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Electronic Voting

Dessert Choice

If one wants to get preferences for the desserts,
one asks people to vote for

� Chocolate Cake
� Cheese Cake
� Ice Cream
� Apple

with e.g., possibly 2 choices
After collection of the ballots, one counts the number of choices:

Chocolate Cake 243
Cheese Cake 111
Ice Cream 167
Apple 52

→
1 Chocolate Cake
2 Ice Cream
3 Cheese Cake
4 Apple
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Electronic Voting

Electronic Voting: Basic Properties

Authentication
Only people authorized to vote should be able to vote
Voters should vote only once

Anonymity
Votes and voters should be unlinkable

Main Approaches
Blind Signatures
Homomorphic Encryption
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Homomorphic Encryption

General Approach: Homomorphic Encryption

Homomorphic Encryption & Signature
The voter generates Vi his vote vi ∈ {0,1} (for each �)
The voter encrypts vi to the server → ci = Epk(vi ; ri)

The voter signs his vote → σi = Suski (ci ; si)

Such a pair (ci , σi) is a ballot
unique per voter, because it is signed by the voter
anonymous, because the vote is encrypted

Counting: granted homomorphic encryption, anybody can compute

C =
∏

c =
∏
Epk(vi ; ri) = Epk(

∑
vi ;
∑

ri) = Epk(V ; R)

The server decrypts the tally V = Dsk(C), and proves it
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Homomorphic Encryption

General Approach: Homomorphic Encryption

Security
uniqueness per voter: the voter signs his vote
anonymity: the voter encrypts his vote

Universal Verifiability
Soundness: every step can be proven and publicly checked

identity of voter: proof of identity = signature
validity of the vote: proof of bit encryption + more
decryption: proof of decryption

All the steps (voting + counting) can be checked afterwards
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Homomorphic Encryption

General Approach: Homomorphic Encryption

Weaknesses
Anonymity: the server can decrypt any individual vote
→ use of distributed decryption (threshold decryption)

Receipt: if a voter wants to sell his vote, ri is a proof
(a coercer can also provide a modified voting client system

in order to generate a receipt or even receive it directly)
→ re-randomization of the ciphertext

Distributed decryption is easy (e.g., ElGamal allows it),
while re-randomization of the ciphertext requires more work!

Receipt-Freeness
Our goal is to prevent receipts
→ receipt-free electronic system
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Computational Assumptions

Assumptions: Diffie-Hellman

Definition (The Computational Diffie-Hellman problem (CDH))
G a cyclic group of prime order p.
The CDH assumption in G states:

for any generator g $←G, and any scalars a,b $←Z∗p,
given (g,ga,gb), it is hard to compute gab.

Definition (The Decisional Diffie-Hellman problem (DDH))
G a cyclic group of prime order p.
The DDH assumption in G states:

for any generator g $←G, and any scalars a,b, c $←Z∗p,
given (g,ga,gb,gc), it is hard to decide whether c = ab or not.

In some pairing-friendly groups, the latter assumption is wrong.
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Computational Assumptions

Assumptions: Linear Problem

Definition (Decision Linear Assumption (DLin))
G a cyclic group of prime order p.
The DLin assumption states:

for any generator g $←G, and any scalars a,b, x , y , c $←Z∗p,
given (g,gx ,gy ,gxa,gyb,gc),

it is hard to decide whether c = a + b or not.

Equivalently, given a reference triple (u = gx , v = gy ,g)
and a new triple (U = ua = gxa,V = vb = gyb,T = gc),
decide whether T = ga+b or not (that is c = a + b).
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Signature & Encryption

General Tools: Signature

Definition (Signature Scheme)
S = (Setup,SKeyGen,Sign,Verif):

Setup(1k ) → global parameters param;
SKeyGen(param) → pair of keys (sk, vk);
Sign(sk,m; s) → signature σ, using the random coins s;
Verif(vk,m, σ) → validity of σ
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Signature & Encryption

Signature: Examples

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Waters Signature [Waters, 2005]

For a message M = (M1, . . . ,Mk ) ∈ {0,1}k ,
we define F(M) = u0

∏k
i=1 uMi

i , where ~u = (u0, . . . ,uk )
$←Gk+1.

For an additional generator h $←G.
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y ,M; s), for M ∈ {0,1}k and s $←Zp
→ σ =

(
σ1 = Y · F(M)s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether

e(g, σ1) · e(F(M), σ2) = e(X ,h).
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Signature & Encryption

General Tools: Encryption

Definition (Encryption Scheme)
E = (Setup,EKeyGen,Encrypt,Decrypt):

Setup(1k ) → global parameters param;
EKeyGen(param) → pair of keys (pk,dk);
Encrypt(pk,m; r) → ciphertext c, using the random coins r ;
Decrypt(dk, c) → plaintext, or ⊥ if the ciphertext is invalid.

Homomorphic Encryption
For some group laws: ⊕ on the plaintext, ⊗ on the ciphertext,
and � on the randomness
Encrypt(pk,m1; r1)⊗Encrypt(pk,m2; r2) = Encrypt(pk,m1⊕m2; r1�r2)

Decrypt(sk,Encrypt(pk,m1; r1)⊗ Encrypt(pk,m2; r2)) = m1 ⊕m2
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Signature & Encryption

Encryption: Examples

In a group G of order p, with a generator g:
ElGamal Encryption [ElGamal, 1985]

EKeyGen: dk = x $←Zp, pk = X = gx ;
Encrypt(pk = X ,m; r), for m ∈ G and r $←Zp
→ c =

(
c1 = gr , c2 = X r ·m

)
;

Decrypt(dk = x , c = (c1, c2)) → m = c2/cx
1 .

Linear Encryption [Boneh, Boyen, Shacham, 2004]

EKeyGen: dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2);

Encrypt(pk = (X1,X2),m; (r1, r2)), for m ∈ G and (r1, r2)
$←Z2

p
→ c =

(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 ·m

)
;

Decrypt(dk = (x1, x2), c = (c1, c2, c3)) → m = c3/c
1/x1
1 c1/x2

2 .
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Signature & Encryption

Encryption: Properties

In a group G of order p, with a generator g:

ElGamal Encryption
dk = x $←Zp,pk = X = gx

Encrypt(X ,m1; r1)× Encrypt(X ,m2; r2)

=
(
gr1 ,X r1 ·m1

)
×
(
gr2 ,X r2 ·m2

)

=
(
gr1+r2 ,X r1+r2 ·m1 ·m2

)
= Encrypt(X ,m1 ·m2; r1 + r2)

→ (⊕M = ×,⊗C = ×,�R = +) homomorphism
→ re-randomization: multiplication by Encrypt(X ,1; r).

With m = gM : Encrypt∗(pk,M; (r1, r2)) = Encrypt(pk,gM ; (r1, r2))
→ (⊕M = +,⊗C = ×,�R = +) homomorphism
→ re-randomization: multiplication by Encrypt∗(X ,0; r).
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Signature & Encryption

Encryption: Properties

In a group G of order p, with a generator g:

Linear Encryption

dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2)

Encrypt((X1,X2),m1; (r1, r ′1))× Encrypt((X1,X2),m2; (r2, r ′2))

=
(
X r1

1 ,X
r ′1
2 ,g

r1+r ′1 ·m1
)
×
(
X r2

1 ,X
r ′2
2 ,g

r2+r ′2 ·m2
)

=
(
X r1+r2

1 ,X r ′1+r ′2
2 ,gr1+r ′1+r2+r ′2 ·m1 ·m2

)

= Encrypt((X1,X2),m1 ·m2; (r1 + r2, r ′1 + r ′2))

→ (⊕M = ×,⊗C = ×,�R = +) homomorphism
With m = gM → (⊕M = +,⊗C = ×,�R = +) homomorphism
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Security

Security Notions: Signature

Signature: EF-CMA
Existential Unforgeability
under Chosen-Message
Attacks
An adversary should not be
able to generate a new valid
message-signature pair
even if it is allowed to ask
signatures on any message
of its choice

Impossibility to forge signatures
Waters signature reaches EF-CMA under the CDH assumption
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Security

Security Notions: Encryption

Encryption: IND-CCA
Indistinguishability under
Chosen-Plaintext Attacks
An adversary that chooses
two messages, and receives
the encryption of one of
them, should not be able to
decide which one has been
encrypted

Impossibility to learn any information about the plaintext
ElGamal (resp. Linear) encryption reaches IND-CPA

under the DDH (resp. DLin) assumption

Ecole Normale Supérieure David Pointcheval 19/57

Introduction Cryptographic Tools e-Voting Signatures on Ciphertexts (Fair) Blind Signatures

Groth-Sahai Methodology

Groth-Sahai Commitments [Groth, Sahai, 2008]

Under the DLin assumption, the commitment key is:

(u1 = (u1,1,1,g),u2 = (1,u2,2,g),u3 = (u3,1,u3,2,u3,3)) ∈ (G3)3

Initialization

u3 = uλ1 � uµ2 = (u3,1 = uλ1,1,u3,2 = uµ2,2,u3,3 = gλ+µ)

with λ, µ $←Z∗p, and random elements u1,1,u2,2
$←G.

It means that u3 is a linear tuple w.r.t. (u1,1,u2,2,g).
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Groth-Sahai Methodology

Groth-Sahai Commitments

Group Element Commitment
To commit a group element X ∈ G,
one chooses random coins s1, s2, s3 ∈ Zp and sets

C(X ) := (1,1,X )� us1
1 � us2

2 � us3
3

= (us1
1,1 · u

s3
3,1,u

s2
2,2 · u

s3
3,2,X · gs1+s2 · us3

3,3).

Scalar Commitment
To commit a scalar x ∈ Zp,
one chooses random coins γ1, γ2 ∈ Zp and sets

C′(x) := (ux
3,1,u

x
3,2, (u3,3g)x )� uγ1

1 � uγ2
3

= (ux+γ2
3,1 · uγ1

1,1,u
x+γ2
3,2 ,ux+γ2

3,3 · gx+γ1).
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Groth-Sahai Methodology

Groth-Sahai Commitments

If correct initialization of commitment key (u3 a linear tuple),
these commitments are perfectly binding
With some initialization parameters, the committed values can
even be extracted → extractable commitments
Using pairing product equations, one can make proofs
on many relations between scalars and group elements:

∏

j

e(Aj ,Xj)
αj
∏

i

e(Yi ,Bi)
βi
∏

i,j

e(Xi ,Yj)
γi,j = t ,

where the Aj , Bi , and t are constant group elements,
αi , βj , and γi,j are constant scalars,
and Xj and Yi are either group elements in G1 and G2,
or of the form gxj

1 or gyi
2 , respectively, to be committed.

The proofs are perfectly sound
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Groth-Sahai Methodology

Groth-Sahai Proofs

If u3 a linear tuple, these commitments are perfectly binding
The proofs are perfectly sound

If u3 is a random tuple, the commitments are perfectly hiding
The proofs are perfectly witness hiding

Under the DLin assumption, with a correct initialization,
proofs are witness hiding
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General Process

Dessert Choice

A ballot consists of one or two crosses in

� Chocolate Cake
� Cheese Cake
� Ice Cream
� Apple

Each box is thus expressed as a bit: vi ∈ {0,1}, for i = 1,2,3,4
With the additional constraint (at most 2 choices):

∑
i vi ∈ {0,1,2}

In the following, we focus on one box only:
Vi is the i-th voter
vi is the value of the box for this voter: 0 or 1
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General Process

Voting Procedure

Cryptographic Primitives
Signature S = (Setup,SKeyGen,Sign,Verif)
that is EF-CMA, e.g., Waters Signature;
Homomorphic enc. E = (Setup,EKeyGen,Encrypt,Decrypt)
that is IND-CPA, e.g., ElGamal or Linear Encryption

+ distributed decryption, as ElGamal and Linear schemes allow

Initialization
The authority owns a signing/verification key-pair (sk, vk)

The ballot-box owns an encryption key pk, which decryption
capability is distributed among the board members
Each voter Vi owns a signing/verification key-pair (uski ,uvki)
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General Process

Voting Procedure

Voting Phase

Voter Vi Server S
ci = Encrypt(pk, vi ; ri)
σi = Sign(uski , ci ; si)
Πc = Proof of

bit encryption
ci , σi ,Πc−−−−−−−−−−−−−→

Σi←−−−−−−−−−−−−− Σi = Sign(sk, ci ; s′i )

from (σi ,Πc): authorization and uniqueness of a voter
from ci : privacy for the voter

unless individual votes are decrypted
with Σi : a voter can complain if his vote is not in the ballot-box
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General Process

Counting Procedure

Counting Phase
Anybody can check all the votes (ci , σi ,Πc)

Anybody can compute

C =
∏

ci =
∏
Epk(vi ; ri) = Epk(

∑
vi ;
∑

ri) = Epk(V ; R)

The board members decrypt C in a distributed
and verifiable way, into V

Everything is verifiable: universal verifiability
Board members accept to participate to one decryption only: C
→ individual votes are protected
→ anonymity
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General Process

Summary

Security
uniqueness per voter: signature
anonymity: encryption and distributed decryption
universal verifiability: every step is publicly verifiable

Soundness: the server cannot add ballots
Dispute: the server cannot remove ballots

Weakness: Receipt
To sell his vote, the voter reveals his random coins ri as a receipt

Receipt-freeness: the voter should not know the random coins!
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Receipt-Freeness

Re-Randomization

Voting Phase

Voter Vi Server S
ci = Encrypt(pk, vi ; ri)
Πc = Proof of

bit encryption
ci ,Πc−−−−−−−−−−−−−→

c′i←−−−−−−−−−−−−− c′i = Random(ci ; r ′i )

Proof(c′i ≡ ci)←−−−−−−−−−−−−→
σi = Sign(uski , c′i ; si)

σi−−−−−−−−−−−−−→
Σi←−−−−−−−−−−−−− Σi = Sign(sk, ci ; s′i )

Non-transferable proof of c′i ≡ ci : verifier-designated proof
Proof of knowledge of [r ′i such that c′i = Random(ci , r ′i )] or [uski ]
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Receipt-Freeness

Security

Re-Randomization
re-randomization: the voter no longer knows the random coins
designated-verifier proof:

Voter convinced: c′
i contains his vote

Receipt-freeness: the server cannot transfer this proof

Weakness: verifiability
The proof Πc can be verified by the server on c
but not by users on c′: no universal verifiability
The proof should be re-randomized (adapted) by the server:

Possible with Groth-Sahai methodology
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Receipt-Freeness

Security

Weakness: interactions
interactive proof
2-round voting (at best!)

Non-Interactive Receipt-Freeness
Our goal is to achieve receipt-freeness

but in a non-interactive way
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New Primitive

Signatures on Randomizable Ciphertexts

Voting Phase

Voter Vi Server S
ci = Encrypt(pk, vi ; ri)
σi = Sign(uski , ci ; si)
Πc = Proof of

bit encryption
ci , σi ,Πc−−−−−−−−−−−−−→ (c′i , σ

′
i ,Π
′
c) =

Random(ci , σi ,Πc ; r ′i )

c′i ,Π
′
c ,Σi←−−−−−−−−−−−−− Σi = Sign(sk, (c′i ,Π

′
c); s′i )

The server not only adapts the proof, but the signature too!
from (σi ,Πc): authorization and uniqueness of a voter
from ci : privacy for the voter
from Random: receipt-freeness (unknown random coins ri + r ′i )
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New Primitive

Signatures on Randomizable Ciphertexts

M

S
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n S

sk
;s

σ(M)

EncryptE
pk, r

C

RandomE

r ′

Randomizable
Encryption

S
ig
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E

sk
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s

σ(C)

RandomE

r ′

Ran
do

mSE
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Malleable
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Randomizable
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Example

Linear Encryption

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Linear Encryption [Boneh, Boyen, Shacham, 2004]

EKeyGen: dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2);

Encrypt(pk = (X1,X2),m; (r1, r2)), for m ∈ G and (r1, r2)
$←Z2

p
→ c =

(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 ·m

)
;

Decrypt(dk = (x1, x2), c = (c1, c2, c3)) → m = c3/c
1/x1
1 c1/x2

2 .

Re-Randomization

RandomE(pk = (X1,X2), c = (c1, c2, c3); (r ′1, r
′
2)), for (r ′1, r

′
2)

$←Z2
p

→ c′ =
(
c′1 = c1 · X r ′1

1 , c
′
2 = c2 · X r ′2

2 , c
′
3 = c3 · gr ′1+r ′2

)
.
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Example

Waters Signature

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Waters Signature [Waters, 2005]

For a message M = (M1, . . . ,Mk ) ∈ {0,1}k ,
we define F = F(M) = u0

∏k
i=1 uMi

i , where ~u = (u0, . . . ,uk )
$←Gk+1.

For an additional generator h $←G.
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y ,F ; s), for M ∈ {0,1}k , F = F(M), and s $←Zp
→ σ =

(
σ1 = Y · F s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether
e(g, σ1) · e(F , σ2) = e(X ,h).
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Example

Waters Signature on a Linear Ciphertext: Idea

We define F = F(M) = u0
∏k

i=1 uMi
i , and encrypt it

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

KeyGen: vk = X = gx , sk = Y = hx , for x $←Zp
dk = (x1, x2)

$←Z2
p, pk = (X1 = gx1 ,X2 = gx2)

Sign((X1,X2),Y , c; s), for c = (c1, c2, c3)
→ σ =

(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

Verif((X1,X2),X , c, σ) checks e(g, σ1) = e(X ,h) · e(σ3,0, c3)

e(σ2,0,g) = e(c1, σ3,0) e(σ2,1,g) = e(c2, σ3,0)

e(σ3,1,g) = e(X1, σ3,0) e(σ3,2,g) = e(X2, σ3,0)

σ3 is needed for ciphertext re-randomization
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Example

Re-Randomization of Ciphertext

c = (c1 = X r1
1 , c2 = X r2

2 , c3 = gr1+r2 · F )

σ = (σ1 = Y · cs
3, σ2 = (cs

1, c
s
2), σ3 = (gs,X s

1 ,X
s
2 ) )

after re-randomization by (r ′1, r
′
2)

c′ = (c′1 = c1 · X r ′1
1 , c′2 = c′2 · X

r ′2
2 , c′3 = c3 · gr ′1+r ′2 )

σ′ = (σ′1 = σ1 · σr ′1+r ′2
3,0 , σ′2 = (σ2,0 · σr ′1

3,1, σ2,1 · σr ′2
3,2), σ′3 = σ3 )

Anybody can publicly re-randomize c into c′

with additional random coins (r ′1, r
′
2),

and adapt the signature σ of c into σ′ of c′
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Security Notions

Unforgeability under Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks
The adversary is allowed to ask any valid ciphertext of his choice
to the signing oracle

Because of the re-randomizability of the ciphertext-signature,
we cannot expect resistance to existential forgeries,
but we should allow a restricted malleability only:

Forgery
A valid ciphertext-signature pair, so that the plaintext is different
from all the plaintexts in the ciphertexts sent to the signing oracle
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Security Notions

Unforgeability

From a valid ciphertext-signature pair:

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

σ =
(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

and the decryption key (x1, x2), one extracts

F = c3/(c1/x1
1 c1/x2

2 )

Σ =
(

Σ1 = σ1/(σ
1/x1
2,0 σ

1/x2
2,1 ), Σ2 = σ3,0

)

=
(

= Y · F s = gs)

Security of Waters signature is for a pair (M,Σ)
→ needs of a proof of knowledge ΠM of M in F = F(M)

bit-by-bit commitment of M and Groth-Sahai proof
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Security Notions

Chosen-Message Attacks

From a valid ciphertext c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)
,

and the additional proof of knowledge of M,
one extracts M and asks for a Waters signature:

Σ =
(
Σ1 = Y · F s,Σ2 = gs)

In this signature, the random coins s are unknown,
we thus need to know the coins in c
→ needs of a proof of knowledge Πr of r1, r2 in c

bit-by-bit commitment of r1, r2 and Groth-Sahai proof
From the random coins r1, r2 (and the decryption key):
σ =

(
σ1 = Σ1 · Σr1+r2

2 , σ2 = (Σx1r1
2 ,Σx2r2

2 ), σ3 = (Σ2,Σ
r1
2 ,Σ

r2
2 )

)

= Y · cs
3, = (cs

1, c
s
2), = (gs,X s

1 ,X
s
2 )

Ecole Normale Supérieure David Pointcheval 42/57
Introduction Cryptographic Tools e-Voting Signatures on Ciphertexts (Fair) Blind Signatures

Security Notions

Security

Chosen-Ciphertext Attacks
A valid ciphertext C = (c1, c2, c3,ΠM ,Πr ) is a

ciphertext c = (c1, c2, c3)

a proof of knowledge ΠM of the plaintext M in F = F(M)

a proof of knowledge Πr of the random coins r1, r2

From such a ciphertext and the decryption key (x1, x2),
and a Waters signing oracle, one can generate a signature on C

Forgery
From a valid ciphertext-signature pair (C, σ), where C encrypts M,
one can generate a Waters signature on M
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Security Notions

Security

From the Waters signing oracle,
we answer Chosen-Ciphertext Signing queries

From a Forgery, we build a Waters Existential Forgery

Security Level
Since the Waters signature is EF-CMA under the CDH assumption,
our signature on randomizable ciphertext is Unforgeable

against Chosen-Ciphertext Attacks
under the CDH assumption
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Security Notions

Properties

Proofs
Since we use the Groth-Sahai methodology for the proofs ΠM and Πr

in case of re-randomization of c, one can adapt ΠM and Πr

because of the need of M, but also r1 and r2 in the simulation,
we need bit-by-bit commitments:

M can be short (` bit-long)
r1 and r2 are random in Zp

→ C is large!

Efficiency
We can improve efficiency: shorter signatures
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Introduction

Electronic Cash

Electronic Coins [Chaum, 1981]

Expected properties:
coins are signed by the bank, for unforgeability
coins must be distinct to detect/avoid double-spending
the bank should not know to whom it gave a coin, for anonymity

Electronic Cash
The process is the following one:

Withdrawal: the user gets a coin c from the bank
Spending: the user spends a coin c in a shop
Deposit: the shop gives back the money to the bank
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Introduction

Blind Signatures

We thus want:
Anonymity: the bank cannot link a withdrawal to a deposit
to know where a user spent a coin
→ blind signature

No double-spending: a coin should not be used twice
→ fair blind signature
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Introduction

Blind RSA [Chaum, 1981]

The easiest way for blind signatures, is to blind the message:
To get an RSA signature on m under public key (n,e),

The user computes a blind version of the hash value:
M = H(m) and M ′ = M · re mod n

The signer signs M ′ into σ′ = M ′d mod n
The user unblinds the signature: σ = σ′/r mod n

Indeed,

σ = σ′/r = M ′d/r = (M · re)d/r = Md · r/r = Md mod n

→ Proven under the One-More RSA
[Bellare, Namprempre, Pointcheval, Semanko, 2001]

→ Perfectly blind signature
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Extractable Signatures

Extractability

As already noted, from a valid ciphertext-signature pair:

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

σ =
(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

and the decryption key (x1, x2), one extracts

F = c3/(c1/x1
1 c1/x2

2 )

Σ =
(

Σ1 = σ1/(σ
1/x1
2,0 σ

1/x2
2,1 ), Σ2 = σ3,0

)

=
(

= Y · F s = gs)

A plain Waters Signature
One can do the same from the random coins (r1, r2)
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Extractable Signatures

Extractable Signatures
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Extractable Signatures

Blind Signatures

Our Approach
To get a signature on M,

The user commits/encrypts M into C, under random coins r
The signer signs C into σ(C), under random coins s
The user extracts a signature σ(M), granted the random coins r

Weakness
The signer can recognize his signature: the random coins s in σ(M)
→ Randomizable Signature

Security
Encryption hides M
Re-randomization of signature hides σ(M)
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Randomizable Signatures

Randomizable Signatures

Waters Signature
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y ,M; s), for M ∈ {0,1}k and s $←Zp
→ σ =

(
σ1 = Y · F(M)s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether

e(g, σ1) · e(F(M), σ2) = e(X ,h).

Re-Randomization

RandomS(vk = X ,M, σ; s′) : σ′ =
(
σ′1 = σ1 · F(M)s′ , σ′2 = σ2 · g−s′)

this is exactly Sign(sk = Y ,M; s + s′)
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Randomizable Signatures

Randomizable Signatures
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Randomizable Signatures

Blind Signatures

Such a primitive can be used for a Waters Blind Signature:
Unforgeability: one-more forgery would imply a forgery

against the signature scheme (CDH assumption)
Blindness: a distinguisher would break indistinguishability

of the encryption scheme (DLin assumption)

Efficiency
We obtain a plain Waters Signature

→ Blind Signature: with a real Waters Signature

Fair Blind Signature
The user encrypts M into C, under random coins r ,

and the authority encryption key
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Randomizable Commutative Signature/Encryption
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Conclusion

Randomizable Commutative Signature/Encryption

Various Applications
non-interactive receipt-free electronic voting scheme
(fair) blind signature

Security relies on the CDH and the DLin assumptions
For an `-bit message, ciphertext-signature:

9`+ 24 group elements

A more efficient variant with asymmetric pairing
on the CDH∗ and the SXDH assumptions

Ciphertext-signature: 6`+ 7 group elements in G1
and 6`+ 5 group elements in G2
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