Authenticated Key Exchange passwords, groups, low-power devices

Caen - March 2004

Joint work with Emmanuel Bresson and Olivier Chevassut

David PointchevalCNRS-ENS, Paris, France

Summary

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Algorithmic Assumptions necessary

- n=pq: public modulus
- e : public exponent
- $d=e^{-1} \mod \varphi(n)$: private

RSA Encryption

- \blacksquare $\mathbf{E}(m) = m^e \bmod n$

If the RSA problem is easy, secrecy is not satisfied: anybody may recover m from c

Algorithmic Assumptions sufficient?

Security proofs give the guarantee that the assumption is **enough** for secrecy:

- if an adversary can break the secrecy
- one can break the assumption
 - ⇒ "reductionist" proof

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Proof by Reduction

Reduction of a problem P to an attack *Atk*:

- Let A be an adversary that breaks the scheme
- Then A can be used to solve P

Proof by Reduction

Reduction of a problem P to an attack *Atk*:

- Let A be an adversary that breaks the scheme
- Then A can be used to solve P

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Provably Secure Scheme

To prove the security of a cryptographic scheme, one has to make precise

- the algorithmic assumptions
 - the RSA problem, the Diffie-Hellman problems, ...
- the security notions to be guaranteed
 - depends on the scheme
- a reduction
 - an adversary can help to break the assumption
 - simulation of the « view » of the adversary

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Authenticated Key Exchange

Two parties (Alice and Bob) agree on a **common** secret key sk, in order to establish a secret channel

- Intuitive goal: implicit authentication
 - only the intended partners can compute the session key
- Formally: semantic security
 - the session key sk is indistinguishable from a random string r, to anybody else

Further Properties

- Mutual authentication
 - They are both sure to actually share the secret with the people they think they do
- Forward-secrecy
 - Even if a long-term secret data is corrupted, previously shared secrets are still semantically secure

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Semantic Security

For breaking the semantic security, the adversary asks one **test**-query which is answered, according to a random bit b, by

• the actual secret data sk (if b=0)

• a random string r (if b=1)

 \Rightarrow the adversary has to guess this bit b

The Leakage of Information

- The protocol is run over a public network, then the transcripts are public:
 - an execute-query provides such a transcript to the adversary
- The secret data sk may be misused (with a weak encryption scheme, ...):
 - the reveal-query is answered by this secret data sk

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Passive/Active Adversaries

- Passive adversary: history built using
 - the execute-queries → transcripts
 - the reveal-queries → session keys
- Active adversary: entire control of the network
 - the send-queries
 active, adaptive adversary on concurrent executions
 - to send message to Alice or Bob
 (in place of Bob or Alice respectively)
 - to intercept, forward and/or modify messages

Security Model

As many **execute**, **send** and **reveal** queries as the adversary wants

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Formal Model

Bellare-Rogaway model revisited by Shoup

Forward Secrecy

Forward secrecy means that the adversary cannot distinguish a session key established *before* any corruption of the long-term private keys:

- the corrupt-query is answered by the long-term private key of the corrupted party
- then the test-query must be asked on a session key established before any corrupt-query

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Freshness

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Diffie-Hellman Key Exchange

The most classical key exchange scheme has been proposed by Diffie and Hellman:

- $\mathbf{G} = \langle g \rangle$, cyclic group of prime order q
- Alice chooses a random $x \in \mathbb{Z}_q$, computes and sends $X = g^x$
- Bob chooses a random $y \in \mathbb{Z}_q$, computes and sends $Y = g^y$
- They can both compute the value

$$K = Y^x = X^y$$

Properties

- Without any authentication, no security is possible: man-in-the-middle attack
 - ⇒ some authentication is required
- If flows are Strongly Authenticated (ie. MAC or Signature), it provides the semantic security of the session key under the DDH Problem
- If one derives the session key as sk = H(K), in the random oracle model, semantic security is relative to the **CDH Problem**

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Replay Attack

No explicit authentication ⇒ replay attacks

The adversary intercepts "Alice, X, Auth(Alice,X)"

Alice Bob
$$x \in \mathbf{Z}_{q}, X = g^{x} \xrightarrow{\text{Alice}, X, \mathbf{Auth}(\text{Alice}, X)}$$

$$K = Y^{x} \xrightarrow{\text{Bob}, Y, \mathbf{Auth}(\text{Bob}, X, Y)} \xrightarrow{y \in \mathbf{Z}_{q}, Y = g^{y}}$$

$$sk = H(\text{Alice}, \text{Bob}, X, Y, K)$$

It can initiate a new session with it

Bob believes it comes from Alice

- Bob accepts the key, but does not share it with Alice
 - ⇒ no mutual authentication
- The adversary does not know the key either
 - ⇒ still semantic security

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Mutual Authentication

Adding key confirmation rounds: mutual authentication

[Bellare-P.-Rogaway Eurocrypt '00]

Authentication

- **Asymmetric**: (sk_A, pk_A) and possibly (sk_B, pk_B)
 - they authenticate to each other using the knowledge of the private key associated to the certified public key
- Symmetric: common (long high-entropy) secret
 - they use the long term secret to derive a secure and authenticated ephemeral key sk
- Password: common (short low-entropy) secret
 - let us assume a 20-bit password

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Asymmetric

- the most classical authentication mode is the signature (cf. SIGMA)
- the ability to decrypt (with an asymmetric encryption scheme) is also a way to provide authentication

Mutual Authentication for Low-Power Devices [Jakobsson-P. - FC 01]

- Client: Schnorr signature with off-line pre-processing
 - very efficient signing process (for the client)
- Server: RSA decryption
 - efficient encryption process (for the client)
- Fixed random for the Server: precomputation

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - ▶ Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Password-based Authentication

Password (short – low-entropy secret – say 20 bits)

- exhaustive search is possible
- basic attack: on-line exhaustive search
 - the adversary guesses a password
 - tries to play the protocol with this guess
 - failure ⇒ it erases the password from the list
 - and restarts...
- after 1,000,000 attempts, the adversary wins

cannot be avoided

Dictionary Attack

- The on-line exhaustive search
 - cannot be prevented
 - can be made less serious (delay, limitations, ...)
- We want it to be the best attack...
- The off-line exhaustive search
 - a few passive or active attacks
 - failure ⇒ erasure of MANY passwords from the list
 - this is called dictionary attack

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Security

One wants to prevent dictionary attacks:

- a passive trial (execute + reveal)
 - does not reveal any information about the password
- an active trial (send)
 - allows to erase at most one password from the list of possible passwords
 - (or maybe 2 or 3 for technical reasons in the proof)

Example: EKE

The most famous scheme EKE:

Encrypted Key Exchange

- Flows are encrypted with the password.
- Must be done carefully: no redundancy
- From X', for any password π
 - decrypt X'
 - check whether it begins with "Alice"

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

EKE - AuthA

EKE

Bellovin-Merritt 1992
Two-flow Encrypted

wo-flow Encrypted Key Exchange

AuthA

Bellare-Rogaway 2000
One-flow Encrypted
Key Exchange

- EKE: security claimed, but never fully proved
- AuthA: security = open problem

Security Results

[BCP - ACM-CCS '03]

- Assumptions
 - the ideal-cipher model for (E,D)
 - ullet the random-oracle model for H and $H_{_1}$
- Semantic security of AuthA:
 - Advantage $\geq 3 q_{\rm send}/N + \epsilon$,
 - \Rightarrow CDH problem : probability $\geq \epsilon/8q_{\rm hash}$

(within almost the same time)

Similar (but less efficient) results for EKE

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

New Security Results

[BCP - PKC '04]

- Assumptions
 - the random-oracle model
- Symmetric encryption = one-time pad:
 - $\bullet \quad \mathbf{E}_{\pi}(X) = X \times G(\pi)$
- Semantic security of AuthA:
 - Advantage $\geq 12 \ q_{\rm send}/N + \epsilon$,
 - ⇒ CDH problem : probability $\geq \varepsilon / 12q_{\text{hash}}^{-2}$
- Similar (but less efficient) results for EKE

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Model of Communication

- A set of n players, modelled by oracles
- A multicast group consisting of a set of players

Modelling the Adversary

- send: send messages to instances
- execute: obtain honest executions of the protocol
- reveal: obtain an instance's session key
- corrupt: obtain the value of the authentication secret

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Summary

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

A Group Key Exchange

- Generalization of the 2-party DH, the session key is $sk = H(g^{x_1x_2...x_n})$
- Ring-based algorithm
 - up-flow: the contributions of each instance are gathered
 - down-flow: the last instance broadcasts the result
 - end: instances compute the session key

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

The Algorithm

- **Up-flow**: U_i raises received values to the power x_i
- **Down-flow**: U_n broadcasts (except $g^{x_1x_2...x_n}$)

Everything is authenticated (Signature/MAC)

Group CDH

- The CDH generalized to the multi-party case
 - given the values $g^{\prod x_i}$ for some choice of proper subset of $\{1, ..., n\}$
 - one has to compute the value $g^{x_1x_2...x_n}$
- Example $(n=3 \text{ and } I=\{1,2,3\})$
 - given the set of the blue values g, g^{x_1} , g^{x_2} , $g^{x_1x_2}$
 - compute the red value $g^{x_1x_3}$, $g^{x_2x_3}$, $g^{x_2x_3}$, $g^{x_1x_2x_3}$ GCDH \geq DDH or CDH

[BCP - SAC '02]

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Security Result

Theorem (in the random-oracle model)

[BCPQ - ACM CCS '01]

$$Adv^{ake} \leq 2q_{send}^{n} q_{hash} \cdot Succ^{gcdh}(n,T) + 2n \cdot Succ^{sign}(q_{s},T)$$

- Idea:
 - we introduce a Group Diffie-Hellman instance in the tested session
 - \Rightarrow we have to guess in which **send**-queries: factor q_{send}^{n}
 - When the adversary has broken the scheme, the Group Diffie-Hellman solution is in the list of the queries to H
 - \Rightarrow we have to guess it: factor q_{hash}

Improvements

- Security result: exponential in n
- Improvements

[BCP – Eurocrypt '02]

- No guess of the tested pool
- Use of the random self-reducibility of the DH problems
 - \Rightarrow reduction linear in n
- Standard model (MAC and Left-Over-Hash Lemma)
- Dynamic groups

[BCP - Asiacrypt '01]

If one party leaves or joins the group,
 the protocol does not need to be restarted from scratch

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Summary

- Provable Security
- Authenticated Key Exchange
 - Security Model
 - Examples
 - Authentication
 - Password-based
- Group Key Exchange
 - Security Model
 - Example
 - Dynamic groups

Dynamic Groups

- Join: the last broadcast is sent to the new player and becomes the last up-flow
 ⇒ the new player introduces a new random
- Remove: the last remaining player introduces a new random x'_i in place of his x_i and broadcasts the useful values only

Remove 2 and 4 $\begin{cases} g^{x_2x_3x_4} & g^{x_1x_3x_4} & g^{x_1x_2x_4} & g^{x_1x_2x_3} & g^{x_1x_2x_3x_4} \\ g^{x_2x'_3x_4} & g^{x_1x_2x_4} & g^{x_1x_2x_4} & g^{x_1x_2x_3x_4} \end{cases}$

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Dynamic Groups: Security Result

- Group of n people
- Tested group of size s
- Number of operations (setup, join, remove): Q
- Time: T

$$Adv^{ake} \leq 2 Q \cdot C_n^s \cdot q_{hash} \cdot Succ^{gcdh}(s, T) + 2n \cdot Succ^{sign}(q_{send}, T)$$

- Idea:
 - Guess the players in the tested group
 - Guess the last operation before the tested key
 - Guess the solution among the H queries

Improved Security Result

[BCP - Eurocrypt '02]

- Number of people involved in the group before the **test**-query (maybe removed) = s
- Number of operations (setup, join, remove): Q
- Time: T

$$Adv^{ake} \le 2 \ n \ Q \cdot Adv^{gddh}(s,T) + 2 \ n \cdot Succ^{sign}(q_{send},T)$$

- Idea:
 - Guess the last operation before the tested key
 - Guess of the index of the player which makes the last down-flow

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Details

Given instance:

$$g^{x_2}$$
 g^{x_1} $g^{x_1x_3}$ $g^{x_1x_2}$ $g^{x_2x_3x_4}$ $g^{x_1x_3x_4}$ $g^{x_1x_2x_4}$ $g^{x_1x_2x_4}$ $g^{x_1x_2x_3}$ $g^{x_1x_2x_3x_4}$

- Use a new line for a new player, up to the s-1st
 - For additional players: known random
 - ⇒ known keys (reveal-queries)
 - Use the last line for the **test**ed group, introducing x_{4} at the Q^{th} operation
 - ⇒ test-query answered by the red value
 - After: back to $s-1^{st}$ line, but **not** necessarily removing x_4

Details (Con'd)

Extended instance:

```
g^{x_2} g^{x_1} g^{x_1x_3} g^{x_1x_2} g^{x_1x_4} g^{x_2x_3} g^{x_1x_3x_4} g^{x_1x_2x_4} g^{x_1x_2x_4} g^{x_1x_2x_4} g^{x_1x_2x_3} g^{x_1x_2x_3x_4}
```

- In the *s*-1st line: all the combinations of *s*-2 exponents
 - We remain on this line
 - We know the session key (in the sth line)

David Pointcheval - CNRS - ENS

Authenticated Key Exchange

Password-Based

[BCP - Eurocrypt '02]

- Generalization of the 2-party PAKE DH
- Encrypt each flow with password (in ICM)
 - Redundancy: dictionary attack
 - \Rightarrow Randomization: $sk = H(g^{a_1a_2...a_nx_1x_2...x_n})$