
RSA Laboratories’ CryptoBytes. Volume 5, No. 1 – Winter/Spring 2002, pages 9–19.

How to Encrypt Properly with RSA

David Pointcheval

Dépt d’Informatique, ENS – CNRS, 45 rue d’Ulm, 75230 Paris Cedex 05, France
E-mail: David.Pointcheval@ens.fr – URL: http://www.di.ens.fr/users/pointche

Abstract. In 1993, Bellare and Rogaway formalized the concept of a random oracle,
imported from complexity theory for cryptographic purposes. This new tool allowed
them to present several asymmetric encryption and signature schemes that are both
efficient and provably secure (in the random oracle model). The Optimal Asymmetric
Encryption Padding (OAEP) is the most significant application of the random ora-
cle model to date. It gives an efficient RSA encryption scheme with a strong security
guarantee (semantic security against chosen-ciphertext attacks). After Bleichenbacher’s
devastating attack on RSA–PKCS #1 v1.5 in 1998, RSA–OAEP became the natural
successor (RSA–PKCS #1 v2.0) and thus a de facto international standard. Surpris-
ingly, Shoup recently showed that the original proof of security for OAEP is incorrect.
Without a proof, RSA–OAEP cannot be trusted to provide an adequate level of security.
Luckily, shortly after Shoup’s discovery a formal and complete proof was found in joint
work by the author and others that reaffirmed the strong level of security provided by
RSA–OAEP. However, this new security proof still does not guarantee security for key
sizes used in practice due to the inefficiency of the security reduction (the reduction
to inverting RSA takes quadratic time). Recent alternatives to OAEP, such as OAEP+,
SAEP+, and REACT, admit more efficient proofs and thus provide adequate security for
key sizes used in practice.

1 Asymmetric Encryption

In 1978, Rivest, Shamir, and Adleman proposed the first candidate trapdoor permuta-
tion [30]. A trapdoor permutation primitive is a function f that anyone can compute
efficiently; however, inverting f is hard unless we are also given some “trapdoor” infor-
mation. Given the trapdoor information, inverting f becomes easy. Naively, a trapdoor
permutation defines a simple public key encryption scheme: the description of f is the
public key and the trapdoor is the secret key. Unfortunately, encryption in this naive
public key system is deterministic and hence cannot be secure, as discussed below.

Before we can claim that a cryptosystem is secure (or insecure) we must precisely
define what security actually means. The formalization of security notions started
around the time when RSA was proposed and took several years to converge (see [18]
for a survey on this topic). Today, the accepted security requirement for an encryption
scheme is called “semantic security against an adaptive chosen-ciphertext attack” [29]
or IND–CCA for short. To understand this concept we point out that security is always
defined in terms of two parameters: (1) the attacker’s capabilities, namely what the
attacker can do during the attack, and (2) the attacker’s goals, namely what the
attacker is trying to do.

1. Attacker’s capabilities: The strongest attacker capability in the standard model
is called “adaptive chosen-ciphertext attack” and is denoted by (CCA) [29]. This
means that the adversary has the ability to decrypt any ciphertext of his choice
except for some challenge ciphertext (imagine the attacker is able to exploit a
decryption box that will decrypt anything except for some known challenge ci-
phertext).

c© RSA Security Inc. 2002.



2

2. Attacker’s goal: The standard security goal is called “semantic security” [19] (also
known as “indistinguishability of ciphertexts”), and is denoted by (IND). Roughly
speaking, the attacker’s goal is to deduce just one bit of information about the
decryption of some given ciphertext. We say that a system is semantically secure if
no efficient attacker can achieve this goal. We note that a deterministic encryption
algorithm can never give semantic security.

An encryption scheme that is semantically secure under an adaptive chosen-cipher-
text attack is said to be IND–CCA secure. IND–CCA security implies that even with
full access to the decryption oracle, the attacker is not able to deduce one bit of
information about the decryption of a given challenge ciphertext. IND–CCA may seem
very strong, but such attacks are possible in some real world scenarios. In fact, CCA-
like attacks have been used to break practical implementations, as we will see later.
Furthermore, semantic security is required for high confidentiality, namely when the
message space is limited (such as “yes” or “no”, “buy” or “sell”). As a consequence,
IND–CCA is accepted as the required security level for practical encryption schemes.

One can obtain many other security notions by combining different attacker goals
with various attacker capabilities. For example, another security goal is called “non-
malleability” [15, 7]. Here the attacker is given some ciphertext and his goal is to build
another ciphertext such that the plaintexts are meaningfully related. Non-malleability
is known to be equivalent to semantic security under an adaptive chosen-ciphertext
attack [3]. For this reason, IND–CCA security is sometimes called non-malleability. Sim-
ilarly, one can also consider different attacker capabilities based on the oracles given
to the attacker [25, 29, 9, 20, 26]. As mentioned above, the most powerful attacker ca-
pability in the “classical” model is the decryption oracle itself, which decrypts any
ciphertext (except the challenge ciphertext). This “classical” model gives the cryp-
tographic engine to the adversary as a black box to which he can make queries and
receive correct answers in constant time. It thus excludes timing attacks [21], simple
and differential power analyses [22] as well, and other differential fault analyses [8, 12].

2 The RSA-based Cryptosystems

2.1 The Plain RSA

The RSA permutation, proposed by Rivest, Shamir and Adleman [30], is the most well
known trapdoor permutation. Its one-wayness is believed to be as strong as integer
factorization. The RSA setup consists of choosing two large prime numbers p and
q, and computing the RSA modulus n = pq. The public key is n together with an
exponent e (relatively prime to ϕ(n) = (p − 1)(q − 1)). The secret key d is defined to
be the inverse of e modulo ϕ(n). Encryption and decryption is defined as follows:

En,e(m) = me mod n Dn,d(c) = cd mod n.

This primitive does not provide by itself an IND–CCA secure encryption scheme. Under
a slightly stronger assumption than the intractability of the integer factorization, it
gives a cryptosystem that is only one-way under chosen-plaintext attacks – a very
weak level of security. Semantic security fails because encryption is deterministic.
Even worse, under a CCA attack, the attacker can fully decrypt a challenge ciphertext
C = me mod n using the homomorphic property of RSA:

En,e(m1) · En,e(m2) = En,e(m1m2 mod n) mod n.



3

To decrypt C = me mod n using a CCA attack do: (1) compute C ′ = C · 2e mod n,
(2) give C ′ (6= C) to the decryption oracle, and (3) the oracle returns 2m mod n from
which the adversary can deduce m.

To overcome RSA this simple CCA attack, practical RSA-based cryptosystems
randomly pad the plaintext prior to encryption. This randomizes the ciphertext and
eliminates the homomorphic property.

2.2 The RSA–PKCS #1 v1.5 Encryption

A widely deployed padding for RSA-based encryption is defined in the PKCS #1 v1.5
standard: for any modulus 28(k−1) ≤ n < 28k, in order to encrypt an ` byte-long
message m (for ` ≤ k − 11), one randomly chooses a k − 3 − ` byte-long random
string r (with only non-zero bytes). Then, one defines the k-byte long string M =
02‖r‖0‖m (see figure 1) which is thereafter encrypted with the RSA permutation,
C = M e mod n. When decrypting a ciphertext C, the decryptor applies RSA inversion
by computing M = Cd mod n and then checks that the result M matches the expected
format 02‖ * ‖0‖ * . If so, the decryptor outputs the last part as the plaintext.
Otherwise, the ciphertext is rejected.

020 m
more than 8 bytes

non-zero bytes

Fig. 1. PKCS #1 v1.5 Format

Intuitively, this padding seems sufficient to rule out the above weaknesses of the
plain RSA system, but without any formal proof or guarantee. Surprisingly, in 1998,
Bleichenbacher [9] showed that a simple active attack can completely break RSA–
PKCS #1. This attack applies to real systems such as a Web server using SSL v3.0.
These servers often output a specific “failure” message in case of an invalid ciphertext.
This enables an attacker to test whether the two most significant bytes of a challenge
ciphertext C are equal to ‘02’. If so, the attacker learns the following bound on the
decryption of C:

2 · 28(k−2) ≤ Cd mod n < 3 · 28(k−2).

Due to the random self-reducibility of the RSA permutation, in particular the
homomorphism Cse = M ese = (Ms)e mod n, the complete decryption of C can be
recovered after a relatively small number of queries. Only a few million queries are
needed with a 1024-bit modulus.

Bleichenbacher’s attack had an impact on many practical systems and standards
bodies, which suddenly became aware of the importance of formal security arguments.
Nevertheless, the weak PKCS #1 v1.5 padding is still used in the TLS protocol [33].
The TLS specification now appears to defend against Bleichenbacher’s attack using a
technique for which no proof of security has yet been published. Certain simple attacks
are still possible (for example, plaintext-checking attacks [26] can be easily run, even
if they seem ineffective). The lesson here is that standards should rely as much as
possible on fully analyzed constructions and avoid ad-hoc techniques.



4

3 The Optimal Asymmetric Encryption Padding

For some time, people have tried to provide security proofs for cryptographic protocols
in the “reductionist” sense [10]. To do so, one presents an algorithm that uses an
effective adversary as a sub-program to break some underlying hardness assumption
(such as the RSA assumption, or the intractability of the integer factorization). Such
an algorithm is called a “reduction”. This reduction is said to be efficient, roughly
speaking, if it does not require too many calls to the sub-program.

3.1 The Random Oracle Model

A few years ago, a new line of research started with the goal of combining provable
security with efficiency, still in the “reductionist” sense. To achieve this goal, Bel-
lare and Rogaway [4] formalized a heuristic suggested by Fiat and Shamir [16]. This
heuristic consisted in making an idealized assumption about some objects, such as
hash functions, according to which they were assumed to behave like truly random
functions. This assumption, known as the “random oracle model”, may seem strong,
and lacking in practical embodiments. In fact, Canetti et al. [13] gave an example of
a signature scheme which is secure in the random oracle model, but insecure under
any instantiation of the random oracle.

However, one can also consider random-oracle-based proofs under the assumption
that the adversary is generic, whatever the actual implementation of the hash function
or other idealized algorithms may be. In other words, we may assume that the adver-
sary does/can not use any specific weakness of the hash functions used in practice.
Thanks to this ideal assumption, several efficient encryption and signature schemes
have been analyzed [5, 6, 27].

We emphasize that even formal analyses in the random oracle model are not strong
security proofs, because of the underlying ideal assumption. They do, however, provide
strong evidence for security and can furthermore serve as the basis for quite efficient
schemes. Since people do not often want to pay more than a negligible price for security,
such an argument for practical schemes is more useful than formal security proofs for
inefficient schemes.

m 0k
r

G

H

s t

1

Fig. 2. OAEP Padding



5

3.2 Description of OAEP

At the time Bleichenbacher published his attack on RSA–PKCS #1 v1.5, the only
efficient and “provably secure” encryption scheme based on RSA was the Optimal
Asymmetric Encryption Padding (OAEP) proposed by Bellare and Rogaway [5]. OAEP

can be used with any trapdoor permutation f . To encrypt a message m using the
encryption scheme f–OAEP, first apply the OAEP procedure described in Figure 2
Here r is a random string and G, H are hash functions. The resulting values [s‖t] are
then encrypted using f , namely C = f(s, t).

Bellare and Rogaway proved that OAEP padding used with any trapdoor permuta-
tion f provides a semantically secure encryption scheme. By adding some redundancy
(the constant value 0k1 at the end of the message, as shown in Figure 2), they fur-
thermore proved it to be weakly plaintext-aware. Plaintext-awareness is a property
of encryption schemes in the random oracle model which means that there exists a
plaintext-extractor able to simulate the decryption oracle on any ciphertext (valid or
not) designed by the adversary. The weak part in the definition proposed by Bellare
and Rogaway was that the plaintext-extraction was just required to work while the
adversary had not received any valid ciphertext from any source. Unfortunately, the
adaptive chosen-ciphertext attack model gives the adversary a full-time access to the
decryption oracle, even after receiving the challenge ciphertext about which the ad-
versary wants to learn information. This challenge is a valid ciphertext. Therefore,
semantic security together with weak plaintext-awareness only implies the semantic
security against non-adaptive chosen-ciphertext attacks (a.k.a. lunchtime attacks [25],
or indifferent chosen-ciphertext attacks), where the decryption oracle access is limited
until the adversary has received the challenge ciphertext.

In 1998, Bellare, Desai, Rogaway and the author [3] corrected this initial definition
of plaintext-awareness, requiring the existence of a plaintext-extractor able to simulate
the decryption oracle on any ciphertext submitted by the adversary, even after seeing
some valid ciphertexts not encrypted by the adversary himself. This stronger definition
is a more accurate model of the real world, where the adversary may have access to
ciphertexts via eavesdropping. We furthermore proved that this new property (which
can only be defined in the random oracle model) actually provides the encryption
scheme with the strongest security level, namely semantic security against (adaptive)
chosen-ciphertext attacks (IND–CCA). However, no one ever provided OAEP with such
a new plaintext-extractor. Therefore, even if everybody believed in the strong security
level of OAEP, it had never been proven IND–CCA under the one-wayness of the
permutation alone.

3.3 The OAEP Security Analyses

In fact, the only formally proven security result about OAEP was its semantic security
against lunchtime attacks, assuming the one-wayness of the underlying permutation.
Until very recently OAEP was widely believed to also be IND–CCA.

Shoup’s Result Shoup [32] recently showed that it was quite unlikely that OAEP

is IND–CCA assuming only the one-wayness of the underlying trapdoor permutation.
In fact, he showed that if there exists a trapdoor one-way permutation g for which it
is easy to compute g(x ⊕ a) from g(x) and a, then OAEP cannot be IND–CCA secure
for an arbitrary trapdoor permutation f . Referring to this special property of g as
“XOR malleability”, let us briefly present Shoup’s counter-example. Let s‖t denote



6

the output of the OAEP transformation on a plaintext message m. Define the one-
way permutation f as f(s‖t) = s‖g(t). Then encrypting m using f–OAEP gives the
ciphertext C = [s‖g(t)].

What Shoup showed is that under these conditions the adversary can use C to
construct a ciphertext C ′ of a plaintext message m′ that is closely related to the
message m. In particular, for any string δ, the adversary can construct C ′ which is
the encryption of m′ = m⊕ δ. Thus, the scheme is malleable and hence not IND–CCA

– giving C ′ to the decryption oracle will reveal m′ = m⊕ δ, from which the adversary
can obtain m.

m 0k
r

G

H

s t

1 m 0k
r

G

H

s t

1

H H(s’)(s)

Fig. 3. Shoup’s Attack

To construct C ′, the idea is for the adversary to exploit the explicit appearance
of s in the ciphertext C. The adversary first computes s′ = s ⊕ ∆, where ∆ = δ‖0k1 ;
essentially, ∆ is simply a padded rendering of δ. The adversary then computes D =
H(s)⊕H(s′) using explicit knowledge of s and s′ and access to the random oracle for
H. Finally, by exploiting the “XOR malleability” of g, the adversary computes g(t ′),
where t′ = t ⊕ D. It is easy to see now that C ′ = s′‖g(t′) is a valid encryption of the
message m′. Hence, the non-malleability of f–OAEP is broken.

This observation shows that it is unlikely that one can prove that f–OAEP is IND–
CCA secure for arbitrary trapdoor permutations f by assuming only the one-wayness
of f .

Repairing the OAEP Proof of Security To construct a valid ciphertext C ′ in the
above attack it seems that the adversary has to query the hash function H at H(s).
But this seems to imply that given C the adversary can figure out the value s used
to create C (recall that s is the left hand side of f−1(C)). Thus, it appears that in
order to mount Shoup’s attack the adversary must be able partly to invert f – given
f(s, t), the adversary must be able to expose s.

We say f is partial-domain one-way if no efficient algorithm can deduce s from
C = f(s, t). For such trapdoor permutations f , one could hope that Shoup’s attack will
fail and that f–OAEP is IND–CCA secure. Fujisaki, Okamoto, Stern and the author [17]
formally proved this fact: If f is partial-domain one-way, then f–OAEP is IND–CCA

secure. We note that partial-domain one-wayness is a stronger property than one-
wayness: a function might be one-way but still not partial-domain one-way.

Fortunately, the homomorphic properties of RSA enable us to prove that the RSA
permutation is partial-domain one-way if and only if RSA is one-way. More precisely,



7

an algorithm that can expose half of RSA−1(C) given C can be used to completely
invert the RSA permutation. Altogether, this proves the widely believed IND–CCA

security of RSA–OAEP assuming that RSA is a trapdoor permutation. For security
parameters, and t (whose formal definitions are omitted here), we obtain the following
result [17]:

Let A be a CCA-adversary against the “semantic security” of RSA–OAEP

with running time bounded by t and advantage ε. Then, the RSA function
can be inverted with probability greater than approximately ε2/4 within time
bound 2t.

Unfortunately, the security reduction from an RSA-inversion into an attack is
quite inefficient for practical sizes (more precisely, it is quadratic in the number of
oracle queries). Hence, this reduction is meaningless unless one uses a modulus large
enough so that the RSA-inversion (or the factorization) requires much more than 2150

computational effort. With current factorization techniques [23, 14], one needs to use
a modulus of length more than 4096 bits to make the reduction meaningful (see [24]
for complexity estimates of the most efficient factoring algorithms). Viewed another
way, this reduction shows that a 1024-bit modulus just provides a provable security
level of 240, which is clearly inadequate given currently prevalent levels of computing
power. (We note, however, that this does not mean that there is an attack with this
low complexity, only that one cannot be ruled out by the available proofs of security.)

4 OAEP Alternatives

4.1 The OAEP+ Padding

Shoup also proposed a formal security proof of RSA–OAEP with a much more efficient
security reduction, but in the particular case where the encryption exponent e is equal
to 3. However, many people believe that the RSA trapdoor permutation with exponent
3 may be weaker than with greater exponents. Therefore, he also proposed a slightly
modified version of OAEP, called OAEP+ (see Figure 4), which can be proven secure
under the one-wayness of the permutation alone. It uses the variable redundancy
R(m, r) instead of the constant 0k1 . It is thus a bit more intricate than the original
OAEP. The security reduction for OAEP+ is efficient, but still runs in quadratic time.

H

s t

m r

rr

R

r

G

R(m,  )r

m R(m,  )r

G

m r

rr

R

m rR

s r

(m,  )r

OAEP+ padding SAEP+ padding

Fig. 4. OAEP+ and SAEP+ Paddings



8

4.2 SAEP+ Padding

Boneh [11] recently proposed a new padding scheme, SAEP+, to be used with the Rabin
primitive [28] or RSA. It is simpler than OAEP, hence the name Simplified Asymmetric
Encryption Padding: whereas OAEP is a two-round Feistel network, SAEP+ is a single-
round. SAEP+ has a linear time reduction for the Rabin system (i.e., e = 2). For larger
exponents, SAEP+ has a quadratic time reduction. Hence, for larger exponents (e > 2),
SAEP+ does not guarantee security for practical parameters (less than two thousand
bits).

4.3 The REACT Construction

Another alternative to OAEP is the REACT construction, proposed by Okamoto and
the author [26] (see Figure 5). It provides an IND–CCA encryption scheme from any

r

G

CC

m

RSA

H

C1 32

r

G

CC

m

RSA

H

C1 32

SymE

Basic encryption Hybrid encryption

Fig. 5. REACT

weakly secure one (more precisely, a one-way primitive, against plaintext-checking
attacks), such as the RSA primitive. Therefore, the RSA–REACT scheme is IND–CCA

secure under the RSA assumption.
Furthermore, the security reduction is very efficient, since it is in linear time with-

out any loss in the success probability, whatever the exponent. Consequently, it guar-
antees perfect equivalence with RSA inversion for moduli which require just a bit
more than 270 effort to be factored. This is the case for 1024 bit-long moduli, the
minimal currently advised key size. In comparison to previous proposals, REACT is
a full scheme and not just a pure padding applied to the message before the RSA
function.

Consequently, the ciphertext is a bit longer. However, even when used for key
transport, it allows integration of a symmetric encryption scheme (SymE) to achieve
very high encryption rates, as shown in the hybrid construction. In the specific case
of RSA, REACT can be optimized, as explained below.

4.4 Simple RSA

In an ISO report [31], Shoup suggested a possible alternative, based on ideas from
Bellare and Rogaway [4] that provide a secure encryption scheme from any trapdoor
one-way permutation f . Roughly speaking, “simple RSA”, as it is called, consists of
first encrypting a random string r using f to obtain C0 (thus C0 = re mod n), and
then parsing G(r) as k0‖k1, where G is some hash function (modeled by a random
oracle). Thereafter, one encrypts the message m using a symmetric encryption scheme



9

with the key k0 to get C1 (e.g., C1 = m ⊕ k0), and authenticates the ciphertext with
a MAC function H using the key k1 to get a tag T = H(k1, C1). The ciphertext is
the triple (C0, C1, T ). This construction is a special case of REACT, optimized for
RSA, and hence is IND–CCA under the RSA assumption. It provides a very efficient
linear time reduction. Moreover, thanks to the random self-reducibility of RSA (which
can only be used with this latter construction, but cannot with the OAEP and SAEP

variants), this construction provides a high security level even when encrypting many
plaintexts [1, 2].

5 Conclusion

RSA–OAEP is a practical RSA encryption scheme with provable security in the ran-
dom oracle model. For practical security, the cost of the reductions cannot simply be
shown to be polynomial time (as in asymptotical analyses), since the reduction effi-
ciency directly impacts the security parameters needed for the scheme. Hence, when
evaluating cryptographic constructions, one must take into account the efficiency of
the security proof. Inefficient proofs of security do not give security guarantees for real
world parameters.

Only OAEP with exponents 2 or 3, SAEP+ with exponent 2, and RSA–REACT (or
the optimization “simple RSA”) with any exponent, admit formal proofs with linear
time reductions in the random oracle model. Hence only these schemes guarantee
semantic security against chosen-ciphertext attacks for practical modulus sizes (even
less than 1024 bits). The provable security for other padding schemes is meaningful
only for much larger moduli (more than 4096 bits).

Acknowledgments

I warmly thank my co-authors, Mihir Bellare, Anand Desai, Eiichiro Fujisaki, Tat-
suaki Okamoto, Phil Rogaway and Jacques Stern for the interesting works we did on
asymmetric encryption, as well as Dan Boneh, Pierre-Alain Fouque, Victor Shoup and
Yves Verhoeven for the fruitful discussions we had.

References

1. O. Baudron, D. Pointcheval, and J. Stern. Extended Notions of Security for Multicast Public
Key Cryptosystems. In Proc. of the 27th ICALP, LNCS 1853, pages 499–511. Springer-Verlag,
Berlin, 2000.

2. M. Bellare, A. Boldyreva, and S. Micali. Public-key Encryption in a Multi-User Setting: Security
Proofs and Improvements. In Eurocrypt ’00, LNCS 1807, pages 259–274. Springer-Verlag, Berlin,
2000.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions of Security for
Public-Key Encryption Schemes. In Crypto ’98, LNCS 1462, pages 26–45. Springer-Verlag, Berlin,
1998.

4. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient
Protocols. In Proc. of the 1st CCS, pages 62–73. ACM Press, New York, 1993.

5. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt with RSA. In
Eurocrypt ’94, LNCS 950, pages 92–111. Springer-Verlag, Berlin, 1995.

6. M. Bellare and P. Rogaway. The Exact Security of Digital Signatures – How to Sign with RSA
and Rabin. In Eurocrypt ’96, LNCS 1070, pages 399–416. Springer-Verlag, Berlin, 1996.

7. M. Bellare and A. Sahai. Non-Malleable Encryption: Equivalence between Two Notions, and an
Indistinguishability-Based Characterization. In Crypto ’99, LNCS 1666, pages 519–536. Springer-
Verlag, Berlin, 1999.



10

8. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In Crypto

’97, LNCS 1294, pages 513–525. Springer-Verlag, Berlin, 1997.
9. D. Bleichenbacher. A Chosen Ciphertext Attack against Protocols based on the RSA Encryption

Standard PKCS #1. In Crypto ’98, LNCS 1462, pages 1–12. Springer-Verlag, Berlin, 1998.
10. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudorandom

Bits. SIAM Journal on Computing, 13:850–864, 1984.
11. D. Boneh. Simplified OAEP for the RSA and Rabin Functions. In Crypto ’01, LNCS 2139, pages

275–291. Springer-Verlag, Berlin, 2001.
12. D. Boneh, R. DeMillo, and R. Lipton. On the Importance of Checking Cryptographic Protocols

for Faults. In Eurocrypt ’97, LNCS 1233, pages 37–51. Springer-Verlag, Berlin, 1997.
13. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracles Methodology, Revisited. In Proc.

of the 30th STOC, pages 209–218. ACM Press, New York, 1998.
14. S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy, H. te Riele,

K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand, F. Morain, A. Muffett, Ch. Putnam,
Cr. Putnam, and P. Zimmermann. Factorization of a 512-bit RSA Modulus. In Eurocrypt ’00,
LNCS 1807, pages 1–18. Springer-Verlag, Berlin, 2000.

15. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing,
30(2):391–437, 2000.

16. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions of Identification and Signature
Problems. In Crypto ’86, LNCS 263, pages 186–194. Springer-Verlag, Berlin, 1987.

17. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA–OAEP is Secure under the RSA
Assumption. In Crypto ’01, LNCS 2139, pages 260–274. Springer-Verlag, Berlin, 2001.

18. O. Goldreich. On the Foundations of Modern Cryptography. In Crypto ’97, LNCS 1294, pages
46–74. Springer-Verlag, Berlin, 1997.

19. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences,
28:270–299, 1984.

20. C. Hall, I. Goldberg, and B. Schneier. Reaction Attacks Against Several Public-Key Cryptosys-
tems. In Proc. of ICICS ’99, LNCS, pages 2–12. Springer-Verlag, 1999.

21. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In Crypto ’96, LNCS 1109, pages 104–113. Springer-Verlag, Berlin, 1996.

22. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Crypto ’99, LNCS 1666, pages
388–397. Springer-Verlag, Berlin, 1999.

23. A. Lenstra and H. Lenstra. The Development of the Number Field Sieve, volume 1554 of Lecture

Notes in Mathematics. Springer-Verlag, 1993.
24. A. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. In PKC ’00, LNCS 1751, pages

446–465. Springer-Verlag, Berlin, 2000.
25. M. Naor and M. Yung. Universal One-Way Hash Functions and Their Cryptographic Applications.

In Proc. of the 21st STOC, pages 33–43. ACM Press, New York, 1989.
26. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosystem

Transform. In CT – RSA ’01, LNCS 2020, pages 159–175. Springer-Verlag, Berlin, 2001.
27. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures.

Journal of Cryptology, 13(3):361–396, 2000.
28. M. O. Rabin. Digitalized Signatures. In R. Lipton and R. De Millo, editors, Foundations of

Secure Computation, pages 155–166. Academic Press, New York, 1978.
29. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen

Ciphertext Attack. In Crypto ’91, LNCS 576, pages 433–444. Springer-Verlag, Berlin, 1992.
30. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public

Key Cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.
31. V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption, december 2001. ISO/IEC

JTC 1/SC27.
32. V. Shoup. OAEP Reconsidered. In Crypto ’01, LNCS 2139, pages 239–259. Springer-Verlag,

Berlin, 2001.
33. T. Dierks and C. Allen. The TLS Protocol, january 1999. RFC 2246

Available from http://www.ietf.org/rfc.html.


