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Abstract. For two years, public key encryption has become an essential topic in cryp-
tography, namely with security against chosen-ciphertext attacks. This paper presents
a generic technique to make a highly secure cryptosystem from any partially trapdoor
one-way function, in the random oracle model. More concretely, any suitable problem
providing a one-way cryptosystem can be efficiently derived into a chosen-ciphertext se-
cure encryption scheme. Indeed, the overhead only consists of two hashing and a XOR.
As application, we provide the most efficient El Gamal encryption variant, therefore
secure relative to the computational Diffie-Hellman problem. Furthermore, we present
the first scheme whose security is relative to the factorization of large integers, with a
perfect reduction (factorization is performed within the same time and with identical
probability of success as the security break).

Keywords: Public Key Encryption Schemes, Semantic Security, Chosen-Ciphertext
Attacks, Partially Trapdoor One-Way Functions

1 Introduction

1.1 Background

In 1976, Diffie and Hellman [13] proposed the concept of public-key cryptog-
raphy, and namely of public-key encryption using trapdoor one-way functions.
However, despite research efforts of many cryptographers, very few practical
cryptosystems have been proposed.

In the mean time, a lot of security notions have been proposed, from one-
wayness, where the attacker tries to recover the whole plaintext given the ci-
phertext and only public data, to non-malleability under chosen-ciphertext at-
tacks [14, 32, 6], where the attacker tries to derive a new ciphertext, whose plain-
text is meaningfully related to the original one, with access to the decryption
algorithm.

More recently, a general study of security notions [2] has been driven, leading
to the conclusion that all those notions are equivalent under chosen-ciphertext
attacks, which we regroup under the name of “chosen-ciphertext security”. It
therefore represents the most powerful of the practical security notions, just un-
der the theoretical notion of plaintext-awareness, only defined in the random
oracle model (see [4, 2] for more details). For a long time, one-wayness or even
just heuristic security of an encryption scheme have been considered enough.
Semantic security [18]/non-malleability [14] were just seen as theoretical prop-
erties, for people from the complexity theory. But after the numerous practi-
cal attacks, namely the recent Bleichenbacher’s [9], Coron-Naccache-Stern’s and
Coppersmith-Halevi-Jutla’s [11, 10] ones, provable security has been realized to
be of important interest for many applications. Therefore, chosen-ciphertext se-
curity has become a requirement for encryption schemes.
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1.2 Related Work

The reason of this small number of candidates as secure cryptosystems relies on
the fact that hardly satisfied properties are required. And even with a well-suited
problem, a cryptosystem is not easily derived and does not necessarily lead to
an efficient resulting scheme.

Before 1994, only theoretical and impractical schemes were proposed [22,
32]. Then Bellare and Rogaway [4] designed a generic padding, called Optimal
Asymmetric Encryption Padding, to make a chosen-ciphertext secure cryptosys-
tem from any trapdoor one-way permutation. However, such permutations are
very rare: indeed, RSA [33] is the only one (with the recently proposed, at
last PKC ’99, by Paillier [26], but also based on the RSA assumption). There-
fore OAEP–RSA has been a long time the only practical cryptosystem secure
against chosen-ciphertext attacks. Then it has been incorporated in SET, the
Secure Electronic Transaction system [19] proposed by VISA and Master Card,
and has become the new RSA encryption standard PKCS #1 v2.0 [34].

The last few years, many new schemes has been proposed with proven secu-
rity relative to decisional problems:

– the decisional Diffie-Hellman problem [13]: at PKC ’98, Tsiounis–Yung [38]
proposed the first El Gamal [15] based cryptosystem, but using an unproven
assumption about the unforgeability of Schnorr’s Signatures [35]. The same
year, Shoup–Gennaro [37] and Cramer–Shoup [12] proposed other variants,
the latter is even secure in the standard model.

– the decisional dependent–RSA problem: the author of this work [29, 30] pro-
posed schemes based on a new problem, called the dependent–RSA prob-
lem. Some variants have also been proven chosen-ciphertext secure relative
to RSA, which became the first alternative to the OAEP–RSA.

– the higher residuosity [7, 8]: Paillier–Pointcheval [28] proposed a variant of
the Paillier’s scheme [27], whose main interest is the efficiency of the decryp-
tion process.

However, those schemes came one by one, with new and specific intricate proofs
of security for each. Last year, at PKC ’99, Fujisaki–Okamoto [16] proposed a
second generic transformation. This very simple transformation enhances the
security of any public-key encryption scheme in the random oracle model: from
a semantically secure scheme (against just chosen-plaintext attacks), it makes
a chosen-ciphertext secure scheme. It may be applied to many, more or less
recently proposed, schemes also based on above decisional problems [18, 15, 21,
24]. In other words, any trapdoor decisional problem can be derived into chosen-
ciphertext secure schemes.

However, decisional problems generally rely on strong assumptions, whereas
one-way schemes are based on weaker ones, such as the classical computational
problems: RSA [33], Diffie-Hellman [15], factorization [24], classes of residuos-
ity/partial discrete logarithm [27]), etc. Indeed, computational problems are
clearly more difficult to solve and are moreover more numerous than decisional
ones.
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At last crypto, Fujisaki–Okamoto [17] improved their generic transforma-
tion, to make security related to the computational problem instead of just the
decisional one.

1.3 Outline of the Paper

The present research, independently driven from the Fujisaki–Okamoto [17]
work, reaches a similar result but with more efficient reductions: it presents
the most efficient and general transformation. Indeed, it allows to make chosen-
ciphertext secure schemes from any one-way encryption scheme: for any one-way
function, if a trapdoor allows to get back a part of the preimage, one can base a
chosen-ciphertext secure encryption scheme on the relying computational prob-
lem.

More concretely, from any one-way encryption scheme (which is the weakest
requirement one can make about an encryption scheme) and just two more
hashing, one can make a highly secure cryptosystem relying only on the same
assumption as the one-wayness of the original scheme, which is generally a really
difficult computational problem (at least more difficult than just decisional ones).

We then apply this generic transformation to many well-known one-way func-
tions to provide the best schemes of their families: the most efficient scheme
based on the computational Diffie–Hellman problem and the first scheme as
secure as factorization.

2 Security Notions for Public Key Encryption

2.1 Definitions

The first common security notion that one would like an encryption scheme
to satisfy is the one-wayness: with just public data, an attacker can not get
back the whole plaintext of a given ciphertext. This notion was satisfied by the
RSA cryptosystem [33], relative to the RSA assumption, and by the El Gamal
encryption scheme [15], relative to the computational Diffie–Hellman problem.
Many applications require more from an encryption scheme, namely

– semantic security (a.k.a. polynomial security/indistinguishability of encryp-
tions [18]): if the attacker has some information about the plaintext, for
example that it is either “yes” or “no” to a crucial query, she should not
learn more with the view of the ciphertext. It is computationally impos-
sible to distinguish between two messages which one has been encrypted.
This implies encryption schemes to be probabilistic, such as the El Gamal
scheme [15], but not like RSA [33].

– non-malleability [14]: for the problem of encrypted bids, an attacker may
just want to under-bid a ciphertext of an unknown amount, without learning
anything about this amount or her own proposition. This property has been
formally defined under the notion of non-malleability [14, 6]: from a given
ciphertext any attacker can not derive a new ciphertext in such a way that
the plaintexts underlying the two ciphertexts are meaningfully related.
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On the other hand, an attacker can play many kinds of attacks: she may just
have access to public data, and then encrypt any plaintext of her choice (chosen-
plaintext attacks) or moreover query the decryption algorithm (adaptively/non-
adaptively chosen-ciphertext attacks [22, 32]).

A general study of these security notions has been recently driven [2], we
therefore refer the reader to this paper for more details, concluding with a com-
plete hierarchy. More precisely, semantic security and non-malleability are equiv-
alent in the adaptively chosen-ciphertext scenario, which defines the strongest
practical security notion. In what follows, we call it “chosen-ciphertext security”.

2.2 Model of Security

For the last few years, after the numerous attacks against unprovable schemes,
provable security has been realized to be of greatest interest. Such a proof is
led in the complexity theory setting: one tries to polynomially reduce a well-
established difficult problem to an attack. Therefore, an efficient attacker would
help to solve the difficult problem: this leads to a contradiction.

Very few schemes have been proven using only such polynomial reductions,
without any other assumption. Furthermore, they hardly reach efficiency. The
last years, the so-called “random oracle model” [3] has boosted researches, pro-
viding an interesting tool in proving the security of very efficient schemes. Indeed,
this model, where some concrete cryptographic objects are idealized, namely the
hash functions which are assumed to be really random ones, helped to provide se-
curity proofs for many encryption schemes [3, 4, 37, 29, 25, 16, 17, 28] and digital
signature schemes [5, 23, 31].

3 The New Construction

Our new construction can be applied from any partially trapdoor one-way injec-
tive function, and not just from fully trapdoor one-way permutations [4] or al-
ready semantically secure encryption schemes [16]. This long sentence “partially
trapdoor one-way injective function” is nothing else than a classical encryp-
tion scheme which is secure in the weakest sense, just one-way against chosen-
plaintext attacks.

Then, in order to formalize notations, we first define this notion of partially
trapdoor one-way functions, which informally characterizes one-way functions
for which a trapdoor allows a partial recovery of a preimage.

3.1 Partially Trapdoor One-Way Function

Let us consider any function f , from the product space X × Y into Z.

Definition 1 (One-Way). The function f is said to be one-way if, for any
given z = f(x, y), it is computationally impossible to get back the couple (x, y).
More formally, for any polynomial time adversary A, its success SuccA, defined
by SuccA = Prx,y[f(A(f(x, y))) = f(x, y)], is negligible.
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Whereas we will use the above denomination in the rest of the paper, our result
will deal with an even weaker notion of one-wayness, where an adversary should
not only have to invert with non-negligible probability of success, but she should
also have to rarely output wrong solutions. Of course, she is allowed to output
“Reject” when she can not solve the problem.

Definition 2 (Weakly One-Way). The function f is said to be weakly one-
way if, it is either one-way or, for any polynomial time adversary A, its error
probability, defined by

ErrA = Pr
x,y

[f(u, v) 6= f(x, y) | A(f(x, y)) 6= “Reject′′ ∧ (u, v) = A(f(x, y))],

is non-negligible.

It is a weaker assumption about a problem. Indeed, an adversary may be able
to return a correct answer half the time, and therefore break “one-wayness”.
But the other half of answers can be junk, which can not be detected if the
decisional problem is also difficult (such as the Diffie-Hellman problem [13], the
Residuosity problem [7, 8, 24, 21, 27], etc).

Definition 3 (Trapdoor). A (weakly) one-way function is said to be trapdoor,
if for some extra information (the trapdoor), for any given z ∈ f(X × Y), it is
easily possible to get back a couple (x, y) such that f(x, y) = z. Whereas it was
computationally impossible without the trapdoor.

As already remarked, such functions which also need to be injective for cryp-
tographic use are very rare (just RSA, and some few related ones), but they
are required to apply OAEP [4]. This relativizes the practical impact of the
OAEP-transformation.

However, for encryption purpose, it is not required to get back the whole
preimage of z, it is the reason why we define the new partially trapdoor one-way
notion which is more common (see El Gamal [15], or more recently Okamoto–
Uchiyama [24], Naccache–Stern [21] and Paillier [27]).

Definition 4 (Partially Trapdoor One-Way). The function f is said to be
partially trapdoor one-way if,

– for any given z = f(x, y), it is computationally impossible to get back an
available x. Such an x is called a partial preimage of z.
More formally, for any polynomial time adversary A, its success, defined
by SuccA = Prx,y[∃y

′, f(x′, y′) = f(x, y) | x′ = A(f(x, y))], is negligible. It
is one-way even for just finding partial-preimage, thus partial one-wayness.

– for some extra information, for any given z ∈ f(X ×Y), it is easily possible
to get back an x, such that there exists a y which satisfies f(x, y) = z. The
trapdoor does not allow a total inversion, but just a partial one, it is thus
called a partial trapdoor.

Definition 5 (Partially Trapdoor Weakly One-Way). The function f is
said to be partially trapdoor weakly one-way if it is partially trapdoor one-way



6

but furthermore, for any polynomial time adversary A, either its success SuccA
is negligible or its error probability, defined by

ErrA = Pr
x,y

[∀y′, f(x′, y′) 6= f(x, y) | A(f(x, y)) 6= “Reject′′∧(x′, y′) = A(f(x, y))],

is non-negligible. It is weakly one-way even for just finding partial-preimage,
thus partial one-wayness.

Such partially trapdoor (weakly) one-way functions, moreover injective, are of
common use in many cryptosystems, however they usually only provide the
“one-wayness” of the encryption scheme, which is a very weak property for a
cryptosystem. Whereas even semantic security against chosen-plaintext attacks
relies on much stronger assumptions or is simply not provable/achieved. Let us
briefly recall some of them.

3.2 Some Partially Trapdoor One-Way Injective Functions

The Diffie-Hellman Problem. The most popular encryption scheme based
on a partially trapdoor one-way function is the El Gamal cryptosystem [15]
based on the Diffie-Hellman distribution key problem [13].

– The Computational Diffie-Hellman Problem: given g, ga and gb in a group
G, compute gab.

– The Decisional Diffie-Hellman Problem: given g, ga, gb and gc in a group G,
decide whether gc = gab or not.

– The El Gamal encryption scheme: given a message m (theoretically in G),
a ciphertext is a pair (ga, ya ·m), where y = gb is the public key, while b is
kept secret.

Computing gab just given ga and gb is assumed impossible (Computational Diffie-
Hellman Problem), whereas given b, it only consists of an exponentiation. Then
the partially trapdoor one-way function is the following, where y = gb, and q
the order of g:

f : G×
�

q −→G×G g : G×G−→G
(m, a) 7−→ (ga, ya ·m) (x, z) 7−→m = z/xb

The one-wayness of the El Gamal encryption scheme clearly relies on the partial
one-wayness of this function, without the knowledge of b: the Computational
Diffie-Hellman Problem, which is almost as difficult as the discrete logarithm
problem [20]. However, semantic security requires a much stronger assumption,
the Decisional Diffie-Hellman one.

The Partial Discrete Logarithm Problem. More recently, at Crypto ’98,
Okamoto–Uchiyama [24], at ACM CCS ’98, Naccache–Stern [21] and, at Euro-
crypt ’99, Paillier [27] proposed new encryption schemes based on trapdoor dis-
crete logarithms. More precisely, a trapdoor (the factorization of the composite
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modulus) allows to partially compute discrete logarithms. The encryption pro-
cess puts the message to be encrypted in this recoverable part. The one-wayness
of those schemes relies on the factorization, the higher residues and the partial
discrete logarithms respectively. However, the semantic security (even against
chosen-plaintext attacks) relies on higher residues [7, 8], a weaker problem than
factorization and even RSA [27].

The aim of this work is to provide a generic transformation to make any
encryption scheme, whose one-wayness is provable, semantically secure even
against adaptively chosen-ciphertext attacks, adding just the random oracle as-
sumption.

3.3 Generic Construction

Let us consider such a partially trapdoor one-way injective function f , from the
product space X × Y into Z, and we denote by g its partial invert:

f : X × Y −→Z g : Z −→X
(x, y) 7−→ z z 7−→ x s.t. ∃y ∈ Y, z = f(x, y)

We furthermore need two functions, a hash function H and a generator func-
tion G, both assumed to be ideal random functions [3], where k is a security
parameter:

H : {0, 1}k → Y G : X → {0, 1}k.

The names, “hash” and “generator” functions, come from the fact that, in prac-
tice, X and Y will be of similar size, but maybe smaller than {0, 1}k. The cryp-
tosystem is designed in Figure 1, with k = k0 + k1, where k0 and k1 denote the
lengths of the messages to be encrypted and the error-parameter respectively.
Moreover, [M ]k0 denotes the truncation of the bit-string M to its k0 left bits.

Encryption of m ∈ M = {0, 1}k0 → (a,b)
r ∈ X and s ∈ {0, 1}k1 are randomly chosen

a = f(r, H(m‖s))
b = (m‖s)⊕G(r)

−→ (a, b) is the ciphertext

Decryption of (a,b)
Given a ∈ Z and b ∈ {0, 1}k

r = g(a)
M = b⊕G(r)

if a = f(r, H(M))
−→ m = [M ]k0 is the plaintext
otherwise, “Reject: invalid ciphertext”

Fig. 1. Our Generic Construction Encf

Concerning this scheme, called Encf , we show that, under some assumptions
about the function f , an attacker against semantic security under an adaptively
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chosen-ciphertext attack can be used to efficiently simulate g, and thus partially
invert the one-way function f without the trapdoor information, which is com-
putationally impossible under the partially trapdoor one-way assumption for the
function f .

In what follows, X and Y denote the sizes of X and Y respectively, whereas
qG, qH and qD denote the numbers of queries asked to the random oracles G and
H and to the decryption oracle D, respectively.

Lemma 6. Let us consider an attacker A against the semantic security of Encf

in a chosen-plaintext scenario. If we denote by ε the advantage of this attacker,
one can design an algorithm B that outputs, for any given z, a set S of values
such that a partial preimage of z is in S with probability greater than ε−qH/2k1.

Proof. Let us consider an adversary A = (A1, A2) against the semantic security
of this scheme, where A1 denotes the “find”-stage and A2 the “guess”-stage. We
then use this adversary to construct a machine B able to output candidates as
partial preimages of f . Let z be a given value in Z for which we want to find
the partial preimage in X . Our machine B works as follows:

– It first runs the attacker A1 where any query to the oracles G and H are
intercepted. For any new query q asked to the oracle H, B chooses a random
Hq in Y and outputs it as the value H(q). The same way, for any new query
q asked to the oracle G, B chooses a random Gq in {0, 1}k and outputs it as
the value G(q). The attacker A1 finally outputs two messages m0 and m1.
Our machine B chooses a random bit c and a random string b ∈R {0, 1}

k,
then it defines a = z and outputs (a, b) as an encryption of mc.

– The attacker A2 is fed with this ciphertext (a, b), and queries to oracles are
again intercepted and answered as above.

– When the attacker returns its answer d, our machine B returns the set S of
all the queries asked to the oracle G during the whole attack.

Now, let us assume that z = f(x, y) for some (x, y). Because of injectivity, if
such a pair exists, it is unique. We consider the game presented in Figure 2,
where some values of the oracle are defined, if they have not already been. We
define the following events:

– AskG, the query x is asked to G;
– AskH, a query m‖s is asked to H, for some message m ∈ M, but the specific

value s chosen at the beginning of the game.

We say that the attacker wins the game if some of both events occur or if, at
the end, the value d returned by A2 is equal to c. Then the advantage of the
attacker is defined by Adv = 2 Pr[wins]− 1.

With a random simulation of G and H, as described above, it is clear that this
game perfectly simulates the real life excepted the unlikely case where x or mc‖s
have already been asked to G or H respectively during the find stage (before
their assignment). But this case makes the attacker to win in our game, then
Adv ≥ AdvA = ε. However, since no advantage can be gained by the adversary
without AskG nor AskH, by splitting the game in two cases, depending on both
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For a given z = f(x, y)

a
def
= z, c

R
← {0, 1}, s

R
← {0, 1}k1, b

R
← {0, 1}k

all the calls to G and H are intercepted
if AskG or AskH the game stops and the attacker wins

m0, m1 ← AG,H
1 (pk)

H(mc‖s)
def
= y and G(x)

def
= b⊕mc‖s

d← AG,H
2 (a, b)

if d = c the attacker wins

Fig. 2. The Game

events AskG and AskH, one obtains that Pr[wins] ≤ 1
2
× (1 + Pr[AskG ∨ AskH]).

Finally, this leads to Pr[AskG ∨ AskH] ≥ ε.
Another remark that one can do is that AskH is very unlikely without AskG

since it is the only way to gain information about s. More precisely,

Pr[AskH | ¬AskG] ≤
qH

2k1
.

Finally, one can conclude that ε ≤ Pr[AskG] + Pr[AskH | ¬AskG], and therefore

Pr[AskG] ≥ ε−
qH

2k1
.

This means that with probability greater than ε− qH/2k1 , x lies in the set S of
queries asked to the oracle G. ut

Thanks to an easy simulation (a plaintext-extractor [4]), one can state the fol-
lowing result.

Theorem 7. Let us consider an attacker A against the semantic security of
Encf in a chosen-ciphertext scenario. If we denote by ε the advantage of this
attacker, one can design an algorithm B that outputs, for any given z, a set S
of values such that a partial preimage of z is in S with probability greater than

ε−
(qD + 1)qH

2k1
−

qD

Y
.

Proof. Since we have the semantic security against chosen-plaintext attacks, we
just have to provide a plaintext-extractor [4], to prove the plaintext-awareness
of this scheme which implies security against chosen-ciphertext attacks [2]. The
plaintext-extractor is a simulator of the decryption oracle. For a given ciphertext
(a, b), it works as follows: the simulator S considers all the query-answer pairs
(r, Gr) obtained from G, and computes for each M = b ⊕ Gr. If for some M ,
f(r, H(M)) is equal to a, which can hold for one pair at most, because of the
injectivity of f , m = [M ]k0 is returned. Otherwise, the ciphertext is considered
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as an invalid one, and therefore rejected. Remark that to obtain the above value
H(M), one uses the previously described simulation of H.

With this decryption simulation, it is clear that only valid ciphertexts will
be decrypted. But will all valid ciphertexts be decrypted? Definitely not, since a
valid ciphertext can be produced without asking G(r). But since f is an injection,
at most one value for H(m‖s) can be accepted: y, if a = f(r, y).

Pr[valid | ¬AskG] = Pr[valid ∧ AskH | ¬AskG] + Pr[valid ∧ ¬AskH | ¬AskG]

≤ Pr[AskH | ¬AskG] + Pr[valid | ¬AskH ∧ ¬AskG]

≤
qH

2k1
+

1

Y
.

Finally, the probability of wrong decryption (rejection of valid ciphertext) is
upper-bounded by 1/Y + qH/2k1. Therefore, the probability to get no wrong
decryption during the attack is lower-bounded by

(

1−
1

Y
−

qH

2k1

)qD

≥ 1−
qD

Y
−

qHqD

2k1
,

which concludes the proof. ut

Remark 8. As one can remark, if Y is too small, which can even be empty in the
case of a fully trapdoor function, and therefore Y not exponentially large, above
result is meaningless. However, one can easily extend Y: let f be a partially trap-
door one-way function f : X × Y −→ Z, for any ` one defines Y ` = Y × {0, 1}`

and Z` = Z × {0, 1}` as well as

f` : X × Y` −→ Z`

(x, (y||r)) 7−→ f(x, y)||r

Then, with no computational extra cost, one exponentially increases the size of
the set Y: Y` = Y ·2`. However, in many cases, such extensions are not required.

Depending on the kind of problem, even the weak one-wayness can be really
broken with various efficiency. However, with no particular extra property, ran-
domly choosing x in the set S, one can just break one-wayness, and then state
the “General Case Theorem”.

Theorem 9 (The General Case). Let us consider an attacker A against the
semantic security of Encf in a chosen-ciphertext scenario. If we denote by ε the
advantage of this attacker, one can design an algorithm B that returns, for any
given z, a candidate as partial preimage of z by f which is correct with probability
greater than

1

qG

×

(

ε−
qH(qD + 1)

2k1
−

qD

Y

)

.

However, mathematical problems used in cryptography very often also satisfy
a strong random self-reducible property (RSA, Diffie-Hellman, etc): from any
instance can be derived a random instance whose solution easily provides a so-
lution to the initial instance, using a strong ring-homomorphic reduction, where
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a strong ring is a ring whose cardinality only possesses large prime factors.
This is usually the case, since the ring is generally, either a large prime field
(Diffie-Hellman problem) or a

�
n-ring, where n is an RSA-modulus (n = pq,

RSA, residuosity, partial discrete logarithm [27]) or at least difficult to factor
(n = p2q [24]).

Such problems, as any random self-reducible problem, have the particularity
to be uniformly difficult (or easy), there is no worst case nor best case but just
average ones. For a strong random self-reducible problem, one can then state an
improved result. It is derived from a generalization of the Shoup’s theorem [36]
about the faulty Diffie-Hellman oracles.

Lemma 10. Let us consider a (k, δ)-oracle A for a strong random self-reducible
problem, which returns a list of k candidates that actually contains the solution
with probability greater than δ > 7/8. We can construct a probabilistic algorithm
that breaks the weak one-wayness of the problem with the following properties.
For given ` ∈ � , the algorithm makes 24` queries to the oracle A and performs
O(` · k) self-reductions. For all inputs, the output is correct with probability at
least 1− 2−`.

Proof. With a strong random self-reducible partially one-way problem denoted
by f : X × Y −→ Z, the structure (X , +, ∗) is a strong ring, of size X, and
there exists a function R : Z × X × X −→ Z, which is invertible for any fixed
second and third parameters. The function R maps any instance in Z into a
random one, using random elements r+, r∗ in X , in such a way that the solution
of the resulting instance x′ is related with the solution of the initial instance x
by x′ = x ∗ r∗ + r+. We assume that p, the smallest prime factor of X, is large
enough and namely that k2 < p/8.

For a given instance z ∈ Z, one runs twice the oracle A: once to find can-
didates, and a second time to check which one is correct. First, with input z,
whose solution is x, it gets (x1, . . . , xk). Then, with input z′ = R(z, r1, r2), for
some random r1, r2, whose solution is x′ = x ∗ r1 + r2, it gets (x′

1, . . . , x
′
k). If a

right solution is found in both lists, then x = xi and x ∗ r1 + r2 = x′
j for some

(i, j). Therefore, for some pair (i, j),

x′
j = xi ∗ r1 + r2. (1)

Now, let us assume that, xi 6= x, then the probability that above equality (1)
holds is at most the conditional probability that for random elements r1 and r2,
x′

j = xi ∗ r1 + r2, given x′ = x ∗ r1 + r2. This is equal to the probability that
for fixed x′ and random r, x′

j = (xi − x) ∗ r + x′. Thanks to Shoup’s Lemma 1,
in [36], one knows that this latter is at most 1/p.

Then, our algorithm either outputs xi, if exactly one pair (i, j) satisfies equal-
ity (1), or reports failure. And therefore, three exclusive events may happen:
(F) failure, (I) incorrect output, (C) correct answer. Pr[F ] + Pr[I] is upper
bounded by the probability that one of the lists does not contain the correct
output or that an extraneous relation (1) holds. This occurs with probability
bounded by 1/8 + 1/8 + k2/p ≤ 3/8. However, incorrect output can just occur
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when at least one of lists does not contain the correct output: Pr[I] ≤ 1/8+1/8 =
1/4. Then it follows that Pr[C] ≥ 1− 3/8 > 5/8. Therefore

(Pr[C] + Pr[I])/ Pr[I] = 1 + Pr[C]/ Pr[I] ≥ 1 + (5/8)/(1/4) = 7/2.

Finally, we obtain that Pr[F ] ≤ 3/8 and Pr[C | ¬F ] ≥ 5/7.
Now, let us run this algorithm 12` times, on randomly self-reduced instances,

and output the majority of the non-failure answers. On average, we get more than
u = 7.5` answers. The probability of error is upper-bounded by the probability
to get more than v = u/2 incorrect answers among the u ones:

Pr[error]≤
u

∑

r=v+1

(

u

r

) (

2

7

)r (

5

7

)u−r

=

(

5

7

)u

×
u

∑

r=v+1

(

u

r

) (

2

5

)r

≤

(

25

49

)v (

2

5

)v+1

×

v
∑

r=0

(

u

r + v + 1

) (

2

5

)r

≤
2

5
×

(

10

49

)v

×

v
∑

r=0

(

u

r + v + 1

)

≤
2

5
×

(

10

49

)v

×
2v

2
≤

2

5
×

(

40

49

)v

Finally, this probability is upper-bounded by (1/2)`, since v = 15`/4. ut

Theorem 11 (The Strong Random Self-Reducible Problem Case). Let
us consider an attacker A against the semantic security of Encf in a chosen-
ciphertext scenario running within a time bound T . If we denote by ε the advan-
tage of this attacker, one can design an algorithm B that returns, for any given
z, a partial preimage of z by f in an expected time bounded by 21`T/δ, with a
negligible probability of error upper-bounded by 2−`, for any parameter `, where

δ =

(

ε−
qH(qD + 1)

2k1
−

qD

Y

)

≈ ε.

Proof. It is an easy corollary of above lemma. Indeed, if one runs 7/8δ times
the general reduction (with randomly self-reduced instances), collecting all the
output sets, the global set contains the correct solution with probability greater
that 7/8. ut

Another situation may exist where the verification of the rightness of the candi-
date is easy. In this case, the efficiency of the reduction is much better. Indeed,
from the list of candidates, one has just to check if one of them is the solution.

Theorem 12 (The Easy Verifiable Case). Let us consider an attacker A
against the semantic security of Encf in a chosen-ciphertext scenario. If we de-
note by ε the advantage of this attacker, one can design an algorithm B which
runs within almost the same time and outputs a partial preimage by f of any
given z with probability greater than ε− (qH(qD + 1))/2k1 − qD/Y .

4 Applications

Let us apply this result to some encryption schemes to make provide semantic
security, even against adaptively chosen-ciphertext attacks in the random ora-
cle model, without any more assumption than the one-wayness of the original
encryption scheme.



13

4.1 The El Gamal Encryption Scheme

If one applies our transformation to the famous El Gamal encryption scheme [15],
which means to the Diffie-Hellman problem, one gets the scheme presented in
Figure 3, together with the following security properties. As previously seen, the

G = 〈g〉 of order q
H : {0, 1}k →

�
q and G : G → {0, 1}k

Secret Key: x ∈
�

q

Public Key: y = gx

Encryption
r ∈R G and s ∈R {0, 1}

k1

d = H(m‖s)

Enc(m, r‖s) =







a = gd

b = yd · r
c = (m‖s)⊕G(r)

Decryption

Dec(a, b, c) =

{

r = b/ax t = c⊕G(r)
if a = gH(t) then m = [t]k0

Fig. 3. The DH-based Encryption Scheme

partially trapdoor one-way injection is known as relying on the Computational
Diffie-Hellman Problem:

f : G ×
�

q −→ G × G g : G × G −→ G
(m, a) 7−→ (ga, ya ·m) (x, z) 7−→m = z/xb

Furthermore, it is well-known to be random self-reducible, even in our strong
sense: for a given (α, β) = f(m, a), for random u, v, w ∈

�
q, (αugv, βuyvgw) =

f(mugw, au + v), with (mugw, au + v) uniformly distributed in G ×
�

q.
One has just to remark that, during the decryption phase, if a = gd mod p,

then b = axr = ydr mod p holds.

Theorem 13 (The DH-based Encryption Scheme). Any algorithm A able
to break the semantic security of the DH-based Encryption Scheme under adap-
tively chosen-ciphertext attacks within time T can be used as a subroutine to
an algorithm B that breaks the Computational Diffie-Hellman problem in an ex-
pected time bounded by 30T`/ε, with a negligible probability of error bounded by
2−`, for any parameter `, where

ε =

(

AdvA −
(qD + 1)qH

2k1
−

qD

q

)

≈ AdvA.

Advantages of the DH-based Encryption Scheme considered as an El Gamal
variant. At PKC ’98, Tsiounis and Yung [38] studied El Gamal based encryp-
tion schemes. They were the first to propose a variant secure against chosen-
ciphertext attacks, in the random oracle model. However, it was also based on
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both the Decisional Diffie-Hellman problem and an unproven assumption about
the unforgeability of Schnorr signatures [35]. Furthermore, for weaker schemes,
it required more computations: three exponentiations instead of only two for
both encryption and decryption in ours.

Later in the same year, Shoup and Gennaro [37] proposed a new variant
provably secure against chosen-ciphertext attacks in the random oracle model,
under the sole assumption of the Decisional Diffie-Hellman problem. Once again,
efficiency was a serious backward: encryption required five exponentiations in-
stead of two for ours, and decryption required seven exponentiations instead of
two! However, it was the first convincing El Gamal variant.

Finally, one could consider the Fujisaki-Okamoto variant [16], with a sim-
ilar efficiency in the random oracle model, or the Cramer-Shoup variant [12],
twice slower but, for the first time, proven in the standard model. However, in
both cases, security is relative to the Decisional Diffie-Hellman problem, a much
stronger assumption than the Computational one.

Consequently, this El Gamal variant is the most efficient from our knowl-
edge (only two exponentiations per encryption or decryption). Furthermore, it
is semantically secure against adaptively chosen-ciphertext attacks under the
sole assumption of the Computational Diffie-Hellman problem (and not the De-
cisional one), in the random oracle model.

4.2 The Okamoto-Uchiyama Encryption Scheme

Let us turn to the Okamoto-Uchiyama encryption scheme [24], which is one-way
related to the factorization. Our transformation leads to the scheme presented in
Figure 4, together with the following security properties. The partially trapdoor

p, q large prime integers of same length, and n = p2q
H : {0, 1}k →

�
n and G :

�
n→ {0, 1}

k

g ∈
�

?
n such that the order of gp = gp−1 mod p2 is p

h = gn mod n

Encryption
r ∈R

�
n, s ∈R {0, 1}

k1

Enc(m, r‖s) =

{

a = grhH(m‖s)

b = (m‖s)⊕G(r)

Decryption

Dec(a, b, c) =







r = L(yp)/L(gp) mod p
m‖s = b⊕G(r)

a
?
= grhH(m‖s)

where yp = yp−1 mod p2 and L(x) = (x− 1)/p.

Fig. 4. The OU-based Encryption Scheme

one-way injection is known as relying on the factorization of the large integer



15

n = p2q:

f :
�

p×
�

(p−1)(q−1) −→
�

?
n g :

�
?
n −→

�
p

(x, r) 7−→ gx × hr mod n y 7−→ L(yp)
L(gp)

mod p

This problem is well-known to be random self-reducible, however, one can fur-
thermore use the “easy verifiable” property. Indeed, we can use the attacker
to suggest candidates as partial-preimage of a known y = gxhn mod n, with a
rather large x. With all the candidates a, one computes gcd(x − a, n) which
should provide p for the right solution.

Theorem 14 (The OU-based Encryption Scheme). Any algorithm A able
to break the semantic security of the OU-based Encryption Scheme under adap-
tively chosen-ciphertext attacks within time T can be used to factor n with prob-
ability greater than AdvA − (qH(qD + 1))/2k1 − qD/Y , within the same time T .

Advantages of the OU-based Encryption Scheme. The main advantage of this
scheme is clear: the original one [24] is totally breakable under a (non-adaptive)
chosen-ciphertext attack, which is a serious drawback. However its main interest
was the factorization-based security. But just the one-wayness was related to the
factorization. Indeed, even semantic security against chosen-plaintext attacks
requires the higher residues assumption.

The presented scheme does not increase so much the computational load,
but considerably enhances the security: chosen-ciphertext security is related to
factorization, by a perfect reduction (the underlying problem can be broken
within the same time and identical probability as the security property).

5 Conclusion

In this paper, we have presented the most interesting generic transformation
which provides chosen-ciphertext secure schemes from the weakest possible as-
sumption: the existence of partially trapdoor one-way functions. Furthermore,
the exact security provides very practical results in the most common cases,
random self-reducible or easy verifiable problems. Indeed, in this latter case, the
reduction is optimal: the underlying problem can be broken within the same
time and with the same probability than the resulting encryption scheme.

Finally, applications to well-known problems lead to very useful schemes: the
most efficient based on the Computational Diffie–Hellman problem and the first
one as secure as factorization.

Furthermore, to improve efficiency, one can integrate symmetric encryption,
with G(r) as secret key, instead of using the one-time pad, as it has already been
done in recent works [1, 25, 17, 30].
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