1, σ_2), such that

$$e(g, \sigma_1) = e(G, h)e(\sigma_2, g^\beta) \Rightarrow e(G, h) = e(g, \sigma_1/\sigma_2^\beta)$$

$$\text{CDH}(g, h, G) = \sigma_1/\sigma_2^\beta$$

Boneh-Boyen’s Signature (Cont’d)

Signature Scheme

- Key generation: choose $x \in \mathbb{Z}_p$, and set $G = g^x$ as well as $H = h^x$; The public key is G, whereas H is kept private.

- Signature of $m \in \mathbb{Z}_p$: $\sigma = (H \times F(m)^r, g^r)$, for a random $r \in \mathbb{Z}_p$;

- Verification of $(m, (\sigma_1, \sigma_2))$: check whether

$$e(g, \sigma_1) = e(g, h^x \times F(m)^r)$$

$$= e(g, h^x) \times e(g, F(m)^r) = e(g^x, h) \times e(g^r, F(m))$$

$$\Rightarrow e(G, h) \times e(\sigma_2, F(m))$$

Boneh-Boyen’s Signature: Security Analysis

Simulation: CMA

For any query $m \neq m^*$, we simulate a signature:

$$\sigma_1 = h^{-\beta/(m - m^*)} F(m)^r$$

$$\sigma_2 = g^r h^{1/(m - m^*)}$$

Let us set $\rho = r - b/(m - m^*)$:

$$\sigma_1 = h^{-\beta/(m - m^*)} F(m)^r$$

$$= h^{-\beta/(m - m^*)} \times (G^{m - m^*} g^\beta)^{\rho + b/(m - m^*)}$$

$$= h^{-\beta/(m - m^*)} \times g^\beta (m - m^*) \times G^\rho \times g^\beta \times h^{\beta/(m - m^*)}$$

$$= h^{\rho} \times G^{\rho(m - m^*)} \times g^\beta$$

$$\sigma_2 = g^r \times h^{1/(m - m^*)} = g^{r - b/(m - m^*)} = g^\rho$$
Identity-Based Encryption

[Boneh-Boyen – Eurocrypt ’04]

Setup

- The authority sets up a gap-group framework:
 - a group G of prime order p, with three independent generators g, h and u, with an admissible bilinear map $e : G \times G \rightarrow G^T$.
- It selects a master secret key $s \in \mathbb{Z}_p$, and keeps $H = h^s$.
- It publishes the parameters: $(p, G, e, g, h, G = g^s)$.

Extraction

Given an identity $I\mathcal{D}$, the authority computes the key $sk = (sk_1 = H \times F(I\mathcal{D})^t, sk_2 = g^t)$, where $F(x) = uG^x$.

Note that sk is a BB signature of $I\mathcal{D}$: $e(g, sk_1) = e(G, h) \times e(sk_2, F(I\mathcal{D}))$.

Encryption

In order to encrypt a message $m \in G^T$ to a user $I\mathcal{D}$:

- one chooses a random $t \in \mathbb{Z}_p$.
- computes $A = F(I\mathcal{D})^t$, $B = g^t$ and $K = e(G, h)^t$.
- sends $(A, B, C = K \times m)$.

BB IBE Security Analysis

The BB IBE is IND − sID − CPA secure under the DBDH problem.

Outline

1. Introduction
2. Identity-Based Encryption
3. Without Random Oracles
 - BB Signature/IBE
 - Extension
Let G be a cyclic group of prime order p, with two independent generators g, h, equipped with an admissible bilinear map $e : G \times G \to G^T$.

For any message $m \in \{0, 1\}^k$ (output by a hash function), we define

$$F(m) = u'(\prod u_i^{m_i}), \quad m = m_1 \ldots m_k,$$

where u' and u_1, \ldots, u_k are independent public elements in G.

Signature Scheme

- Key generation: choose $x \in \mathbb{Z}_p$, and set $G = g^x$ as well as $H = h^x$; The public key is G, whereas H is kept private.
- Signature of $m \in \{0, 1\}^k$: $\sigma = (H \times F(m)^r, g^r)$, for a random $r \in \mathbb{Z}_p$.
- Verification of $(m, (\sigma_1, \sigma_2))$: check whether

$$e(g, \sigma_1) = e(g, h^x \times F(m)^r)$$

$$= e(g, h^x) \cdot e(g, F(m)^r) = e(g^x, h) \times e(g^r, F(m))$$

$$\overset{?}{=} e(G, h) \times e(\sigma_2, F(m))$$

Theorem

The Water’s IBE is IND – ID – CPA secure under the DBDH problem.