Proof of Knowledge

How do I prove that I know a solution \(s \) to a problem \(P \)?

1. **Zero-Knowledge Proofs of Knowledge**
 - Introduction
 - 3-Coloring
 - Examples

2. **Signatures**
 - From Identification to Signature
 - Forking Lemma

3. **Zero-Knowledge Proofs of Membership**
 - Introduction
 - Example: DH
Proof of Knowledge: Soundness

A knows something... What does it mean?
the information can be extracted: extractor

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P?
I reveal the solution...
How can I do it without revealing any information?
Zero-knowledge: simulation and indistinguishability

Outline

1. Zero-Knowledge Proofs of Knowledge
 - Introduction
 - 3-Coloring
 - Examples
2. Signatures
3. Zero-Knowledge Proofs of Membership

Proof of Knowledge

How do I prove that I know a 3-color covering, without revealing any information?
Proof of Knowledge

How do I prove that I know a 3-color covering, without revealing any information?

I choose a random permutation on the colors and I apply it to the vertices

I mask the vertices and send it to the verifier

Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary, then one can solve the underlying problem:

(a) The verifier chooses an edge
I open it
The verifier checks the validity: 2 different colors
3-Pass Zero-Knowledge Proofs

Generic Proof
- Proof of knowledge of x, such that $R(x, y)$
- P builds a commitment r and sends it to V
- V chooses a challenge $h \in \{0,1\}^k$ for P
- P computes and sends the answer s
- V checks (r, h, s)

Σ-Protocol
- Proof of knowledge of x
- P sends a commitment r
- V sends a challenge h
- P sends the answer s
- V checks (r, h, s)

Special soundness
If one can answer to two different challenges $h \neq h'$:
- s and s' for a unique r
- One can extract x

SQRT Fiat-Shamir Proof

Setting: $n = pq$
- P knows x, such that $X = x^2 \mod n$ and wants to prove it to V
- P chooses $r \leftarrow \mathbb{Z}_n^*$, sets and sends $R = r^2 \mod n$
- V chooses $b \leftarrow \{0,1\}$ and sends it to P
- P computes and sends $s = x^b \times r \mod n$
- V checks whether $s^2 \equiv X^b R \mod n$

One then reiterates t times

For a fixed R, two valid answers s and s' satisfy

$$s^2 / X = R = (s')^2 \mod n \implies X = (s/s')^2 \mod n$$

And thus $x = s / s' \mod n \implies$ Special Soundness
Outline

1. **Zero-Knowledge Proofs of Knowledge**
 - Setting: $n = pq$ and an exponent e
 - P knows x, such that $X = x^e \mod n$ and wants to prove it to V
 - P chooses $r \xleftarrow{\$} \mathbb{Z}_n^*$, sets and sends $R = r^e \mod n$
 - V chooses $b \xleftarrow{\$} \{0, 1\}^t$ and sends it to P
 - P computes and sends $s = x^e \times r \mod n$
 - V checks whether $s^e \not\equiv X^bR \mod n$

For a fixed R, two valid answers s and s' satisfy:

$$s^e/X^b = (s')^e/X^{b'} \mod n \implies X^{b - b'} = (s'/s)^e \mod n$$

If e prime and bigger than 2^t, then e and $b' - b$ are relatively prime:

Bezout: $ue + v(b' - b) = 1 \implies X^{v(b' - b)} = (s'/s)^v \mod n$

As a consequence: $X = ((s'/s)^vX^u)^e \implies $ Special Soundness

DL Schnorr Proof

Setting: $G = \langle g \rangle$ of order q

- P knows x, such that $y = g^{-x}$ and wants to prove it to V
- P chooses $k \xleftarrow{\$} \mathbb{Z}_q^*$, sets and sends $r = g^k$
- V chooses $h \xleftarrow{\$} \{0, 1\}^t$ and sends it to P
- P computes and sends $s = k + xh \mod q$
- V checks whether $r \overset?= g^s y^h$

For a fixed r, two valid answers s and s' satisfy

$$g^s y^h = r = g^{s'} y^{h'} \implies y^{h' - h} = g^{s - s'}$$

And thus $x = (s - s')(h' - h)^{-1} \mod q \implies $ Special Soundness

RSA GQ Proof

Setting: $n = pq$ and an exponent e

- P knows x, such that $X = x^e \mod n$ and wants to prove it to V
- P chooses $r \xleftarrow{\$} \mathbb{Z}_n^*$, sets and sends $R = r^e \mod n$
- V chooses $b \xleftarrow{\$} \{0, 1\}^t$ and sends it to P
- P computes and sends $s = x^e \times r \mod n$
- V checks whether $s^e \not\equiv X^bR \mod n$

For a fixed R, two valid answers s and s' satisfy

$$s^e/X^b = (s')^e/X^{b'} \mod n \implies X^{b - b'} = (s'/s)^e \mod n$$

If e prime and bigger than 2^t, then e and $b' - b$ are relatively prime:

Bezout: $ue + v(b' - b) = 1 \implies X^{v(b' - b)} = (s'/s)^v \mod n$

As a consequence: $X = ((s'/s)^vX^u)^e \implies $ Special Soundness
Generic Zero-Knowledge Proofs

Zero-Knowledge Proof
- Proof of knowledge of x, such that $R(x,y)$
- P builds a commitment r and sends it to V
- V chooses a challenge $h \in \{0,1\}$
- P computes and sends the answer s
- V checks (r,h,s)

Signature
H viewed as a random oracle
- Key Generation $\rightarrow (y,x)$
 - private: x public: y
- Signature of $m \rightarrow (r,h,s)$
 - Commitment r
 - Challenge $h = H(m,r)$
 - Answer s
- Verification of (m,r,s)
 - compute $h = H(m,r)$
 - and check (r,h,s)

Special soundness
If one can answer to two different challenges $h \neq h'$: s and s' for a unique commitment r, one can extract x

Outline
1. Zero-Knowledge Proofs of Knowledge
2. Signatures
 - From Identification to Signature
 - Forking Lemma
3. Zero-Knowledge Proofs of Membership

Σ-Protocols

Zero-Knowledge Proof
- Proof of knowledge of x
- P sends a commitment r
- V sends a challenge h
- P sends the answer s
- V checks (r,h,s)

Signature
- Key Generation $\rightarrow (y,x)$
- Signature of $m \rightarrow (r,h,s)$
 - Commitment r
 - Challenge $h = H(m,r)$
 - Answer s
- Verification of (m,r,s)
 - compute $h = H(m,r)$
 - and check (r,h,s)

Forking Lemma
[Pointcheval-Stern – Eurocrypt ’96]

The Forking Lemma shows an efficient reduction between the signature scheme and the identification scheme, but basically, if an adversary A produces, with probability $\varepsilon \geq 2^{2^k}$, a valid signature (m,r,h,s), then within $T' = 2T$, one gets two valid signatures (m,r,h,s) and (m,r,h',s'), with $h \neq h'$ with probability $\varepsilon' \geq \varepsilon^2/32q^3_H$.

The special soundness provides the secret key.
Proof of Membership

How do I prove that a word w lies in a language L: $P = (w, L)$?

- If $L \in \mathbf{BPP}$: anybody can publicly check it
- If $L \in \mathbf{NP} \setminus \mathbf{BPP}$: a witness s can help prove that $w \in L$

If $w \notin L$:
- Proof (perfect soundness): a powerful A cannot cheat
- Argument (computational soundness): a limited A cannot cheat

Soundness

$w \in L$. . . what does it mean?
- a witness exists, different from knowing it: no need of extractor

Zero-Knowledge

How do I prove there exists a witness s? I reveal it . . .
How can I do it without revealing any information?

Zero-knowledge: simulation and indistinguishability
In a group $G = \langle g \rangle$ of prime order q, the DDH(g, h) assumption states it is hard to distinguish $\mathcal{L} = (u = g^x, v = h^x)$ from $\mathcal{G}^2 = (u = g^x, v = h^y)$

- P knows x, such that $(u = g^x, v = h^x)$ and wants to prove it to V
- P chooses $k \leftarrow \mathbb{Z}_q^*$, sets and sends $U = g^k$ and $V = h^k$
- V chooses $h \leftarrow \{0, 1\}^t$ and sends it to P
- P computes and sends $s = k + xh \mod q$
- V checks whether $U \overset{?}{=} g^s u^h$ and $V \overset{?}{=} h^s v^h$

For a fixed (U, V), two valid answers s and s' satisfy

$$g^s u^h = U = g^{s'} u^{h'} \quad h^s v^h = V = h^{s'} v^{h'}$$

- if one sets $y = (s - s')(h' - h)^{-1} \mod q \implies u = g^y$ and $v = h^y$
- there exists a witness: Perfect Soundness