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Introduction
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Electronic Voting

Dessert Choice

David Pointcheval

If one wants to get preferences for the desserts,

one asks people to vote for

0J
0
UJ
0J

with e.g., possibly 2 choices

After collection of the ballots, one counts the number of choices:

Chocolate Cake 243
Cheese Cake 111
Ice Cream 167
Apple 52
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Chocolate Cake
Cheese Cake
Ice Cream
Apple

1 Chocolate Cake
2 lce Cream

3 Cheese Cake

4 Apple
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Introduction Introduction

Electronic Voting Homomorphic Encryption
Electronic Voting: Basic Properties General Approach: Homomorphic Encryption
Authentication Homomorphic Encryption & Signature
@ Only people authorized to vote should be able to vote @ The voter generates V; his vote v; € {0, 1} (for each OJ)
@ Voters should vote only once @ The voter encrypts v; to the server —  ¢; = Exx(Vii 1)

@ The voter signs hisvote —  oj = Sysk.(Ci; Si)

: Such a pair (¢;, o) is a ballot
@ Votes and voters should be unlinkable

@ unique per voter, because it is signed by the voter
Main Approaches @ anonymous, because the vote is encrypted
@ Blind Signatures Counting: granted homomorphic encryption, anybody can compute

C=]lc=]1Exvin =Exd_vi)_ r)=ExViR)
The server decrypts the tally V = Dg(C), and proves it

@ Homomorphic Encryption
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Homomorphic Encryption Homomorphic Encryption

General Approach: Homomorphic Encryption General Approach: Homomorphic Encryption

@ uniqueness per voter: the voter signs his vote @ Anonymity: the server can decrypt any individual vote
— use of distributed decryption (threshold decryption)

@ Receipt: if a voter wants to sell his vote, r; is a proof

Universal Verifiability (a coercer can also provide a modified voting client system

Weaknesses

@ anonymity: the voter encrypts his vote

in order to generate a receipt or even receive it directly)

Soundness: every step can be proven and publicly checked — re-randomization of the ciphertext

@ identity of voter: proof of identity = signature
@ validity of the vote: proof of bit encryption + more
@ decryption: proof of decryption

Distributed decryption is easy (e.g., EIGamal allows it),
while re-randomization of the ciphertext requires more work!

A

Receipt-Freeness

All the steps (voting + counting) can be checked afterwards : :
Our goal is to prevent receipts

—  receipt-free electronic system
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Cryptographic Tools Cryptographic Tools
0

Computational Assumptions

Outline Assumptions: Diffie-Hellman

Definition (The Computational Diffie-Hellman problem (CDH))
G a cyclic group of prime order p.

e Cryptographic Tools The CDH assumption in G states:
@ Computational Assumptions for any generator g & G, and any scalars a, b 7y,
@ Signature & Encryption given (g, g2, g°), it is hard to compute g#.
@ Security
@ Groth-Sahai Methodology Definition (The Decisional Diffie-Hellman problem (DDH))

G a cyclic group of prime order p.
The DDH assumption in G states:
for any generator g & G, and any scalars a, b, cd 7y,

given (g, g2, g, g°), it is hard to decide whether ¢ = ab or not.

In some pairing-friendly groups, the latter assumption is wrong.
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Computational Assumptions Signature & Encryption

Assumptions: Linear Problem General Tools: Signature

Definition (Signature Scheme)

Definition (Decision Linear Assumption (DLin))

G a cyclic group of prime order p. S = (Setup, SKeyGen, Sign, Verif):

The DLin assumption states: 5 @ Setup(1X) — global parameters param;
for any generator g <~ G, and any scalars a, b, x, y, ¢ < Zy, o SKeyGen(param) — pair of keys (sk, vk);

given (g, 9%, ¢¥, 9", 9**, 9°), . _ . . o
s v (10 Qe T ETED @ = &1 Gl [l @ Sign(sk,m;s) — signature o, using the random coins s;
@ Verif(vk,m,0) — validity of o
Equivalently, given a reference triple (u = g*,v = ¢%,9) ‘
and anew triple (U=u? =g,V = vb = g T = ¢°),
decide whether T = g2+ or not (that is ¢ = a+ b).
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Signature & Encryption

Signature: Examples

Cryptographic Tools
008000

Signature & Encryption

General Tools: Encryption

In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr

Waters Signature
For a message M = (My,..., My) € {0,1}%,
we define F(M) = up []X, u,M" where U = (uy, . .
For an additional generator h < G.
@ SKeyGen: vk= X = gX,sk=Y = h*, forxin;
e Sign(sk=Y,M;s),for M € {0,1}k and s & 7,
- o= (01 =Y -FM)3 00 = g_s);
@ Verif(vk = X, M, o = (01, 02)) checks whether
e(g7 01) ’ e(F(M)vo-Z) = e(X7 h)

og Uk)&GkJH.

[Waters, 2005]

Definition (Encryption Scheme)

& = (Setup, EKeyGen, Encrypt, Decrypt):
@ Setup(1¥) — global parameters param;
@ EKeyGen(param) — pair of keys (pk, dk);
@ Encrypt(pk,m;r) — ciphertext ¢, using the random coins r;
@ Decrypt(dk,c) — plaintext, or L if the ciphertext is invalid.

| A\

Homomorphic Encryption

For some group laws: & on the plaintext, ® on the ciphertext,

and ® on the randomness

Encrypt(pk, my; r1)@ Encrypt(pk, my; r2) = Encrypt(pk, mi@mp; ri ©r,)
Decrypt(sk, Encrypt(pk, my; ry) ® Encrypt(pk, mo; 1)) = my & mo

<

Ecole Normale Supérieure

Cryptographic Tools
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David Pointcheval

Signature & Encryption

Encryption: Examples

In a group G of order p, with a generator g:

ElGamal Encryption

@ EKeyGen: dk = x & Zp, pk= X = g*;

@ Encrypt(pk = X, m; r), form € G and rizp
— c=(c1=9"c=X"-m));

@ Decrypt(dk = x,c = (¢1,C2)) — m=Cy/cy.

[ElGamal, 1985]
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Signature & Encryption

Encryption: Properties

In a group G of order p, with a generator g:

ElGamal Encryption

ok = x & Zp, pk = X = g~

Encrypt(X, my; ry) x Encrypt(X, mp; r»)
- (gr17Xr1 : m1) X (gr27Xr2 : m2)

Linear Encryption

o EKeyGen: dk = (x1, %) & 72, pk= (Xi = g, Xo = *2);
@ Encrypt(pk = (X1, Xz2), m; (ry, 1)), for me G and (ry, r2) ﬁzg
— c=(c1=X{",co=Xz2,c3=g""2-m);

@ Decrypt(dk = (x1,X2),C = (C1,C2,¢3)) — m=cs/c,

[Boneh, Boyen, Shacham, 2004] y

1 1
/X4 Cz/le

— (gr1+l’2,Xr1+f2 -my - m2) = Encrypf(x7 my - mo; ry + r2)

—  (®m = x,®¢ = x,®g = +) homomorphism
— re-randomization: multiplication by Encrypt(X,1;r).
With m = gM: Encrypt*(pk, M; (r1, r2)) = Encrypt(pk, gM; (r1, r2))
— (&m = +,®c = x,®r = +) homomorphism
— re-randomization: multiplication by Encrypt*(X, 0; r).

Ecole Normale Supérieure David Pointcheval
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Signature & Encryption Security

Encryption: Properties Security Notions: Signature

In a group G of order p, with a generator g: Signature: EF-CMA
Linear Encryption Existential Unforgeability
dk = (x1, %) gzz, pk= (X; = g", Xo = g*) under Chosen-Message ) )
Attacks P G —*
Encrypt((X:. Xe), my: (1. 7)) x Encrypt((X:, Xe), ma; (12, 1)) An adversary should not be e
nol o o able to generate a new valid Al L=
= (X' X', 9" my) x (X2 X, g2 - mp) message-signature pair ()~
= (X7, X2f1’+fé7gr1+r1'+r2+ré - my - mp) even if it is allowed to ask
signatures on any message
= Encrypt((X1, X2), my - mo; (ry + r2, 1y + 13)) ofgits choice y 9

— (®m = x,®¢c = x,®r = +) homomorphism

Impossibility to forge signatures
Withm=g¥ — (®y=+,8®c = x,®r = +) homomorphism b Y 9¢ 59

Waters signature reaches EF-CMA under the CDH assumption

Ecole Normale Supérieure David Pointcheval 17/57Ecole Normale Supérieure David Pointcheval 18/57

Cryptographic Tools
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Security

Security Notions: Encryption

Encryption: IND-CCA

Indistinguishability under
Chosen-Plaintext Attacks
An adversary that chooses
two messages, and receives
the encryption of one of
them, should not be able to
decide which one has been
encrypted

be (0.1}
r random m,y «
m; .

e G —— ks

|

A

b’ <

Impossibility to learn any information about the plaintext

ElGamal (resp. Linear) encryption reaches IND-CPA
under the DDH (resp. DLin) assumption

Cryptographic Tools
[ Jelele)

Groth-Sahai Methodology

Groth-Sahai Commitments [Groth, Sahai, 2008]

Under the DLin assumption, the commitment key is:

(ur = (U11,1,9), U2 = (1, a2, ), U3 = (Us 1, Us 2, U3 3)) € (G*)°

Initialization
A A _ At
Uz =uUj © ub = (U3’1 = U1,1,U3,2 = nga Us3z =g M)

. $
with A, i & 73, and random elements uy 1, Uz 2 < G.

It means that us is a linear tuple w.r.t. (uq.1, Uz 2, g).

Ecole Normale Supérieure

David Pointcheval
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Groth-Sahai Methodology Groth-Sahai Methodology

Groth-Sahai Commitments Groth-Sahai Commitments

Group Element Commitment @ If correct initialization of commitment key (us a linear tuple),
these commitments are perfectly binding

To commit a group element X € G,
one chooses random coins sy, Sp, S3 € Zp and sets

@ With some initialization parameters, the committed values can
even be extracted — extractable commitments

P S S:; S:
C(X) =11, X)ouy ouZ ous’ @ Using pairing product equations, one can make proofs
= (Uj"y - UP,, Uz, - U, X - g2 Uy, on many relations between scalars and group elements:
. [T e, x)% [T e(vi. BY* [ e(xi. Vi) = t,
Scalar Commitment ; ; i

To commit a scalar x € Zp,

. where the A;, B;, and t are constant group elements,
one chooses random coins 1,2 € Zp and sets

) . N . " aj, Bj, and v; ; are constant scalars,
C'(x) := (U3 1, U3 2, (U3 39)") © U{" © Uy and X; and Y; are either group elements in G4 and G,
X f . .
= (ug‘j” Uy, ug,;”z, ugjgw LgFtm). or of the form g’ or g3, respectively, to be committed.
’ @ The proofs are perfectly sound

Ecole Normale Supérieure David Pointcheval 21/57Ecole Normale Supérieure David Pointcheval 22/57
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[e]ele] J

Groth-Sahai Methodology

Groth-Sahai Proofs Outline

@ If us a linear tuple, these commitments are perfectly binding
@ The proofs are perfectly sound

@ If us is a random tuple, the commitments are perfectly hiding

@ The proofs are perfectly witness hiding e . v < Cthen
ectronic Voting: State-of-the-Art

@ Under the DLin assumption, with a correct initialization, ° Gene.ral Process
proofs are witness hiding @ Receipt-Freeness

Ecole Normale Supérieure David Pointcheval 23/57Ecole Normale Supérieure David Pointcheval 24/57



e-Voting
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General Process

Dessert Choice

e-Voting
00000

General Process

A ballot consists of one or two crosses in

0 Chocolate Cake
[0 Cheese Cake
O Ice Cream

O Apple

Each box is thus expressed as a bit: v; € {0,1},fori=1,2,3,4
With the additional constraint (at most 2 choices): > ; v; € {0,1,2}

In the following, we focus on one box only:
@ Vs the j-th voter
@ v; is the value of the box for this voter: 0 or 1

Ecole Normale Supérieure David Pointcheval

e-Voting
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General Process

Voting Procedure

Voter V; Server S
c; = Encrypt(pk, v;; ;)
o; = Sign(usk;, ¢;; s;)
MN¢ = Proof of
o T
bit encryption BT
\ )N, Y, = Sign(sk, c;; s})

25/57Ecole Normale Supérieure

Voting Phase

@ from (o}, N¢): authorization and uniqueness of a voter

@ from c;: privacy for the voter
unless individual votes are decrypted

@ with X;: a voter can complain if his vote is not in the ballot-box

Ecole Normale Supérieure David Pointcheval
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Voting Procedure

Cryptographic Primitives
@ Signature S = (Setup, SKeyGen, Sign, Verif)
that is EF-CMA, e.g., Waters Signature;

@ Homomorphic enc. £ = (Setup, EKeyGen, Encrypt, Decrypt)
that is IND-CPA, e.g., EIGamal or Linear Encryption

+ distributed decryption, as ElGamal and Linear schemes allow

Initialization

@ The authority owns a signing/verification key-pair (sk, vk)

@ The ballot-box owns an encryption key pk, which decryption
capability is distributed among the board members

@ Each voter V; owns a signing/verification key-pair (usk;, uvk;)

David Pointcheval

e-Voting
[eJe]e] o}

General Process

Counting Procedure

26/57

Counting Phase

@ Anybody can check all the votes (c;, o}, I¢)
@ Anybody can compute

C=]]c=]lExvin=ExD vid rn)=Ew(ViR)

@ The board members decrypt C in a distributed
and verifiable way, into V

@ Everything is verifiable: universal verifiability

@ Board members accept to participate to one decryption only: C
— individual votes are protected
— anonymity

David Pointcheval
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General Process

Summary

e-Voting
®00

Receipt-Freeness

Re-Randomization

@ uniqueness per voter: signature

@ anonymity: encryption and distributed decryption
@ universal verifiability: every step is publicly verifiable

e Soundness: the server cannot add ballots
e Dispute: the server cannot remove ballots

To sell his vote, the voter reveals his random coins r; as a receipt \

Receipt-freeness: the voter should not know the random coins!

Ecole Normale Supérieure David Pointcheval

e-Voting
oceo

Receipt-Freeness

Security

Re-Randomization

@ re-randomization: the voter no longer knows the random coins
@ designated-verifier proof:

e Voter convinced: ¢} contains his vote
o Receipt-freeness: the server cannot transfer this proof

| A

Weakness: verifiability

The proof N; can be verified by the server on ¢

but not by users on ¢’: no universal verifiability

The proof should be re-randomized (adapted) by the server:
Possible with Groth-Sahai methodology

Ecole Normale Supérieure David Pointcheval
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Voting Phase

Voter V; Server S
¢i = Encrypt(pk, v;; r;)
M¢ = Proof of

bit encryption

A

¢; = Random(c;; r{)

A

oj = Sign(usk;, c;; s;)

~

. Y.; = Sign(sk, c;; s})

Non-transferable proof of ¢; = ¢;: verifier-designated proof
Proof of knowledge of [/ such that ¢; = Random(c;, r{)] or [usk]]

David Pointcheval 30/57

e-Voting
ocoe

Receipt-Freeness

Security

Weakness: interactions

@ interactive proof
@ 2-round voting (at best!)

Non-Interactive Receipt-Freeness

Our goal is to achieve receipt-freeness
but in a non-interactive way

David Pointcheval 32/57



Signatures on Ciphertexts

Outline

0 Signatures on Randomizable Ciphertexts
@ New Primitive

@ Example
@ Security Notions

David Pointcheval
Signatures on Ciphertexts
oe
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New Primitive

Signatures on Randomizable Ciphertexts

Encrypts Randomg
pk,r

A

O

(%))
ey | W
vfg(/\) LD
AN
o

Ecole Normale Supérieure David Pointcheval

Randomizable

@D Encryption

Malleable
Signature on

Randomizable

Encryption
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Signatures on Ciphertexts
0

New Primitive

Signatures on Randomizable Ciphertexts

Voting Phase
Server S

Voter V;
¢; = Encrypt(pk, v;; r;)
oj = Sign(usk,-, Ci; S,')

M¢ = Proof of
" b encryption boplls (cj,07,M¢) =
Random(c;, o, MN¢; r})
ci, N, %,
nlotl 5, — Sign(sk, (), MTy): 8))

Vi
N

The server not only adapts the proof, but the signature too!
@ from (o;, MN¢): authorization and uniqueness of a voter

@ from c¢;: privacy for the voter
e from Random: receipt-freeness (unknown random coins r; + r{)
David Pointcheval

Signatures on Ciphertexts
[ Jelele)
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Example

Linear Encryption

In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr

[Boneh, Boyen, Shacham, 2004]

Linear Encryption
o EKeyGen: ok = (xi, %) & 72, pk= (X1 = g*, Xo = g2);
@ Encrypt(pk = (Xi,X2), m; (r1, r2)), for me G and (ry, r2) &z

= c=(c1=X,0=X?,c3=g"""2 - m);

2
o

@ Decrypt(dk = (x1,X2),c = (C1,C2,C3)) — m= 03/011/)(1 C;/Xz-

Re-Randomization
@ Randomg(pk = (X1, X2), ¢ = (¢1,Co, C3); (11, 13)), for (r{, r}) &Zg
S = (¢ =c X ¢y =cr X2, Ch =5 ghitTh). |
36/57
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Signatures on Ciphertexts
0800

Example

Waters Signature

In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr

Waters Signature
For a message M = (My,..., My) € {0,1}%,
we define F = F(M) = up [T5, uM, where i = (o, . .
For an additional generator h < G.

@ SKeyGen: vk= X = gX, sk=Y = h¥, for X&Zp;

e Sign(sk=Y,F:s),for M € {0,1}%, F = F(M), and s & 7,

— o= (o1=Y F%0,=09%);
@ Verif(vk= X,M, o = (01, 02)) checks whether
e(g,a1) ° G(F, 02) = G(X, h)

5 Uk) <i Gk+1 c

[Waters, 2005]

Signatures on Ciphertexts
0080

Example

Waters Signature on a Linear Ciphertext: Idea

We define F = F(M) = up [T%, u, and encrypt it

c=(ci=X" =X c3=9"""2F)
@ KeyGen: vk=X=g% sk=Y = h*, forx&Zp
dk = (x1,%0) & 72, pk = (X = g", Xo = g2)
@ Sign((X1,X2),Y,c;s), forc=(cy,co,C3)
— o= (o1=Y ¢§,00=(c},C5),03 =(9° X}, X3))
@ Verif((X1,X2), X, c,0) checks  e(g,01) = e(X, h) - e(os,, C3)
e(02,0,9) = e(cy,030) e(02,1,9) = e(C2,030)
e(03,1,9) = e(X1,03,0) e(03,2,9) = e(Xz,030)

o3 is needed for ciphertext re-randomization

David Pointcheval

Signatures on Ciphertexts
oooe

Ecole Normale Supérieure

Example

Re-Randomization of Ciphertext

c3=9""" . F
o3 = (9°, X7, X3)

c= (¢ =X{,
o= (o1=Y-c3,

p
Co = X22,

02 = (C‘IS7 CS)?

after re-randomization by  (r{,r3)

/ / r / / r / r+r;
cd=(ci=c-X', =0 X7 C3=20C3-91""%
/ / rn+r r r /
o' =(0y =01-03¢ % 03 = (020" 031,021 05,), 03 =03

Anybody can publicly re-randomize c into ¢’
with additional random coins (ry, r3),
and adapt the signature o of ¢ into ¢’ of ¢/

Ecole Normale Supérieure David Pointcheval
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Signatures on Ciphertexts
[ Jolelelele]
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Security Notions

Unforgeability under Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks

) The adversary is allowed to ask any valid ciphertext of his choice
) to the signing oracle

Because of the re-randomizability of the ciphertext-signature,
we cannot expect resistance to existential forgeries,
) but we should allow a restricted malleability only:

A valid ciphertext-signature pair, so that the plaintext is different
from all the plaintexts in the ciphertexts sent to the signing oracle

39/57Ecole Normale Supérieure David Pointcheval 40/57



Signatures on Ciphertexts Signatures on Ciphertexts
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Security Notions Security Notions

Unforgeability Chosen-Message Attacks

From a valid ciphertext ¢ = (¢y = X{",co = X?,c3 = g"*"2 - F),
and the additional proof of knowledge of M,
c=(ci=X",co=XZ,c3=g"""% . F) one extracts M and asks for a Waters signature:

— _ S _ S
0= (0-1 = Y'C§70-2 :(Cf7cg)703: (gS7X187X28)) 2= (21 =Y F ,Zg—g )

From a valid ciphertext-signature pair:

_ In this signature, the random coins s are unknown,

— needs of a proof of knowledge N, of r{, > in c

. 1/x1 1/x
F= cs/(c' ") bit-by-bit commitment of ry, r» and Groth-Sahai proof
¥ = Y= 01/(0;/0)(1 0';’/1)(2), Yo = 030) From the random coins ry, > (and the decryption key):
= ( —Y.FS = ¢°) o=(01=%1-537% o= (5" TP%), 03 =(%2.55.57) )

=Y. CéS? - (Cf7c‘2s)7 = (gs7X1S’XéS)
Security of Waters signature is for a pair (M, ¥)
— needs of a proof of knowledge My, of M in F = F(M)
bit-by-bit commitment of M and Groth-Sahai proof

Ecole Normale Supérieure David Pointcheval 41/57Ecole Normale Supérieure David Pointcheval 42/57

Signatures on Ciphertexts Signatures on Ciphertexts
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Security Notions Security Notions

Security Security

Chosen-Ciphertext Attacks ® From the Waters signing o.racle, _ .
—— : we answer Chosen-Ciphertext Signing queries
A valid ciphertext C = (c¢1, Co, c3, My, ;) is a
@ ciphertext ¢ = (¢y, ¢, C3)

@ From a Forgery, we build a Waters Existential Forgery

@ a proof of knowledge My, of the plaintext M in F = F(M) Security Level

@ a proof of knowledge 1, of the random coins ry, Since the Waters signature is EF-CMA under the CDH assumption,
From such a ciphertext and the decryption key (x1, x2), our signature on randomizable ciphertext is Unforgeable
and a Waters signing oracle, one can generate a signature on C against Chosen-Ciphertext Attacks

under the CDH assumption

| \

Forgery

From a valid ciphertext-signature pair (C, o), where C encrypts M,
one can generate a Waters signature on M

A\
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Signatures on Ciphertexts
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Security Notions

Properties

Since we use the Groth-Sahai methodology for the proofs I, and 1,
@ in case of re-randomization of ¢, one can adapt Ny, and I,

@ because of the need of M, but also ry and r» in the simulation,
we need bit-by-bit commitments:
@ M can be short (¢ bit-long)
e r; and r» are random in Zp

— Cislarge!

<

We can improve efficiency: shorter signatures \

Ecole Normale Supérieure
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(Fair) Blind Signatures
[ lele]

Introduction

Electronic Cash

Electronic Coins [Chaum, 1981]

Expected properties:
@ coins are signed by the bank, for unforgeability
@ coins must be distinct to detect/avoid double-spending
@ the bank should not know to whom it gave a coin, for anonymity )

Electronic Cash

The process is the following one:
@ Withdrawal: the user gets a coin ¢ from the bank
@ Spending: the user spends a coin ¢ in a shop
@ Deposit: the shop gives back the money to the bank

45/57Ecole Normale Supérieure

(Fair) Blind Signatures

Outline

© (Fair) Blind Signatures
@ Introduction
@ Extractable Signatures
@ Randomizable Signatures

David Pointcheval 46/57

(Fair) Blind Signatures
oceo

Introduction

Blind Signatures

We thus want:

@ Anonymity: the bank cannot link a withdrawal to a deposit
to know where a user spent a coin
— blind signature

@ No double-spending: a coin should not be used twice
— fair blind signature

Ecole Normale Supérieure David Pointcheval 47/57Ecole Normale Supérieure David Pointcheval 48/57



(Fair) Blind Signatures
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(Fair) Blind Signatures

ele] }

Introduction

Blind RSA

Extractable Signatures

Extractability

[Chaum, 1981]

As already noted, from a valid ciphertext-signature pair:

The easiest way for blind signatures, is to blind the message:
c=(cr=X"co=X?c3=9"""2F)

To get an RSA signature on m under public key (n, e),
@ The user computes a blind version of the hash value:

M = H(m)and M’ = M- ré mod n
@ The signer signs M’ into o/ = M’? mod n
@ The user unblinds the signature: o = ¢’ /r mod n

Indeed,

—  Proven under the One-More RSA

[Bellare, Namprempre, Pointcheval, Semanko, 2001]

—  Perfectly blind signature

David Pointcheval
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Extractable Signatures

Extractable Signatures

Encryptc
pk,r
@ — . @
dk

Decrypte

sk; s
Signs

SIgEX Ise
r
dk

David Pointcheval
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o=o/r=M%r=M-r®/r=M r/r=Mmodn

0 = (01 =Y 033,,02 = (013705)703 = (gS7X1S7X2S))

and the decryption key (x1, X2), one extracts

C3/(C11/X1 C;/XZ)

F p—
= Y= 01/(0;/0)(1 0;,/1)(2), Yo =030)
= ( —Y.F$ = g°)

A plain Waters Signature
One can do the same from the random coins (ry, r2)

50/57
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(o] Je]
Extractable Signatures

Blind Signatures
Our Approach
To get a signature on M,
@ The user commits/encrypts M into C, under random coins r

@ The signer signs C into o(C), under random coins s
@ The user extracts a signature o(M), granted the random coins r

| \

Weakness
The signer can recognize his signature: the random coins s in o(M)

— Randomizable Signature

| A

Security
@ Encryption hides M
@ Re-randomization of signature hides o (M) ]
David Pointcheval 52/57

51/57Ecole Normale Supérieure
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Randomizable Signatures

Randomizable Signatures

Waters Signature

® SKeyGen: vk= X = g¥, sk=Y = h¥, for x & Z;
e Sign(sk=Y,M;s),for M € {0,1}k and s & 7,
— o= (o1 =Y -F(M),02=9g%);
@ Verif(vk = X, M, o = (04, 02)) checks whether
e(g7 01) ’ e(F(M)aaZ) = e(X7 h)

Re-Randomization

Randoms(vk = X, M,0;s') : o' = (0} = o1 - F(M)¥,0p = 02-9~%)
this is exactly Sign(sk=Y,M;s + s')

Ecole Normale Supérieure David Pointcheval
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Randomizable Signatures

Blind Signatures
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Randomizable Signatures

Randomg .
Encrypte Randomizable

@ . @D Encryption

Randomizable
Signature on
Randomizable

Randomizable
Signature

k; s
Signs

Encryption
4 e
3) o
Randomgs N (\606\
Q&

David Pointcheval

Such a primitive can be used for a Waters Blind Signature:

@ Unforgeability: one-more forgery would imply a forgery
against the signature scheme (CDH assumption)

@ Blindness: a distinguisher would break indistinguishability
of the encryption scheme (DLin assumption)

We obtain a plain Waters Signature \

— Blind Signature: with a real Waters Signature

Fair Blind Signature

The user encrypts M into C, under random coins r,
and the authority encryption key

Ecole Normale Supérieure David Pointcheval

Encrypte Randomg
pk, r
B [ ——— r
dk
Decrypte
(%]
%) é’) © §
43 S
D
w
SigEthg
r
s’ —
dk S) &
N o 0((\
Randomg < (\6
2
Q
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Conclusion

Randomizable Commutative Signature/Encryption

Various Applications
@ non-interactive receipt-free electronic voting scheme
@ (fair) blind signature

Security relies on the CDH and the DLin assumptions
For an /-bit message, ciphertext-signature:
9¢ + 24 group elements

A more efficient variant with asymmetric pairing
on the CDH* and the SXDH assumptions
Ciphertext-signature: 6/ + 7 group elements in G4
and 6/ + 5 group elements in Go
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