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Cryptography

Cryptography:
to solve security concerns

Authentication _
_ [1 signature
Integrity

Confidentiality [1 encryption
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Authentication Algorithm A
Verification Algorithm V
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A 4
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Security: it Is impossible to produce
a new valid pair (m,0)
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Encryption

= ———————————

Encryption Algorithm E
Decryption Algorithm D

Security: it Is impossible to get back m
just from ¢
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Foundations

To build such primitives, one needs
(trapdoor) one-way functions:
y = f(X) IS easy
(Encryption, Verification)
y=f(X) - X is difficult
(Decryption, Signature)
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Conventional Cryptography

S —
|
m—os . c . . —>m
f 1s an intricate network of E —f
permutations/substitutions, Dk B fk_l
parameterized by a secret key Kk

f, and f, 1 are both “easy” to compute with k
f, and f -1 are both “difficult” to compute without k

difficult: heuristic!
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Modern Cryptograph

S e

k kd o

e
! !
L.

f is a non P-problem (no polynomial algorithm)
E, (X) =Instance | of f from k,
for which x is a solution

D, (I) =solution of |
“easy” to build an instance with a known solution
“difficult” to solve an instance (but easy with k)

difficult: complexity theory
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One-Way Functions

[ NP-complete problems:

hard in the worst-case
what about the average case?

hard asymptotically
what about the difficulty of instances
of reasonable size (few bytes)?

[ quite few candidates (for signature)

[ Number Theory:
factorization I RSA, etc
discrete logarithm I Diffie-Hellman, etc
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The Discrete Logarithm

[1 Let G = (<g>, xX) be any cyclic group
of order g (noted multiplicatively)
[ For any yL1G, one defines
Logy(y) = min{x>0]y= g%
[1 One-way function
X - Y=g easy
y=0g* > X seems difficult
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Various Groups

G = sub-group of
Uz, 2Z;

[1 sub-exponential (NFS)
[1 an elliptic curve

[] exponential (in general)
[] a Jacobian

[] exponential (in general)
[1 other

ideals of number fields (NICE)

braid group, ...
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Any Trapdoor ...?

[1 The Discrete Logarithm is difficult
But no information could make it easier!
[1 The Diffie-Hellman Problem (1976):

[0 Given A=g? and B=¢gP
[0 Compute DH(A,B) = C=¢g®
Clearly DH < DL: with a=Log,A, C=B?

C-DH Assumption:
the DH-problem is intractable
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Another DL-based Problem

The Decisional Diffie-Hellman Problem:

[] Given A, Band Cin <g>
[] Decide whether C = DH(A,B)

Clearly D-DH < DH < DL

D-DH Assumption:
the D-DH-problem is intractable
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Application: El Gamal Encryption

[1 G =(<g>, x) group of order g
[] x: secret key
(] y=g*: public key

public E(m)=(g% y*m) - (c,d)

secret D(c,d)=d/c”

One-Wayness = C-DH
Semantic Security = D-DH
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Security Notions

Depending on the security concerns,
one defines

[] the goals that an adversary
may would like to reach

[1 the means/information available
for the adversary
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Security Proofs

One provides a reduction from a “difficult”
problem P to an attack Atk:

[1 A reaches the “prohibited” goals
[1 A can be used to break P

[ no further hypothesis: standard model

(1 but that rarely leads to efficiency!
[ some assumptions
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Security Arguments

One provides a reduction from a “difficult”
problem P to an attack Atk,
under some ideal assumptions:

Ideal random hash function:
random oracle model

Ideal symmetric encryption:
iIdeal cipher model

ideal group:
generic model (generic adversaries)
The weakest: Random Oracle Model (ROM)
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Authentication

Authentication Algorithm A

Verification Algorithm V
k k

a
|
.

m

v

— True/False

A 4

Security: it is impossible to produce
a new valid pair (m,0)
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Security Notions

Total Break:
to recover the secret key

Universal Forgery:
to be able to sign any message

Existential Forgery:
to produce a new valid pair (m,o0)
(possibly mis without any meaning)
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Kinds of Attacks

no-message:
the adversary just knows the public key

kKnown-message:
she knows some message-signature pairs

(adaptively) chosen-message
she has access to a signature oracle
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Secure Signature

A Signature Scheme is said SECURE
If it prevents
any existential forgery
even under
adaptively chosen-message attacks

Then, the signature guarantees:

the identity of the sender

the non-repudiation:
the sender won’t be able to deny it later
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Schnorr’s Signature (1989)

e i

Signature of the message m:
choose a random klUZ,
compute r=g«
get e=h(m,r) and s= k-xe mod g

o=(es

Verification of (m,0) : u= gsye (= gk*e g*)

test whether e=h(m,u) ?
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Security?

e T

Existential Forgery
under chosen-message attacks
(in the random oracle model)

= computation of discrete logarithms

(Pointcheval-Stern EC ‘96)
ldea: Forking Lemma

A h(m,r) e

- (69 gy =r=g° ¢
e’# (€.,5) [] gs-s’ :ye’-e
Let a= (sS)/(e€-e)mod g y=g“
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Trusted El Gamal Type
Signhatures Schemes (BpvY PKC '00)

Key-Gen: xUZ, and y=g"
Two hash functions G and H
FrZ,xZ,xGxH - Z,
FrZ,xGxH - Z,
Fi: Z,xGxH - £,

such that, for all (kx,t,u) 0 Z,x Z,x G x H

Fo(F(kxtu),t,u) + x F5(Fi(kxt,u),t,u) = kmod g
(1 gFsy®=g¢ where s=F(kxt,u)
E, = Fy(st,u) and E, = F4(st,u)
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TEGTSS - |

Sign(m): kKOZ,; and r = ¢
t = G(m) and u = H(r)
then s= F,(kxt,u) - 0 =(St,u)
Ver(m,0): check if t = G(m) and u = H(w),
where w = gFg y&y
with E, = F,(s;t,u) and E, = F5(s;t,u)
and 2 further properties...
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TEGTSS - I: Security

KCDSA: F,(kxt,u) = (k-t 0 u)/xmod g
F(st,u) =tJ umod g
and F5(s,t,u) =smod q

Security Claim:
If H behaves like a random oracle
but G is just collision-resistant then
existential forgery = extraction of x

Proof:
use of the Forking Lemma [PS96]
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Sign(m): kOZ " and r = ¢
t = G(r) and u = H(m,)
then s= F (kxt,u) - 0 =(st,u)
Ver(m,o): check if t = G(w) and u= H(m),
where w = gFa y&y
with E, = F,(s;t,u) and E, = F5(s;t,u)
and a further property
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TEGTSS - Il: Security

DSA-II: F (kxt,u) = (u+ xt)/k mod q
F,(st,u) = u/smod g
and F5(st,u) =t/smod g

Security Claim:

If H behaves like a random oracle, but
X - G(X) is (I + 1)-collision-resistant
OR x - G(g) is (I + 1)-collision-free

then existential forgery = extraction of x

Proof: an improved forking lemma
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Applications: KCDSA

KCDSA:

[] provably secure
If both G and H behave
like random oracles

But one can weaken assumptions:

[1 provably secure
If H behaves like a random oracle
but G just collision-resistant
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Encryption Algorithm E
Decryption Algorithm D

ke kd
I I
N e

Security: it is impossible to get back m
just from c, k., E and D (without k)
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Better security?

[ Perfect Security:

the ciphertext and public data do not reveal
any information about the plaintext
(but maybe the size)

Information Theoretical sense [J Impossible

[1 Semantic Security (Indistinguishabllity):

no polynomial adversary can learn any
information about the plaintext from the
ciphertext and public data (but the size)
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Kinds of Attacks

[J Chosen Plaintext: (basic scenario)

In the public-key setting, any adversary can
get the encryption of any plaintext of her
choice (by encrypting it by herself)

[1 Chosen Ciphertext (adaptively):

the adversary has furthermore access
to a decryption oracle which decrypts
any ciphertext of her choice,
but the specific challenge
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Required Securlty

[ OW-CPA: (basic level of securlty)

enough IN some scenarios

not enough in many others

[1 CC-Attacks easy to perform

[1 attack to be made unuseful

[1 Plaintext-space often limited
(“Se”” _ Hbuyﬂ __ HyeS” _ HnOH _— )
[1 IND very often required
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Main Security Notlons

[1 OW-CPA: (the weakest)
PrlA(©) =me=E(mr)| = Succ negligible

[1 IND-CCA: (the strongest - BDPR C '98)

0, _ 0
2Ry g mm.c9 :b(mocmisl)i(moA?)(k iy

= Adv negligible
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DL-based Cryptosystems

[0 El Gamal:
OW-CPA = C-DH
IND-CPA = D-DH
CCA ? No because of malleability
[1 Cramer-Shoup:
IND-CCA = D-DH
[1 PSEC (Okamoto-Fujisaki-Morita):
PSEC-1: IND-CCA = D-DH (+ROM)
PSEC-2: IND-CCA = C-DH (+ROM)

David Pointcheval Secure Designs for Public-Key Cryptography based on the Discrete Logarithm
ENS-CNRS Pohang - South Korea - June 26th 2000 - 39

Generic Conversions

[1 Any trapdoor one-way function leads to
a OW-CPA cryptosystem

[J] But OW-CPA not enough

[1 How to reach IND-CCA ?
[1 generic conversions
from OW-CPA to IND-CCA

David Pointcheval Secure Designs for Public-Key Cryptography based on the Discrete Logarithm
ENS-CNRS Pohang - South Korea - June 26th 2000 - 40




Conversions (1/3)

[ OAEP (Bellare-Rogaway EC ‘94)

optimal conversion of
any trapdoor one-way permutation
Into an IND-CCA cryptosystem

Efficiency: optimal (just 2 more hashings)

Application: RSA
(the sole candidate as
trapdoor one-way permutation!)
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Conversions (2/3)

[1 Fujisaki-Okamoto (PKC ‘99)

conversion of
any IND-CPA cryptosystem
Into an IND-CCA cryptosystem

Drawback: security relative to decisional
problems (D-DH, Higher Residuosity, ... )

Efficiency:
optimal encryption (just 2 more hashings)
non-optimal decryption (1 re-encryption)
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Conversions (3/3)

[1 Fujisaki-Okamoto (Crypto ‘99)
Pointcheval (PKC ‘00)

conversions of
any OW-CPA cryptosystem
into an IND-CCA cryptosystem

Advantage: security relative to computational
problems (C-DH, Factorization, ... )

Efficiency:
optimal encryption (just 2 more hashings)
‘non-optimal decryption (1 re-encryption)
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PSEC - OCAC

[1 PSEC 1: Fujisaki-Okamoto (PKC’99)

conversion applied on El Gamal
for which IND-CPA = D-DH
[1 PSEC 2: Fujisaki-Okamoto (Crypto’99)

conversion applied on El Gamal
for which OW-CPA = C-DH

[1 PSEC 3: Okamoto-Pointcheval

new conversion (OCAC) which makes
any OW-PCA cryptosystem
iInto an IND-CCA cryptosystem
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A New Attack: PCA

[1 Plaintext Checking Attack: the adversary

can get the encryption of any plaintext
of her choice (by encrypting it by herself)

has furthermore access to an oracle
which, on input a pair (m,c),
answers whether c encrypts m, or not
Remark: IND-PCA cannot be achieved
[1 we will just be interested in OW-PCA
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A New DL-based Problem: G-DH

The Diffie-Hellman Problems:

computational :
g 1 Given A=g? and B=¢gP

1 Compute DH(A,B) = C=g#

decisional : :
SESONE T Given A, Band Cin <g>

o Decide whether C = DH(A,B)

G :
" solve the computational problem,

with access to a decisional oracle
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A

Intractability of the Gap-DH

The Computational Diffie-Hellman problem
IS believed intractable for suitable groups

Gap-DH easy [ D-DH = C-DH
D-DH easy [0 G-DH = C-DH
The Computational Diffie-Hellman problem

IS believed strictly stronger than the
Decisional version [ G-DH intractable

El Gamal OW-PCA = G-DH
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e e

1 E, D: symmetric encryption scheme

_ X : secret key
E(M:a -z Z, R -G y=g*: public key
A-g, A «RW

k- GR), B « E(m), — (A, A', B, C)
C « HA A, R m)
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Security Result

One just needs a symmetric encryption
semantically secure against passive attacks:

[ One-Time Pad: perfectly secure (AdvE = 0)

[] Any classical scheme (DES, IDEA, AES,...)
AdvE =v (very small)

If an adversary A against IND-CCA
reaches an advantage AdvA > AdvE
one can break the Gap-DH problem
with probability greater than

(AdvA - AdvE)/2 - gp/2'
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Semantic Security (OTP)

Given A « @2, A « Ry*= R.DH(AY)
K- G(R),B -« kOm,C « HA A, R m)

In order to guess b such that m= m,

an adversary has to ask either
Rto Gto getk (and check B)
(A LA, Rm) to H (and check C)
because of the randomness of G and H

Probability that R (=A'/DH(A,y)) has been
asked to G or H greater than Adv4/2
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Plaintext Extractor

Plaintext-Awareness (Bellare-Rogaway EC'94)

(AA’,B,C) ciphertext valid LI one has asked
(AL A", Rm) to Htogetavalid C
(but with probability less than 1/2l)
The plaintext extractor, to decrypt a given
ciphertext (A,A’,B,C), looks, for any query
(AL A", Rm) to H which leads to C, whether
R= A'/DH(A)y) (thanks to the DDH-oracle)
B = E,(m) for k= G(R)

Correct extraction with probability
greater than 1 - 1/2)
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CCA Security

After gy queries to the decryption oracle

[] all the decryptions are correctly simulated
with probability greater than
(1-1/2%% > 1-qp/ 2
[1 Rhas been asked to G or H with
probability greater than

A dV A _ qD
2
David Pointcheval Secure Designs for Public-Key Cryptography based on the Discrete Logarithm

ENS-CNRS Pohang - South Korea - June 26th 2000 - 52




Properties of PSEC-3

[1 this iIs a new EG-scheme:

OW-CPA =  C-DH (+ROM)
OW-PCA = Gap-DH (+ROM)
IND-CCA =  Gap-DH (+ROM)

[l hybridity: one can integrate
any symmetric encryption scheme,
semantically secure
against passive attacks
(a very weak notion of security)

e.g. the one-time pad (perfect security),
any AES candidate, DES, etc..
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Efficiency

This is the most efficient El Gamal variant:

only 2 exp./Enc and just 1 exp./Dec

Tsiounis-Yung (PKC ‘98) D-DH + ROM + Other
3 exp./Enc - 3 exp./Dec

Shoup-Gennaro (EC ‘98) D-DH + ROM
5 exp./Enc - 7 exp./Dec

Cramer-Shoup (Crypto ‘98) D-DH
5 exp./Enc - 3 exp./Dec

PSEC-1/2 (PKC ‘99/Crypto ‘99) D/C-DH + ROM
2 exp./Enc - 3 exp./Dec
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Conclusion

The discrete logarithm setting is very rich:
[1 One-Way problem [0 Secure Signature

[1 Trapdoor One-Way problem:
Diffie-Hellman problems
computational
decisional
gap
[1 Secure Encryption
[1 All are homomorphic

[1 Efficiency
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