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Security of Communications

One ever wanted to exchange information securely
With the all-digital world, security needs are even stronger. ..
In your pocket

Cryptography

3 Historical Goals
@ Confidentiality: The content of a message is concealed
@ Authenticity: The author of a message is well identified
@ Integrity: Messages have not been altered

between a sender and a recipient, against an adversary.
Also within groups, with insider adversaries

Cannot address availability, but should not affect it!
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Cryptography Cryptography
E cooe!

First Encryption Mechanisms Use of a (Secret) Key

The goal of encryption is to hide a message A shared information (secret key) between the sender
and the receiver parameterizes the public mechanism

- . Enigma:

- Substitutions and permutations :

N choice of the connectors
Security relies on
. and the rotors
the secrecy of the mechanism

Scytale
Permutation

= How to widely use them?

Security looks better: but broken (Alan Turing et al.)

Alberti’s disk Wheel — M 94 (CSP 488) = Security analysis is required
Mono-alphabetical Substitution Poly-alphabetical Substitution
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Modern Cryptography DES and AES

Secret Key Encryption

One secret key only shared by Alice and Bob:
this is a common parameter for both E and D

Still substitutions and permutations,
but considering various classes of attacks (statistic)
DES: Data Encryption Standard

il “Broken” in 1998 by brute force:
‘ N " too short keys (56 bits)!
= No better attack
Round Function F granted a safe design!
[Diffie-Hellman — 1976]
@ Bob’s public key is used by Alice as a parameter to E

@ Bob’s private key is used by Bob as a parameter to D

New standard since 2001: Advanced Encryption Standard

Longer keys: from 128 to 256 bits
Criteria: Security arguments
against many attacks

What does security mean?
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Cryptography
0os:

Cryptography
.

Practical Secrecy Provable Security
Symmetric Cryptography
Perfect Secrecy vs. Practical Secrecy e ——  the ke
@ No information about the plaintext m can be extracted @ gu:rsantt:ee(;yt:e seecregy of communications
from the ciphertext c, even for a powerful adversary
(unlimited time and/or unlimited power): perfect secrecy
= information theory @
@ In practice: adversaries are limited in time/power

= complexity theory

Asymmetric Cryptography
We thus model all the players (the legitimate ones and the adversary)

as Probabilistic Polynomial Time Turing Machines: @ ;::rsaict:ee(;yt:;:]:cf;::‘;a;ei I;?r,nmunications

’
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Provable Security

puters that run prog
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Provable Security
oo

What is a Secure Cryptographic Scheme? General Method

o What does security mean? Computational Scurlly Proofs :
— Security notions have to be formally defined To prove the security of a cryptographic scheme, one needs
@ How to guarantee above security claims for concrete schemes? @ a formal security model (security notions)

— Provable security @ areduction: if one (Adversary) can break the security notions,
then one (Simulator + Adversary) can break a hard problem
@ acceptable computational assumptions (hard problems)

- [@8e] ™
We— = | I ED

Proof by contradiction

Provable Security
o if an adversary is able to break the cryptographic scheme
@ then one can break a well-known hard problem

= XA |- solution
instance

David Pointcheval
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Provable Security
00

Provable Security
oe0

Integer Factoring Reduction

Given n = pq — Findpand g
Digits Date Bit-Length

y
April b / \ =

130 pril 1996 431 bits .
140 | February 1999 | 465 bits * = (D= * &

:gg Axg':lsééggg g;? ::i Adversary running time ¢ Algorithm running time T = f(t)
200 May 2005 664 bits

@ Lossy reduction: T = k% x t

232 December 2009 | 768 bits Modulus | Adversary | Algorithm | Best Known
Bit-length | Complexity | Complexity | Complexity
y — 80 110 80
AR A
768 bits — 25% op. [ 3072 bits — 2728 op. k=13072| <280 T < ot15 o128 ,
1024 bits — 250 op. | 7680 bits — 2'%2 op. ) P—
2048 bits — 2'12 op. | 15360 bits —» 225 op. o Tight reduction: T ~ t

With k = 1024 and t < 289, one gets T < 280
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One-Way Functions

Signature
One-Way Functions
o F(1%) generates a function f: X — Y ki K
@ From x € X, it is easy to compute y = f(x) l
@ Given y € Y, itis hard to find x € X such that y = f(x)

()
RSA Problem Ve - m s
@ Givenn=pq, eand y € Z,
@ Find x such that y = x® mod n

This problem is hard without the prime factors p and q
It becomes easy with them: if d = ! mod ¢(n), then x = y¥ mod n

This problem is assumed as hard as integer factoring: 0/1
the prime factors are a trapdoor to find solutions

= trapdoor one-way permutation Goal: Authentication of the sender
David Pointcheval 15/40David Pointcheval - ENS/CNRS/INRIA
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Security of Signatures

EUF — NMA: Security Game

Security of Signatures

EUF — NMA

mao ~———

Succi-%}(/l) = Pr[(ks, k) < G(); (m. o) + A(ky) : V(ky,m,0) =1]
should be negligible.
A knows the public key only = No-Message Attack (NMA)

David Pointcheval  ENS/CNRS/INRIA

Collége de France

Security of Signatures

EUF — KMA

One-Way Functions

0 G(19): 1 & F(19), and % = (x1.0,%1.1.- -, X0 Xe1) & X%,
Yij=f(x)fori=1,....kandj=0,1,
ks = X and k, = (f,y)

o S(X,m) = (Xim,)i=1,..k

@ V((f,y), m,(x])) checks whether f(x/) = yim fori=1,... k

One-Way Function
o g(1%): 1 & F(1kyand x & X, set y = f(x),
ks = x and ky, = (f.y)
@ S(x,m) =ks=x
@ V((f,y), m.x") checks whether f(x') = y

Under the one-wayness of F, Succ®~"™3( ) is small.

But given one signature, one can “sign” any other message!
Signatures are public! = Known-Message Attacks (KMA)

The adversary has access to a list of messages-signatures

17/40David Pointcheval - ENS/CNRS/INRIA College de France 18140

Security of Signatures

EUF — CMA

Vi, m#m,

Under the one-wayness of F, Succ®~"™3( 4) is small.

With the signature of m = 0, | cannot forge any other signature.
With the signatures of m = 0K and m’ = 1, | learn X: the secret key
Messages can be under the control of the adversary!

= Chosen-Message Attacks (CMA)

David Pointcheval

V k,m,0
The adversary has access to any signature of its choice:
Chosen-Message Attacks (oracle access):

(ks kv) < G(); (m, o) = A5t (k) :
Vi,m# mi AV(ky,m, o) =1

Succgd o™ (A) = Pr [

19/40David Pointcheval — ENS/CNRS/INRIA Colléae de France 20/40



Security of Signatures Security of Signatures

The RSA Signature [Rivest-Shamir-adieman 19781 FUll-Domain Hash Signature [Bellare-Rogaway — Eurocrypt 96]

The RS A Signature
The RSA signature scheme RSA is defined by
@ G(1%): pand g, two random primes, and an exponent v
n=pgq, ks + s= v~ mod ¢(n) and k, < (n, v)
@ S(ks, m): the signature is o = m*® mod n
@ V(ky, m, o) checks whether m = ¢¥ mod n

Full-Domain Hash RSA Signature

The FDH-RSA signature scheme is defined by

@ G(1): pand g, two random primes, and an exponent v
n=pgq, ks + s=v_"mod (n) and k, + (n,v)

@ H is a hash function onto Zj,

@ S(ks, m): the signature is o = #(m)* mod n

@ V(ky, m, o) checks whether #(m) = ¥ mod n

Theorem (The Plain RS A is not EUF — NMA)
The plain RSA signature is not secure at all!

Theorem (Security of the FDH-RSA)

The FDH-RSA is EUF — CMA under appropriate assumptions on H,
and assuming the RSA problem is hard

Choose a random o € Zj;, and set m = ¢* mod n.
By construction, ¢ is a valid signature of m O
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Security of Sig Security of Signatures

FDH-RSA Security Improved Security

Adversary running time t Algorithm running time T = f(t) Adversary running time ¢ Algorithm running time T = f(t)
Initial reduction: T ~ qy x t [Bellare-Rogaway — Eurocrypt "96] By exploiting the random self-reducibility of RSA: (xr)® = xr® mod n
(where gy is number of Hashing queries ~ 260) = Improved reduction: T ~ qg x t [Coron — Crypto "00]
k=1024 (289) | t<2%0 | T< 2140 | % (where gs is the number is Signing queries < 2%°)
k=12048 (2'12) | t <280 | T <2140 | % With k = 2048 and t < 289, one gets T < 2110
k=3072 (2'%8) | t <280 | T <210 | x (Best algorithm in 2112)

= large modulus required!

David Pointcheval 23/40David Pointcheval — ENS/CNRS/INRIA Colléae de France 24/40



Security of Signatures
o
[Bellare-Rogaway — Eurocrypt *96]

RSA-PSS (PKCS #1 v2.1)

@ mis the message to encrypt
@ ris the additional randomness to
make encryption probabilistic

After the transformation,
w/||s||t goes in the plain RSA

ot96])

Security reduction between EUF — CMA and the RSA assumption:

T~t
— 1024-bit RSA moduli provide 28° security

Collége de France
Security of Encryption

David Pointcheval - ENS/CNRS/INRIA

OW — CPA: Security Game

m’" random
' random

/In E ¢ JA

me=

() = pr| (kake) = GOim™ & Mic = E(ke.m, 1)
A(ke, c*) = m*
should be negligible.

Succ' %

David Poir

Public-Key Encryption

25/40David Pointcheval — ENS/CNRS/INRIA

Security of Encryption

m —
r —

3‘_ U ‘—Qx

26/4¢

Security of Encryption

Goal: Privacy/Secrecy of the plaintext
Collage de France

ir-Adleman |

[Rivest-S

OW — CPA: Is it Enough?

The ’
n=pq, sk d =e~' mod ¢(n) and pk < (n, e)
m=c? mod n

): pand g, two random primes, and an exponent e:

e g(1k

@ &(pk,m) =c=me° mod n; D(sk,c) =
RSA encryption is OW — CPA, under the RSA assumption
OW — CPA Too Weak

@ §' = G; E'(pk, m = my||mg) = E(pk, m1)||mz = ¢1|c2

@ D'(sk, ci||c2): my = D(sk, c1), Mo = ¢y, output m = my||my

If (G, €, D) is OW — CPA: then (¢', &', D') is OW — CPA too

But this is clearly not enough: half or more of the message leaks!

Collége de France
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Security of Encryption

Security of Encryption

OW — CPA: Is it Enough?

For a “yes/no” answer or “sell/buy” order,
one bit of information may be enough for the adversary!
How to model that no bit of information leaks?

Perfect Secrecy vs. Computational Secrecy
@ Perfect secrecy: the distribution of the ciphertext
is perfectly independent of the plaintext
o Computational secrecy: the distribution of the ciphertext
is computationally independent of the plaintext

Idea: No adversary can distinguish
a ciphertext of my from a ciphertext of m;.

Probabilistic encryption is required!

Collége de France
Security of Encryption

IND — CPA: Security Game

b 01
rrandom

(g ko) < G()i(mo, my, state) « A(ke);
b & {0,1}:0" = E(ke, mp, 1) b + A(state, ¢*)
AQVEP3(4) = 2 x Pr[t/ = b] — 1 should be negligible.

30:
Security of Encryption

ElGamal Encryption

[ElGamal 1985]

The ElGamal Encryptiol
@ G(1%): G = (g) of order g, sk = x @Zq and pk « y = g*
o &(pk,m,r) = (c1 = g',co = y'm)
@ D(sk,(c1,c2)) = G2/}

The ElGamal encryption is IND — CPA, under the DDH assumption
Decisional Diffie-Hellman Problem
For G = (g) of order g, and x, y il Zq,

@ Given X = g%, Y = g¥ and Z = g?, for either z Yil ZgoOrz=Xxy
@ Decide whether z = xy

This problem is assumed hard to decide in appropriate groups G!

31/40David Pointcheval — ENS/CNRS/INRIA

ElGamal is IND — CPA: Proof
Let A be an adversary against £G: B is an adversary against DDH:
let us be given a DDH instance (X = g*, Y = ¢¥.Z = g%)
@ A gets pk < X from B, and outputs (o, my)
@ Bsetsci+ Y

o Bchooses b & {0,1}, sets ¢x « Z x mp,
and sends ¢ = (cy, ¢2)

@ Breceives b from A and outputs d = (b’ = b)
o 2xPrt/ =b]—1
= AdviS P(A), if 2= xy

=0,ifz8z4

Collége de France 32/40



Security of Encryption

Security of Encryption
ElGamal is IND — CPA: Proof

IND — CPA: Is it Enough?
As a consequence,
0 2x Prit/ = b|z = xy] — 1 = Advig P%(A)
o 2xPi =bz& zg]-1=0
If one subtracts the two lines:

The ElGamal Encryption [ElGamal 1

e G(1%): G = (g) of order q, sk = x Pl Zq and pk < y = g~
@ E(pk,m,r) = (c1 = g',ca = y'm) ; D(sk, (c1, C2)) = C2/Cf

_ _ Private Auctions
gy gy _ o, [ PIA=12=%] e ]
veg T (A) = 2x _Prd =1z il 74l All the players P; encrypt their bids c; = £(pk, b;) for the authority;
ddh the authority opens all the ¢;; the highest bid b, wins
= 2x Adv¥N(B) < 2 x Adv@IN(1)

@ IND — CPA guarantees privacy of the bids
@ Malleability: from ¢; = £(pk, b;), without knowing by,
one can generate ¢’ = £(pk,2b;): an unknown higher bid!

IND — CPA does not imply Non-Malleability

David Pointcheval - ENS/CNRS/INRIA

Collége de France
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S0
IND — CCA: Security Game RSA-OAEP (PKCS #1 v2.1) (Bellare-Rogaway ~ Eurocrypt '94]
b 01

rrandom

The RS.A encryption is OW — CPA, under the RSA assumption,

but even not IND — CPA: need of randomness and redi

@ mis the message to encrypt

@ ris the additional randomness to
make encryption probabilistic

@ 00...00 is redundancy to be

checked at decryption time
The adversary can ask any decryption of its choice:

= Chosen-Ciphertext Attacks (CCA)
Theorem (NM vs. CCA

After the transformation,
X||Y goes in the plain RSA

[Bellare-Desai-Pointcheval-Rogaway — Crypto *98])
The chosen-ciphertext security implies non-malleability
—> the highest security level

Theorem (IND-CCA Security
RSA-OAEP is IND-CCA secure under the RSA assumption

[Fujisal

amoto-Pointchev
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RSA-OAEP Security Proof [Fujisaki-Okamoto-Pointcheval-Stern — Crypto *01]

c=f(X||Y)

More precisely, to get information on m, encrypted in ¢ = f(X||Y),
one must have asked #(X) = partial inversion of f

For RSA: partial inversion and full inversion are equivalent
(but at a computational loss)

REACT-RSA Security

[Okamoto-Pointcheval - CT-RSA "01]

Security of Encryption

RSA-OAEP Security

[Fujisaki-Okamoto-Pointcheval-Stern — Crypto 011

Adversary running time t Algorithm running time T = f(t)
If there is an adversary that distinguishes, within time ¢,
the two ciphertexts with overwhelming advantage (close to 1),
one can break RSA within time T ~ 2t + 3g,2k®
(where gy is number of Hashing queries ~ 250)

k=1024 (2%) [ t<2% | T <282 | % )
k=2048 (2112) |t <280 | T <2155 | % large modulus:
k=3072 (212%) | t<2% | T <21 | % > 4096 bits!

Conclusion

REACT-RSA
@ G(1%): pand g, two random primes, and an exponent e:
n=pgq, sk + d =e " mod ¢(n) and pk + (n,e)
@ &(pk,m,r) =

(c1 = r®mod n,c, = G(r) & m,c3 = H(r,m, ¢y, ¢2))

@ D(sk, (¢, c2,¢3)): r=cf mod n, m=c, & G(r),
if o3 = H(r,m, c1, co) then output m, else output L

Security reduction between IND — CCA and the RSA assumption:
T~t

— 1024-bit RSA moduli provide 28° security

David Pointcheval
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With provable security, one can precisely get:

@ the security games one wants to resist against any adversary

@ the security level, according to the resources of the adversary
But, it is under some assumptions:

@ the best attacks against famous problems (integer factoring, etc)

@ no leakage of information excepted from the given oracles
Cryptographers’ goals are thus

@ to analyze the intractability of the underlying problems

@ to define realistic and strong security notions (games)

@ to correctly model the leakage of information (oracle access)

@ to design schemes with tight security reductions
Implementations and uses must satisfy the constraints!
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