Proof of Knowledge

How do I prove that I know a solution s to a problem P?

1. **Zero-Knowledge Proofs of Knowledge**
 - Introduction
 - 3-Coloring
 - Examples

2. **Signatures**
 - From Identification to Signature
 - Forking Lemma

3. **Zero-Knowledge Proofs of Membership**
 - Introduction
 - Example: DH
Proof of Knowledge: Soundness

A knows something... What does it mean?

the information can be extracted: extractor

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?
I reveal the solution...

How can I do it without revealing any information?
Zero-knowledge: simulation and indistinguishability

Outline

1. Zero-Knowledge Proofs of Knowledge
 - Introduction
 - 3-Coloring
 - Examples

2. Signatures

3. Zero-Knowledge Proofs of Membership
Proof of Knowledge

How do I prove that I know a 3-color covering, without revealing any information?

I choose a random permutation on the colors and I apply it to the vertices

I mask the vertices and send it to the verifier

Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary, then one can solve the underlying problem:

The verifier chooses an edge
I open it
The verifier checks the validity: 2 different colors
Outline

1. Zero-Knowledge Proofs of Knowledge
 - Introduction
 - 3-Coloring
 - Examples

2. Signatures

3. Zero-Knowledge Proofs of Membership

3-Pass Zero-Knowledge Proofs

Generic Proof

- Proof of knowledge of \(x \) such that \(P(x, y) \)
- \(P \) builds a commitment \(r \) and sends it to \(V \)
- \(V \) chooses a challenge \(h \)
- \(h \sim \{0, 1\}^k \) for \(P \)
- \(P \) computes and sends the answer \(s \)
- \(V \) checks \((r, h, s)\)

\(\Sigma \)-Protocol

- Proof of knowledge of \(x \)
- \(P \) sends a commitment \(r \)
- \(V \) sends a challenge \(h \)
- \(P \) sends the answer \(s \)
- \(V \) checks \((r, h, s)\)

Special soundness

If one can answer to two different challenges \(h \neq h' \):

\[s \text{ and } s' \text{ for a unique } r \implies \text{one can extract } x \]

SQRT Fiat-Shamir Proof

[Fiat-Shamir – Crypto ’86]

- Setting: \(n = pq \)
 - \(P \) knows \(x \), such that \(X = x^2 \mod n \) and wants to prove it to \(V \)
 - \(P \) chooses \(r \sim \mathbb{Z}_n^* \), sets and sends \(R = r^2 \mod n \)
 - \(V \) chooses \(b \sim \{0, 1\} \) and sends it to \(P \)
 - \(P \) computes and sends \(s = x^b \times r \mod n \)
 - \(V \) checks whether \(s^2 \equiv X^b \mod n \)

One then reiterates \(t \) times

For a fixed \(R \), two valid answers \(s \) and \(s' \) satisfy

\[s^2 / X = R = (s')^2 \mod n \implies X = (s/s')^2 \mod n \]

And thus \(x = s/s' \mod n \implies \text{Special Soundness} \)
Fiat-Shamir Proof: Simulation

Honest Verifier

Simulation of a triplet: \((R = r^2 \mod n, b, s = x^b \times r \mod n)\)

for \(r \overset{\$}{\leftarrow} \mathbb{Z}_n^*\) and \(b \overset{\$}{\leftarrow} \{0, 1\}\)

Similar to: \((R = s^2 / X^b \mod n, b, s)\)

for \(s \overset{\$}{\leftarrow} \mathbb{Z}_n^*\) and \(b \overset{\$}{\leftarrow} \{0, 1\}\)

Simulation: random \(s\) and \(b\), and set \((R = s^2 / X^b \mod n, b, s)\)

Any Verifier

Simulation of a triplet: \((R = r^2 \mod n, b = \mathcal{V}(\text{view}), s = x^b \times r \mod n)\)

for \(r \overset{\$}{\leftarrow} \mathbb{Z}_n^*\) only!

Similar to: \((R = s^2 / X^b \mod n, b = \mathcal{V}(\text{view}), s)\) for \(s \overset{\$}{\leftarrow} \mathbb{Z}_n^*\)

Simulation: random \(s\) and \(\beta\), and set \(R = s^2 / X^2 \mod n\)

upon reception of \(b\): if \(b = \beta\), output \(s\), else rewind \(b\) and \(\beta\) independent: rewind once over 2 \(\implies\) linear time

RSA GQ Proof

[Guillou-Quisquater – Crypto ’87 – Eurocrypt ’88]

Setting: \(n = pq\) and an exponent \(e\)

\(\mathcal{P}\) knows \(x\), such that \(X = x^e \mod n\) and wants to prove it to \(\mathcal{V}\)

\(\mathcal{P}\) chooses \(r \overset{\$}{\leftarrow} \mathbb{Z}_n^*\), sets and sends \(R = r^e \mod n\)

\(\mathcal{V}\) chooses \(b \overset{\$}{\leftarrow} \{0, 1\}^t\) and sends it to \(\mathcal{P}\)

\(\mathcal{P}\) computes and sends \(s = x^e \times r \mod n\)

\(\mathcal{V}\) checks whether \(s^e \overset{?}{=} X^b R \mod n\)

For a fixed \(R\), two valid answers \(s\) and \(s'\) satisfy

\(s^e / X^b = R = (s')^e / X^{b'} \mod n \implies X^{b' - b} = (s'/s)^e \mod n\)

If \(e\) prime and bigger than \(2^t\), then \(e\) and \(b' - b\) are relatively prime:

Bezout: \(ue + v(b' - b) = 1 \implies X^{v(b' - b)} = (s'/s)^e = X^{1 - ue} \mod n\)

As a consequence: \(X = ((s'/s)^v X^u)^e \implies \text{Special Soundness}\)

Outline

1 Zero-Knowledge Proofs of Knowledge

2 Signatures

 - From Identification to Signature
 - Forking Lemma

3 Zero-Knowledge Proofs of Membership

DL Schnorr Proof

[Schnorr – Eurocrypt ’89 - Crypto ’89]

Setting: \(G = \langle g \rangle\) of order \(q\)

\(\mathcal{P}\) knows \(x\), such that \(y = g^{-x}\) and wants to prove it to \(\mathcal{V}\)

\(\mathcal{P}\) chooses \(k \overset{\$}{\leftarrow} \mathbb{Z}_q^*\), sets and sends \(r = g^k\)

\(\mathcal{V}\) chooses \(h \overset{\$}{\leftarrow} \{0, 1\}^t\) and sends it to \(\mathcal{P}\)

\(\mathcal{P}\) computes and sends \(s = k + xh \mod q\)

\(\mathcal{V}\) checks whether \(r \overset{\$}{=} g^s y^h\)

For a fixed \(r\), two valid answers \(s\) and \(s'\) satisfy

\(g^s y^h = r = g^{s'} y^{h'} \implies y^{h' - h} = g^{s - s'}\)

And thus \(x = (s - s')(h' - h)^{-1} \mod q \implies \text{Special Soundness}\)
Generic Zero-Knowledge Proofs

Zero-Knowledge Proof
- Proof of knowledge of \(x \), such that \(R(x, y) \)
- \(P \) builds a commitment \(r \) and sends it to \(V \)
- \(V \) chooses a challenge \(h \)
- \(h \leftarrow \{0, 1\}^k \) for \(P \)
- \(P \) computes and sends the answer \(s \)
- \(V \) checks \((r, h, s)\)

Signature
- \(H \) viewed as a random oracle
- Key Generation \(\rightarrow (y, x) \)
 - private: \(x \) public: \(y \)
- Signature of \(m \rightarrow (r, h, s) \)
 - Commitment \(r \)
 - Challenge \(h = H(m, r) \)
 - Answer \(s \)
- Verification of \((m, r, s)\)
 - compute \(h = H(m, r) \)
 - and check \((r, h, s)\)

Zero-Knowledge Proof
- Proof of knowledge of \(x \)
- \(P \) sends a commitment \(r \)
- \(V \) sends a challenge \(h \)
- \(h = H(m, r) \)
- \(P \) sends the answer \(s \)
- \(V \) checks \((r, h, s)\)

Signature
- Key Generation \(\rightarrow (y, x) \)
- Signature of \(m \rightarrow (r, h, s) \)
 - Commitment \(r \)
 - Challenge \(h = H(m, r) \)
 - Answer \(s \)
- Verification of \((m, r, s)\)
 - compute \(h = H(m, r) \)
 - and check \((r, h, s)\)

Special soundness
If one can answer to two different challenges \(h \neq h' \): \(s \) and \(s' \) for a unique commitment \(r \), one can extract \(x \)

Outline

1. Zero-Knowledge Proofs of Knowledge
2. Signatures
 - From Identification to Signature
 - Forking Lemma
3. Zero-Knowledge Proofs of Membership

Forking Lemma

The Forking Lemma shows an efficient reduction between the signature scheme and the identification scheme, but basically, if an adversary \(A \) produces, with probability \(\varepsilon \geq 2/2^k \), a valid signature \((m, r, h, s)\), then within \(T' = 2T \), one gets two valid signatures \((m, r, h, s)\) and \((m, r, h', s')\), with \(h \neq h' \) with probability \(\varepsilon' \geq \varepsilon^2/32q_H^3 \).

The special soundness provides the secret key.
Proof of Membership

How do I prove that a word w lies in a language L: $P = (w, L)$?

- if $L \in BPP$: anybody can publicly check it
- if $L \in NP \setminus BPP$: a witness s can help prove that $w \in L$

If $w \not\in L$:

- Proof (perfect soundness): a powerful A cannot cheat
- Argument (computational soundness): a limited A cannot cheat

Soundness

$w \in L$... what does it mean?

- a witness exists, different from knowing it: no need of extractor

Zero-Knowledge

How do I prove there exists a witness s? I reveal it... How can I do it without revealing any information?

Zero-knowledge: simulation and indistinguishability
Diffie-Hellman Language

In a group \(G = \langle g \rangle \) of prime order \(q \),
the DDH\((g, h)\) assumption states it is hard to distinguish
\(\mathcal{L} = (u = g^x, v = h^x) \) from \(\mathbb{G}^2 = (u = g^x, v = h^y) \)

- \(\mathcal{P} \) knows \(x \), such that \((u = g^x, v = h^x)\) and wants to prove it to \(\mathcal{V} \)
- \(\mathcal{P} \) chooses \(k \overset{R}{\leftarrow} \mathbb{Z}_q^* \), sets and sends \(U = g^k \) and \(V = h^k \)
- \(\mathcal{V} \) chooses \(h \overset{R}{\leftarrow} \{0, 1\}^t \) and sends it to \(\mathcal{P} \)
- \(\mathcal{P} \) computes and sends \(s = k + xh \mod q \)
- \(\mathcal{V} \) checks whether \(U \overset{?}{=} g^s u^h \) and \(V \overset{?}{=} h^s v^h \)

For a fixed \((U, V)\), two valid answers \(s \) and \(s' \) satisfy

\[
g^s u^h = U = g^{s'} u^{h'} \quad h^s v^h = V = h^{s'} v^{h'}
\]

- if one sets \(y = (s - s')(h' - h)^{-1} \mod q \Rightarrow u = g^y \) and \(v = h^y \)
- there exists a witness: Perfect Soundness