Extended Private Information Retrieval and its Application in Biometrics Authentications

J. Bringer and H. Chabanne

D. Pointcheval and Q. Tang

Sagem Sécurité, France

Ecole normale supérieure, France

CANS 2007 – December 2007

- Authentication
- Biometric Authentication
- 2 Private Information Retrieval
- 3 Privacy Definitions
- Extended Private Information Retrieval
 - Equality: ElGamal
 - Hamming Distance: BGN
 - Conclusion

Biometric Authenti	cation	PIR 000	Privacy Definitions	EPIR 000000	Conclusion ○
Outline					
 Bio A E 	metric Aut Authenticatic Biometric Au	henticatio on ithenticatic	n on		
2 Priv	ate Inform	ation Ret	rieval		
3 Priv	acy Defini	tions			
4 Ext • E • F	ended Priv iquality: ElC lamming Di	ate Inform Gamal stance: B(nation Retrieval		
5 Cor	nclusion				
Biometric Authentie ●○○○	cation	PIR 000	 ✓ □ ▶ Privacy Definitions ○○○ 	(ि) ▶ (≧ ▶ (≧ ▶ EPIR 000000	돌
Authentication					

Authentication

Authentication Modes

An authentication protocol usually involves a user and a server, where the user tries to prove his identity to the server with

- the knowledge of a password;
- the knowledge of a private key related to a public key;
- the possession of a device (that securely stores the above private key);
- a biometric feature.

The server needs to apply the protocol with a specific reference, related to the actual user.

 \implies Privacy concern!

Biometric Authentication ○●○○	PIR 000	Privacy Definitions	EPIR 000000	Conclusion ○
Authentication				
Privacy vs. Auth	nenticati	on		

Privacy: What about checking whether a user is authorized, without knowing who he is?

- the knowledge of a private key
 - the possession of a device
 - \implies use of anonymous credentials.
- the knowledge of a password
 - a biometric feature
 - \implies not that simple!

			↓ ↓ ⊕ ▶ ↓ ∃ ▶ ↓ ∃ ▶	
Biometric Authentication ○○●○	PIR 000	Privacy Definitions	EPIR 000000	Conclusion ○
Biometric Authentication				
Biometric Authe	enticatio	n		

Biometric Template

The biometric template

- cannot be chosen by the user;
- cannot be modified if compromised;
- is slightly different each time.

How to combine biometric authentication with privacy?

Biometric	Authentication
0000	

PIR

Privacy Definitions

EPIR 000000 Conclusion

Biometric Authentication

Anonymous Biometric Authentication

Anonymous Biometric Authentication

In order to combine both, we want to play the following game:

- the server owns a database with {ID : biometric_reference}
- the user *id* owns an ephemeral biometric template T
- the server wants to check whether *T* matches to the biometric reference of the user with real identity *id*

for privacy reasons:

- the server should not learn anything about *id* nor *T*
- a user that claims *id*, but with wrong *T*, should not learn anything else than *Reject*

				E 996
Biometric Authentication	PIR 000	Privacy Definitions	EPIR 000000	Conclusion ○
Outline				

PIR/PBR

PIR: Private Information Retrieval

Definition (PIR

[Chor-Kushilevitz-Goldreich-Sudan '98])

A PIR (Private Information Retrieval) protocol enables a user to retrieve a bit from a bit-database.

When user asks for bit *i* to the database,

- Soundness: the user actually retrieves the bit *i*;
- User-Privacy: the database learns nothing about which bit the user has retrieved.

Definition (Symmetric Private Information Retrieval)

An SPIR is a PIR that furthermore provides

• Database-Privacy: the user learns nothing about other bits in the database.

			(□) (□) (□) (□) (□)	≣ <2 <> < </th
Biometric Authentication	PIR ○●○	Privacy Definitions	EPIR 000000	Conclusion ○
PIR/PBR				
DDD. Drivete				

PBR: Private Block Retrieval

Definition (PBR	[Chor-Kushilevitz	-Goldreich-Sudan '98])
A PBR (Private Block Retrieval) pro retrieve a <mark>block</mark> from a <mark>block</mark> -datab	otocol enable ase.	s a user to
on the high residuosity		[Lipmaa '05]
on the subgroup decision assu	umption	[Gentry-Ramzan '05]
Notations		
We generalize the PIR/PBR setting	g:	
• the database \mathcal{DB} contains a lie	st of N blocks	•
$(R_1, R_2, \cdot$	$\cdots, R_N)$	
• a user $\mathcal U$ can run a protocol to	retrieve R_i fo	r any $1 \leq i \leq N$.

EPIR

EPIR: Extended Private Information Retrieval

A particular case to Secure Function Evaluation can be,

for a common function *f*

- \mathcal{DB} owns (R_1, \ldots, R_N)
- \mathcal{U} owns some index *i*, and an input *x*
- \mathcal{U} wants to learn $f(R_i, x)$, so that
 - User-Privacy: DB learns nothing about the index i, nor the input x
 - Database-Privacy: \mathcal{U} learns nothing else than $f(R_i, x)$

This is an extension to PIR: with $f(R_i, x) = R_i$, EPIR=SPIR.

Biometric Authentication	PIR 000	Privacy Definitions	◆□ ▶ < (部) ▶ < き) ◆ き) EPIR 0000000	E ∽へペ Conclusion ○
Outline				

Biometric Authentication	PIR 000	Privacy Definitions ●○○	EPIR 000000	$_{\odot}$ Conclusion
Security/Privacy				
User-Privacy				

The adversary A plays the role of the database, and tries to learn some information from the user. The function *f* is fixed:

Definition (User-Privacy)	
1 A_1 generates the database: (R_1, R_2, \cdots, R_N) ;	
2 A_2 outputs $(i_0, i_1, x_0, x_1);$	
③ The challenger randomly chooses $b \in \{0, 1\}$	
and issues a <i>retrieve</i> -query on input (i_b, x_b) with A_3 ;	
• \mathcal{A}_4 outputs a guess <i>b</i> '.	

				E
Biometric Authentication	PIR 000	Privacy Definitions ○●○	EPIR 000000	Conclusion O
Security/Privacy				
Database-Priva	су			

The adversary A plays the role of the user, and tries to distinguish between the execution with an actual database, from the execution with a simulator. The function *f* is fixed:

Defi	nition (Database-Privacy)
0	The challenger randomly chooses $b \in \{0, 1\}$. If $b = 0$ then \mathcal{A} will interact with an actual database. If $b = 1$ then \mathcal{A} will interact with a simulator \mathcal{S} that, for a <i>retrieve</i> -query on input (i, x) , only knows $f(R_i, x)$.
2	The attacker A_1 generates the database: (R_1, R_2, \cdots, R_N) .
3	The attacker A_2 issues <i>retrieve</i> -queries (with either the actual database, or the simulator). Then, A_2 outputs a guess b'.

Biometric Authentication	PIR 000	Privacy Definitions ○○●	EPIR 000000	Conclusion ○
Security/Privacy				
Secure EPIR				

An EPIR protocol must satisfy

- Soundness: if both U and DB follow the protocol, then retrieve(i, x) provides U with the correct value of f(R_i, x) (at least with an overwhelming probability).
- User-Privacy: any attacker has only negligible advantage in guessing *b* in the *User-Privacy* attack game.
- Database-Privacy: any attacker has only negligible advantage in guessing b in the Database-Privacy attack game.

			∢□▶∢@▶∢≣▶∢≣▶	■
Biometric Authentication	PIR 000	Privacy Definitions	EPIR 000000	Conclusion ○
Outline				

- **Biometric Authentication**
 - Authentication
 - Biometric Authentication
- Private Information Retrieval
- 3 Privacy Definitions
- Extended Private Information Retrieval
 - Equality: ElGamal
 - Hamming Distance: BGN
 - Conclusion

Equality: ElGamal

ElGamal-based EPIR

One uses the additive variant of ElGamal:

$$sk = x$$
 $pk = y = g^x$ $\mathcal{E}(m) = \mathcal{E}(m, r) = (g^r, y^r g^m).$

 \mathcal{U} wants to retrieve the value $f(R_i, m) \stackrel{\text{\tiny def}}{=} (R_i \stackrel{?}{=} m)$:

- U generates an ElGamal key pair (pk, sk);
- 2 \mathcal{U} first sends *pk* and $c = \mathcal{E}(i||m)$;
- DB generates a randomized database:

$$C_j = (c/\mathcal{E}(j||R_j))^{r_j} = \mathcal{E}((i||m-j||R_j) \times r_j)$$

• \mathcal{U} and \mathcal{DB} run a PIR protocol to retrieve C_i : \mathcal{U} then decrypts C_i . it decrypts to 0 iff $m = R_i$.

				≣ ∽৭৫	
Biometric Authentication	PIR 000	Privacy Definitions	EPIR ○ ●○○○○	Conclusion ○	
Equality: ElGamal					
Security Analysis					

Security Soundness: PIR is sound ⇒ EPIR is sound. User-Privacy: PIR achieves user-privacy + DDH ⇒ EPIR achieves user-privacy. Database-Privacy: EPIR unconditionally achieves database-privacy.

- the PIR does not need to be an SPIR for the Database-Privacy: all the fields, except the *i*-th, are random;
- Any homomorphic encryption scheme can be used.

Hamming Distance: BGN

Weighted Hamming Distance

 \mathcal{U} wants to compute the Weighted Hamming Distance between a string *S* chosen by itself and a block R_i from DB:

- Notation: for an ℓ -bit string *S*, $S^{(k)}$ is the *k*-th bit of *S*.
- Weights: the weight vector is $(w_1, w_2, \cdots, w_\ell)$, where w_k are integers $(1 \le k \le \ell)$.
- Function:

$$f(R_i, S) = \sum_{k=1}^{\ell} w_k \times (R_i^{(k)} \oplus S^{(k)}).$$

With $w_k = 1 \ \forall k$, one obtains the usual Hamming Distance.

				≣ १९९२
Biometric Authentication	PIR 000	Privacy Definitions	EPIR ○○○●○○	Conclusion ○
Hamming Distance: BGN				
BGN Encryption				

BGN Parameters

Parameters: $n = pq, G, \mathbb{G}^T, \hat{e}, g, h, G, H$.

- \mathbb{G}, \mathbb{G}^T are groups of order *n*
- $\hat{e} : \mathbb{G} \times \mathbb{G} \to \mathbb{G}^T$ is an admissible bilinear map.
- $g \in \mathbb{G}, \ G = \hat{e}(g,g) \in \mathbb{G}^T$ are generators
- $h \in \mathbb{G}, H = \hat{e}(g, h) \in \mathbb{G}^T$ are of order p

BGN Encryption Scheme

- Keys: $pk = (n = pq, \mathbb{G}, g, h)$, and sk = p.
- Encryption: $\mathcal{E}(m, r) = g^m h^r$, for $m \in \mathbb{Z}_q$

• Decryption of c: compute $c^{p} = (g^{m}h^{r})^{p} = (g^{p})^{m}$, then extract the discrete logarithm in base g^{p} in \mathbb{G} . **PIR** 000 Privacy Definitions

EPIR ○○○○●○

Conclusion

Hamming Distance: BGN

BGN Encryption Schemes in \mathbb{G} and in \mathbb{G}^T

BGN Encryption Scheme in \mathbb{G}^{T}

- Keys: $pk = (n = pq, \mathbb{G}^T, G, H)$, and sk = p.
- Encryption: $\mathcal{E}'(m, r) = G^m H^r$, for $m \in \mathbb{Z}_q$
- Decryption of *C*, compute $C^{p} = (G^{m}H^{r})^{p} = (G^{p})^{m}$, Then extract the discrete logarithm in base G^{p} , in \mathbb{G}^{T} .

Properties

- additively homomorphic: \mathcal{E} in \mathbb{G} , and \mathcal{E}' in \mathbb{G}^T ;
- multiplicatively homomorphic into \mathbb{G}^T ;
 - \implies applies once only
- non-interactive zero-knowledge proofs of encryption of 0/1

[Groth-Ostrovsky-Sahai '06]

			< □ > < @ > < \(\begin{bmatrix}{c} + \(\begin{bmatrix}{c} +	\mathbf{E} $\mathcal{O} \mathcal{Q} \mathcal{O}$		
Biometric Authentication	PIR 000	Privacy Definitions	EPIR ○○○○○●	Conclusion O		
Hamming Distance: BGN						
BGN-based EPIR						

 \mathcal{U} wants to retrieve $f(R_i, X)$:

- \mathcal{U} encrypts/sends $c = \mathcal{E}(i)$ and $c_k = \mathcal{E}(X^{(k)})$, with NIZK.
- 2 \mathcal{DB} checks validity, computes C_j , for every $1 \le j \le N$:

$$m{\mathcal{C}}_j = \hat{m{e}}(m{c}/\mathcal{E}(j),m{g})^{r_j} imes \prod m_{j,k}^{w_k}$$

where, for every $1 \le k \le \ell$,

$$m_{j,k} = \hat{e}(c_k g^{R_j^{(k)}}, g) imes \hat{e}(c_k, g^{R_j^{(k)}})^{-2} = \mathcal{E}'(X^{(k)} \oplus R_j^{(k)})$$

Then, $\textit{C}_{j} = \mathcal{E}'\left(\textit{r}_{j} imes (\textit{i}-\textit{j}) + \sum \textit{w}_{k} imes (\textit{X}^{(k)} \oplus \textit{R}_{j}^{(k)})
ight)$

3 \mathcal{U} and \mathcal{DB} run a PIR: \mathcal{U} retrieves C_i , and extracts $f(R_i, X)$.

Biometric Au	uthentication	PIR 000	Privacy Definitions	EPIR 000000	Conclusion ○
Outli	ne				
1	 Biometric Aut Authentication Biometric Authentication 	henticati on uthenticati	on on		
2	Private Inform	ation Ret	trieval		
3	Privacy Defini	tions			
4	 Extended Priv Equality: EIC Hamming Di 	ate Infor i Gamal stance: B	mation Retrie	val	
5	Conclusion				
Biometric Au	uthentication	PIR 000	Privacy Definitions	 < □ ▶ < ⊡ ▶ < ⊡ ▶ < ≡ ▶ < ≡ ▶ EPIR 0000000 	≣ ৵৭.ে Conclusion ●

EPIR and Biometric Authentication

We have proposed a new generic primitive: Extended Private Information Retrieval

- this is a generalization of PIR/SFE
- it allows private computation of $f(R_i, x)$ for a client \mathcal{U}
 - for fields (R_1, \ldots, R_N) , private to \mathcal{DB}
 - for an input x and an index i, private to \mathcal{U}

with concrete examples for biometric authentication

- equality test (ElGamal): with the use of secure sketches
- Hamming distance (BGN): for iris biometrics