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Encryption / decryption
attack

- s Granted Bob’s public key,
My secret Q Alice can lock the safe,
B © with the message inside
(encrypt the message)
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with the message inside
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Encryption / decryption
attack

s Granted Bob’s public key,
Alice can lock the safe,
with the message inside

(encrypt the message)

s Excepted Bob,
granted his private key
(Bob can decrypt)

s Alice sends the safe to Bob &2

no one can unlock it

(impossible to break) 5
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Encryption Scheme

3 algorithms:
s G - key generation

s E - encryption
* D - decryption

ke kd

l l
m — C -
r _JE D -

David Pointcheval — CNRS - ENS

Provable Security — Asymmetric Encryption

Conditional Secrecy

The ciphertext comes from ¢ = E_(m; r)

= The encryption key & is public

s A unique m satisfies the relation

(with possibly several r)

At least exhaustive search on m and r
can lead to m, maybe a better attack!

= unconditional secrecy impossible

Algorithmic assumptions
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Integer Factoring and RSA

One-Way

s Multiplication/Factorization: .
Function

® p, g — n = p.q easy (quadratic)
* n=p.q+— p, q difficult (super-polynomial)
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Integer Factoring and RSA

One-Way

s Multiplication/Factorization: .
Function

® p, g —> n = p.q easy (quadratic)
® n=p.qg> p, q difficult (super-polynomial)

s RSA Function, from Z in Z (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
@ x — x¢ mod n easy (cubic)

» y=x°*mod n — x difficult (without p or ¢)

RSA p
x =)y’mod n where d = e! mod ¢(n) fob/em
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Integer Factoring and RSA

One-Way

s Multiplication/Factorization: .
Function

® p, g — n = p.q easy (quadratic)
* n=p.q+— p, q difficult (super-polynomial)

= RSA Function, from Z_in Z_(with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
> x — x¢ mod n easy (cubic)
@ y=x°¢ mod n > x difficult (without p or g)
x =y?*mod n where d = ¢! mod ¢(n)

encryption
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Integer Factoring and RSA

One-Way

s Multiplication/Factorization: .
Function

® p, g —> n = p.q easy (quadratic)

® n=p.qg> p, q difficult (super-polynomial)
= RSA Function, from £ in Z (with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
@ x — x¢ mod n easy (cubic)
» y=x°¢ mod n > x difficult (without p or ¢g)

x =y?*mod n where d = ¢! mod ¢(n)
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Integer Factoring and RSA

One-Way

s Multiplication/Factorization: .
Function

® p, g — n = p.q easy (quadratic)
* n=p.q+— p, q difficult (super-polynomial)

= RSA Function, from Z_in Z_(with n=pq)

for a fixed exponent e Rivest-Shamir-Adleman 1978
® x > x* mod »n easy (cubic)
o y=x°¢ mod n > x difficult (without p or g)

trapd
x = y*mod n where|d = ¢! mod ¢(n) rap Oy

key
decryption
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The RSA Problem

Let n=pg where p and ¢ are large primes
The RSA problem: for a fixed exponent e

Succ’® (A)= Pr [yzxemodn|A(y)=x}

S
YEZ,
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The Discrete Logarithm

s et G = (<g>, x) be any finite cyclic group
* For any ye G, one defines

Log,(y) =min{x >0 |y = g*}
One-way function

@ x —y=g° easy (cubic)
@ y=g —x difficult (super-polynomial)

Succ(;l(A)= Pr [A(y)=x|y=gxl

XE/
q
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Any Trapdoor ...?

s The Discrete Logarithm is difficult
and no information could help!

s The Diffie-Hellman Problem (1976):
> Given A=g* and B=g’

s> Compute DH(4,B) = C=g<
Clearly CDH = DL: with a = Log 4, C = B¢

Succ;dh(A): Pr [A(A,B)=C|A=g“,B=gb,C=gab
a,bEZq
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Another DL-based Problem

= The Decisional Diffie-Hellman Problem:
> Given 4, Band Cin <g>
> Decide whether C = DH(4,B)

Clearly DDH < CDH < DL

Pr |A(4,B,C)=1|d=g", B=¢".C=¢'
Advidh(A):la,b,cEZq ‘

~ Pr |A(4,B,C)=1|4=¢", B=¢" C=g"

a,bez
q
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Complexity Estimates

Estimates for integer factoring Lenstra-Verheul 2000
Modulus | Mips-Year | Operations

(bits) (log,) (en log,)

512 13 58

1024 35 80

2048 66 111

4096 104 149

8192 156 201

Can be used for RSA too
Lower-bounds for DL in Zp*
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Algorithmic Assumptions
necessary

RSA Encryption

s E(m) = m*mod n

s n=pq . public modulus
s ¢ public exponent
s d=e'mod ¢(n) : private  * D(c) =c?mod n
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Algorithmic Assumptions
sufficient?

Security proofs give the guarantee that the
assumption is enough for secrecy:

s if an adversary can break the secrecy
s one can break the assumption
= “reductionist” proof
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Proof by Reduction

Reduction of a problem P to an attack Atk:
s et A be an adversary that breaks the scheme

s Then A can be used to solve P

9

sA
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Proof by Reduction

Reduction of a problem P to an attack Atk:
* et A be an adversary that breaks the scheme

s Then A can be used to solve P

{ phdy. O
Instance | ¢ K\

Solution
— of
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Proof by Reduction

Reduction of a problem P to an attack Atk:
s et A be an adversary that breaks the scheme

s Then A can be used to solve P

Instance

lof P —
° Solution

—  ofl

P intractable = scheme unbreakable
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Provably Secure Scheme

To prove the security of a cryptographic scheme,
one has to make precise

» the algorithmic assumptions
@ some have been presented

s the security notions to be guaranteed
» depends on the scheme (see later)
s a reduction:

an adversary can help
to break the assumption
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Practical Security
7
v

s Complexity theory: T polynomial
s Exact Security: T explicit
s Practical Security: T small (linear)

Algorithm
against P

1 within " =T (%)
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Practical Security: Encryption

s Security bound: 27
@ and 2% hash queries

= RSA-OAEP
s 1024 bits — 214 (NFS: 2%)  x
s 2048 bits — 214 (NFS: 2111)
s 4096 bits — 214 (NFS: 214)

s RSA-BR/REACT: ¢’ = 2t
s 1024 bits — 275 (NFS: 2%)

= Practical security
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Asymmetric Encryption

An asymmetric encryption scheme 1 = (G,E,D)
is defined by 3 algorithms:

» G — key generation o G kk)
k) ky
* E —encryption l c l
L .m
> D — decryption " — E o

Security = secrecy : impossible
to recover m from public information
(i.e from ¢, but without k)
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Security Notions

According to the needs, one defines
s the goals of an adversary

s the means of an adversary,
i.e. the available information
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Basic Secrecy

s One-Wayness (OW) :

without the private key, it is computationally
Impossible to recover the plaintext

Succ® (A )= Pr [A(ke,c)=m|c=E(m;r)l

m,r
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One-Wayness

ke‘ieg’kd

l

m random
r random

m | c’
r E i A

—

*

?
m =

m m
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Not Enough

s One-Wayness (OW) :
@ without the private key, it is computationally
impossible to recover the plaintext
@ put it does not exclude the possibility of recovering
half of the plaintext!
= |t is not enough if one already has
some information about m:
@ “Subject: XXXXX”
s “My answer is XXX” (XXX = Yes/No)
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Strong Secrecy

s Semantic Security (IND - Indistinguishability):
GM 1984

the ciphertext reveals no more information
about the plaintext to a polynomial adversary

Adv"™(A)=
ZPI” A,(my,m,,c,s)= b|(m . 8) Ay (k) _1
b | c<—E(mb, r)
David Pointcheval — CNRS - ENS Provable Security — Asymmetric Encryption
Semantic Security
ke
l
be {0,1}
¥ random ZO '_
1 «—
m, —. c’
rb__. E " A
?
b’=b | ».
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Non-Malleability

s Non-Malleability (NM):

DDN 1991
No polynomial adversary can derive,
from a ciphertext ¢ = E(m;r), a second one ¢’ = E(m ;1)
so that the plaintexts m and m’ are meaningfully related

non-malleability
!
semantic security

d

one-wayness
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Basic Attacks

s Chosen-Plaintext Attacks (CPA)

In public-key cryptography setting,
the adversary can encrypt any message
of its choice, granted the public key

= the basic attack

David Pointcheval — CNRS - ENS Provable Security — Asymmetric Encryption




Improved Attacks

s More information: oracle access

@ reaction attacks
= oracle which answers, on c,
whether the ciphertext c is valid or not
@ plaintext-checking attacks

s oracle which answers, on a pair (m,c),
whether the plaintext m is really

encrypted in ¢ or not (whether m = D(c¢))
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Strong Attacks

s Chosen-Ciphertext Attacks (CCA)

The adversary has access to the strongest
oracle: the decryption oracle
(with the natural restriction not to use it
on the challenge ciphertext)

The adversary can obtain the plaintext of any
ciphertext of its choice (except the challenge)

@ non-adaptive (CCA1) NY 1990
= only before receiving the challenge
@ adaptive (CCA2) RS 1991

s ynlimited oracle access
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IND-CCA2

k G — &
l C
r random m‘l) CCA1
mb —» C *
r B > A c#C
? <<?
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Relations BDPR C-1998

Implications and separations

NM-CPA < NM-CCA1< NM-CCA2
U U 0

IND-CPA < IND-CCA1< IND-CCAZ2

U
minimal
OW'CE security N
M

weak security strong security: CCA
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RSA Encryption

s n = pq, product of large primes

s ¢, relatively prime to o(n) = (p-1)(g-1)
s n, e . public key

s d=e¢'"mod ¢(n) : private key

E(m)=m‘modn  D(c)=c’modn

OW-CPA = RSA problem
Nothing to prove = definition
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El Gamal Encryption

» G = (<g>, x) group of order ¢
s x . private key
s y=9: public key

E(m;a)=(g" y'm)-(c,d) Dlc,d)=dlc"

OW-CPA = CDH Assumption
IND-CPA = DDH Assumption
To be proven to see the restrictions
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El Gamal: OW-CPA

E(m;a)=(g" y'm)-(c,d) Dlc,d)=dlc"

Succ”™(A)=Pr|A(y,(c,d))=ml(c,d)=E(m;a)

m,r

B is given as input G = (<g>, X) and (4,B)
®y«—Aandc B
® choose a random value d: A(y,(c,d)) — m
o output d/m

If m is correct, DH(A,B) = d/m
Succed (B) = Succo*(A)
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El Gamal: IND-CPA

my, m,,s)=A (y)
(c,d)=E(m,;a)

Adv™(A)=2Pr

B is given as input G = (<g>, X) and (4, B, C)

A, (my,m,(c, d),S)=b|(

® y«—Aand c <« B: A|(y) — (m,, m,)
° pef{0,1} and d — Cm,: A (c,d) — b’
s output B= (b =5’

s Let us assume that m,, m, €G:

° If C=DH(4,B), Pr[b=b"] = Pr[A(c,d) = b]
o If C#DH(4,B), Pr[b=b"]=1/2
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El Gamal: IND-CPA (Cnt'd)

* |f the messages are encoded into G:

o If C=DH(4,B), Pr[b=b"] = Pr[A(c,d) = b]
o If C#DH(4,B), Pr{b=b"] = 1/2
Adv*™(B)=Pr|f=1|C=CDH(4, B)|-Pr|=1|C#CDH(4, B)
I

1 ind
:P ’: —_——_——=
r|h'=b| ) 2Adv (A4)

Adv (D)=2Pr|b'=b|—1
=Pr|b'=b|b=1|+Pr|b'=b|b=0|—1
Thus =Pr|b'=b|b=1|-Pr|b'#b|b=0|

Advird(f) <2 Advédn (27) =Pr|b'=1|b=1|—Pr|b'=1|b=0
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Strong Security Notions

s Signature: difficult to obtain security
against existential forgeries

= Encryption: difficult to reach CCA security
s Maybe possible, but with inefficient schemes
s |Inefficient schemes are unuseful in practice:

Everybody wants security,
but only if it is transparent

— one makes some ideal assumptions
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The Random-Oracle Model

Introduced by Bellare-Rogaway ACM-CCS ‘93
s The most admitted model

s |t consists in considering some functions
as perfectly random functions,
or replacing them by random oracles:
@ each new query is returned a random answer

@ a same query asked twice receives twice
the same answer
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Modeling a Random Oracle

A usual way to model a random oracle H
Is to maintain a list A, which contains

all the query-answers (x,p):
s A, is initially set to an empty list
s A query x to H is answered the following way
o if for some p, (x,p) €A, pis returned

a Otherwise,

= a random p is drawn from the appropriate range
s (x,p) iIs appended to A,

s p is returned
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Generic COHStrUCtion Bellare-Rogaway ‘93

s Let / be a trapdoor one-way permutation
then (with G — {0,1}"and H — {0,1}%)

* E(m;r) =f(r) [|m & G(r) || H(m,r)

* D(ab,c):

° r=f1(a)
eom=b & G(r)

o c=Hmyr)?
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IND-CCA2: Game 0

= Adversary A=(A,,A,)

* Af) — (my,m,)
@ One randomly chooses B €{0,1} and 7,
and computes C* = E(m, )= (a’,b’,c):
a =f(),b"=m; & G(r’), c"=H(mg,r")
? Az(C*) — [
both with permanent access to

= the decryption oracle D gp queries
s the random oracles Gand H ¢, q,, Queries
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IND-CCA2: Game 0

s On this probability space,
we consider event S: B° =3

s In Game i: S,

s Note that
Pr[S,] = 1/2 + Adv"™(A)/2

Indeed, by definition (in the attack game):
Advr(A) =2Pr[B’ =B] - 1
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IND-CCA2: Game 1

s Classical simulation of the random oracles

One does not change the distribution:
Pr[S,] = Pr[S,]
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IND-CCA2: Game 2

s We choose /i, and then set H(mB,r*) — h'
@ ForC'= E(mﬁ;r*): H(mB,r*) —h
e H simulation: H(m,,r") independent

One introduces inconsistencies,
if the adversary asks H(mB,r*)

We consider event AskR: 7 asked to G or H
In Game i: AskR,

| P1[S,] - Pr[S,] | £ Pr[AskR,]
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IND-CCA2: Game 3

s \We now start modifying the simulation of
the decryption oracle D:

@ Foraquery (a’,b’,c)=E@m’;r’)

= If H(m’,r’) has not been asked: rejection

Bad simulation BadS: ¢’ = H(m ', r"),
whereas H(m’,r’) has not been asked.

Pr[BadS] <qp/ 2*
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IND-CCA2: Game 4

s \We choose r*, gt and /", and then set
r'«—rt,and G(r") « g* and H(mB,r*) — h'

° For C" = E(my; r") :G(r") < g'

H(mg,r™) < h*
@ G simulation: G(r") « random
H simulation: H(mg ;") <= random

Event AskR already cancelled: no modification:
Pr[S,] = Pr[S.] Pr[AskR,] = Pr[AskR,]
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IND-CCA2: Game 4

= One randomly chooses ', g* and A"

> A(f) — (my,m,)

@ One randomly chooses B e{0,1},
« C=E(mgr)=(a=f0"),b=m; &g, c"=h’)

9 Az(C*) — [

with permanent access to

= the decryption oracle D PI‘[S4] =1/2
s the random oracles Gand H: A,and A,

@ and G(r*) or H(mg,r") never asked
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IND-CCA2: Game 5

s \We now manufacture the challenge ciphertext:
we are given y = f(x)

C'=(a =y, b= m,® g, c'=h)
s This simply defines " =x

This does not modidify the probability space:
Pr[AskR:] = Pr[AskR,]
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IND-CCA2: Game 6

s \We complete the simulation of the
decryption oracle D:
® Foraquery (a’,b’,c)=Em’;r’)
s One looks for G(r’) such that a' =f(r’)

s Not found: rejection
= Otherwise: easy decryption

Modification if H(m’,»’) queried while G(r’) is
unpredicable, and m’ is so too:

Pr[Bads']<gq, /2"
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IND-CCA2: Game 6

s One is given y = f(x)
s One randomly chooses g* and A"
* A(f) — (my,m,)
@ One randomly chooses B{0,1},
C'=(@=y,b'=m &g, c=h)
@ A(C)—> B Pr[AskR,] £ Succo(?’)
s with permanent access to U'=1t;%(s 90 I;

= the decryption oracle D: simulation
s the random oracles G and H: A, and A,
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IND-CCA2: Sum up 1

s Pr[S,] = 1/2 + Adv"(A)/2
Pr[S,] =Pr[S]

s | Pr[S,] - Pr[S,] | £ Pr[AskR,]

« | Pr[S,] - Pr[S,] | < ¢p/ 2"

s Prs,]=1/2

| Pr[S,] - Pr[S,] | = Adv"(A)/2 < Pr[AskR,] + ¢qp/ 2*
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IND-CCA2: Sum up 2

s | Pr[AskR,] - Pr[AskR,] | < gp/ 2"

Pr[AskR.| = Pr[AskR,] = Pr[AskR,]
» | Pr[AskR.] - Pr[AskR.] |< g, /2
s Prl[AskR,] <Succ™(t + (g5t q,) T))

Pr[AskR,] < gp/2"+ q,,/2"+ Succ™(t+(q51tq,) 7))
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IND-CCA2: End

s Simple bookkeeping:
@ one avoids the factor ¢,
s An additional variable in A, and A,
o (x,p,y) € A, means G(x)=p and f (x)=y
o (mx,p,y) € A, means H(m,x)=p and f (x)=y

Adv (A2 < qp /254 24,127+ Suce™(t+(qo+q,)T)
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Practical Security

Adv™(A)/2 < qp 128+ 2q,,/2"+ Succ™(i+(q5+q,)T,)

s Security bound: 27
@ and 25 hash queries and 23° decryption queries
s Break the scheme within 7, invert / within time
U<t+(q,tqy) T,<t+2%T,

o RSA: 1024 bits — 27° (NFS: 2%)
2048 bits — 277 (NFS: 2!11)
4096 bits — 27° (NFS: 2¥)

David Pointcheval — CNRS - ENS Provable Security — Asymmetric Encryption




