
Proceedings of the 2000 International Workshop on Practice and Theory in Public Key Cryptography (PKC’2000)
(18 – 20 january 2000, Melbourne, Australia) – H. Imai and Y. Zheng Eds. Springer-Verlag, LNCS 1751, pages 276–292.

Design Validations for Discrete Logarithm

Based Signature Schemes

Ernest Brickell1, David Pointcheval2, Serge Vaudenay3, and Moti Yung4

1 Intel Inc., Portland, OR, USA
2 CNRS–LIENS, Paris, France
3 EPFL, Lausanne, Switzerland
4 Certco, New York, NY, USA

Abstract. A number of signature schemes and standards have been recently designed,
based on the Discrete Logarithm problem. In this paper we conduct design validation
of such schemes while trying to minimize the use of ideal hash functions. We consider
several Discrete Logarithm (DSA-like) signatures abstracted as generic schemes. We
show that the following holds: “if the schemes can be broken by an existential forgery
using an adaptively chosen-message attack then either the discrete logarithm problem
can be solved, or some hash function can be distinguished from an ideal one, or multi-
collisions can be found.” Thus, for these signature schemes, either they are equivalent
to the discrete logarithm problem or there is an attack that takes advantage of proper-
ties which are not desired (or expected) in strong practical hash functions (SHA-1 or
whichever high quality cryptographic hash function is used). What is interesting is that
the schemes we discuss include KCDSA and slight variations of DSA.
Further, since our schemes coincide with (or are extremely close to) their standard coun-
terparts they benefit from their desired properties: efficiency of computation/space, em-
ployment of certain mathematical operations and wide applicability to various algebraic
structures. We feel that adding variants with strong validation of security is important
to this family of signature schemes since, as we have experienced in the recent past,
lack of such validation has led to attacks on standard schemes, years after their intro-
duction. In addition, schemes with formal validation which is made public, may ease
global standardization since they neutralize much of the suspicions regarding potential
knowledge gaps and unfair advantages gained by the scheme designer’s country (e.g.
the NSA being the designers of DSA).

Keywords: Digital Signatures, Adaptively Chosen-Message Attacks, Existential Forg-
eries, Random Oracle Model, DSA, KCDSA, Security Validation

1 Introduction

One of the greatest achievements of Public-key Cryptography, introduced by
Diffie and Hellman [9], is the provision of a strong (non-repudiated) integrity
function known as “digital signature.” The research regarding digital signature
schemes has taken a number of basic directions. The first one was theoretical and
engaged in reducing the computational assumption required for signature, in or-
der to understand the inherent nature of the primitive. Indeed, digital signature
turned out to be equivalent to one-way functions [19, 27]. Another direction has
produced various flavors of signatures (blind, undeniable, fail-stop, etc.). The
third direction was the design and standardization of efficient signature schemes
which are very practical.

As part of this third direction, one avenue of research and technology devel-
opment is the design of digital signature schemes based on the hardness of the
discrete logarithm problem (which started with the introduction of the El Gamal

c© Springer-Verlag 2000.

2

signature scheme [10]). A number of efficient schemes have appeared since then
and a few of them were standardized, in particular NIST standardized the DSA
signature scheme (DSS) [20].

Whereas the theoretical signature schemes have been presented with a se-
curity proof against (existential forgery) attacks [14, 15], the practical schemes
were given in an ad-hoc fashion based on intuitive feeling of security. However,
as we know in the past and the recent future many schemes believed to be secure
have been later broken. Thus the situation is not satisfactory w.r.t. the practical
schemes.

When attacking the security of the practical scheme one may attempt a
security proof from scratch based solely on computational assumptions. This
may not be easily doable since the typical scheme is very specific and it typically
employs hashing in addition to involving various operations which were not
guided by any structure.

The next proof direction is to assume that certain hash functions which are
available and which everyone has a black-box access to, are ideal (i.e., are like
a random oracle [2]). Since the available hash functions cannot in fact be ran-
dom oracles but rather computationally indistinguishable from one, the proof
becomes an argument for security: As long as there is no evidence that distin-
guishes the hash function in use from a random oracle, the security of the scheme
is reduced to a well defined number theoretic problem (namely the discrete log-
arithm). Of course, one has to be careful here. First, only hash functions which
are used as a black-box and are replaceable (in case of a specific weakness is
found) should be assumed to “look random.” Secondly, the methodology does
not work universally for every scheme: an artificial theoretical construction was
shown which is provably secure under random oracle assumption but becomes
insecure under any “concrete implementation” of the oracle [8]. Luckily, this is
only an example, and its structure does not apply to the practical signature
schemes we study (intuitively, in these schemes there is a separation of the role
of the hash function from that of the number theoretic function, such as discrete
logarithm).

It is believed that the “random oracle” proof methodology still gives a much
better understanding and confidence in a scheme than if a scheme is left com-
pletely unanalyzed. In the latter case, any unexpected attack may be mounted,
whereas the security study assuming ideal hash, greatly limits the potential at-
tack scenarios.

In this work we study, under the random oracle model, but minimizing the
random oracle use, schemes which are, or very closely related to, the standardized
schemes (DSA [20], KCDSA [17]). Our goal is to exploit the efficiency of these
schemes, yet to modify them slightly if necessary in order to claim validation
of security. We believe that the modified schemes are within the spirit of the
standards, yet have a strength of being validated. We believe that perhaps the
standard bodies should look carefully into our study.

The random oracle methodology was first employed informally by Fiat and
Shamir [12], and formalized in Bellare and Rogaway [2]. It was used in show-
ing variants of RSA signatures [26, 4]. At the same time Pointcheval and Stern

3

[23] formalized the Fiat-Shamir technique and then validated security for an
El Gamal variant signature, Schnorr signature [28, 29] and Fiat-Shamir signa-
tures. In so doing they formalized the “forking lemma” methodology which we
will follow. Further analysis and investigation of multi-signature was performed
by Ohta and Okamoto [22]. However, the case of variants of the standardized
DSA-like signature which we analyze herein was left open.

Outline of the Paper. In the next Section we present our basic definitions
and in Section 3, the basic signature schemes and variants we deal with, namely
El Gamal-type signature schemes. In section 4 we present the generic schemes we
prove security about, together with some concrete examples. Section 5 presents
the basic security result, and its proof. Example of how to apply the general
results to the variants of the standard schemes is given in Section 6, where
Section 7 concludes the work.

Remark. The paper is based on a merge, crystallization and generalization of
initial ideas reported in our earlier studies [7, 24]. The current version contains
improved and more elegant analysis as well as the important direction of mini-
mizing the use of the “random oracle” assumption.

2 Definitions

In this section, we recall security notions for signature schemes and hash func-
tions and review the random oracle model.

2.1 Security Notions for a Signature Scheme

We first define a signature scheme and then the notions of security. Similar
definitions can be found in [15, 23], where the reader is referred for more details.

Definition 1 (A Signature Scheme). A signature scheme consists of three
polynomial time randomized algorithms, (Key-Gen, Sign, Ver).

– Key-Gen takes as input a random string and outputs a pair of keys (X, Y),
where X is the private signature key, and Y is the public verification key.

– Sign takes as input a message M and the private signature key X, and
produces a signature Sig.

– Ver takes as input a message M , a signature Sig, the public verification key
Y , and checks whether Sig is a valid signature of M .

We will use the definition of security of a signature scheme defined by [15], known
as existential unforgeability against adaptively chosen-message attacks.

Definition 2 (Unforgeability). We say that a signature scheme (Key-Gen,
Sign, Ver) is unforgeable if no adversary who is given the public verification key
Y , and the signatures of k messages, M1, . . . , Mk adaptively chosen by herself,
can produce the signature on a new message M with non-negligible probability.

4

2.2 Security Notions for a Hash Function

A hash function is any function which takes as input a message of any length
and outputs a digest of fixed size (typically 128 or 160 bits).

Definition 3 (Multi-Collision-Freeness). A function h is said `-collision-
free, if there is no `-tuple (x1, . . . , x`) of pairwise distinct elements such that
h(x1) = . . . = h(x`).

But for a hash function, which takes variable (any)-length inputs, absence of
multi-collisions can not be guaranteed, but perhaps we can hope for the impos-
sibility of finding some of them.

Definition 4 (Multi-Collision-Resistance). A function h is said `-collision-
resistant, if it is computationally impossible to find an `-tuple (x1, . . . , x`) of
pairwise distinct elements such that h(x1) = . . . = h(x`).

For simplicity, a collision-resistant hash function is, in general, a 2-collision-
resistant hash function.

2.3 The Random Oracle Model

In many signature schemes, a cryptographic hash function, such as MD5 [25] or
SHA-1 [21], is used, namely to reduce the size of the message. Such a crypto-
graphic hash function has the property that it is collision-resistant, and therefore
one-way.

Many recent proofs [3, 4, 22, 23] make the assumption that this cryptographic
hash function is an ideal random function also known as random oracle: for any
new query, the answer is uniformly distributed in the output set, independently
of previous query/answer pairs. This is the so-called random oracle model [2].

Moreover, in this model, a simulator is allowed to set the output of the
random oracle to specific values (uniformly distributed) for an input that had
not yet been defined. Such a property will be required in the following.

However, since proofs in the random oracle model are just security argu-
ments, but not the strongest proof of security that one could require, we try to
minimize the use of random oracles.

3 The El Gamal Type Signature Schemes

El Gamal [10] was the first to propose a signature scheme based on the discrete
logarithm problem. Then, Schnorr [28, 29] improved the scheme using the mod-
ulo q truncating function, playing in a prime subgroup. This fixes some weak-
nesses later on discovered by Bleichenbacher [5], van Oorchot and Wiener [30]
and also discussed by Anderson and Vaudenay [1]. This latter scheme has been
formally proven unforgeable in the random oracle model relative to the discrete
logarithm problem [22, 23]. However, as discussed in the introduction many other
variants have been defined and standardized by governments: the US-standard
DSA [20] and the Korean-standard KCDSA [17]. In both cases, there are system
parameters p, q, g such that q and p are primes, q|p− 1, and g is an element of
order q in the group

� ?
p, i.e. the group of invertible integers modulo p. A user

has a public key Y , and a private key X such that Y = gX mod p.

5

3.1 The DSA Signature

The Digital Signature Algorithm [20] has been standardized by the US govern-
ment, together with the hash function SHA-1 [21], denoted by H in the following
description. To sign a message M , the Sign algorithm picks a random invertible
element k in

� ?
q and computes

R = gk mod p T = R mod q
U =H(M) S = (U +XT)/k mod q

Formally, the random tape ω defines k and Sign(ω,M) = (S, T). The Ver algo-
rithm consists of checking whether

(

g
U

S Y
T

S mod p
)

mod q = T or not, where U = H(M).

3.2 The KCDSA Signature

The Korean Certificate-based Digital Signature Algorithm [17] has recently been
standardized by the Korean government, and is proposed to the IEEE P1363a,
as a signature standard. It uses two hash functions G and H. We note that, for
efficiency concern, 1/X mod q is considered as private key instead of X. To sign
a message M , the Sign algorithm picks a random element k in

� ?
q and computes

R = gk mod p T =G(M)
U =H(R) S = (k − T ⊕ U)/X mod q.

Formally, the random tape ω defines k and Sign(ω,M) = (S, U). The Ver algo-
rithm consists of first checking the sizes of S and U . Then computing

EG = T ⊕ U W = gEGY S mod p

and checking whether or not U = H(W), where T = G(M).

3.3 DSA Variants

In order to provide better analyzable schemes than DSA, one can study the
following variants, we call DSA–I and DSA–II respectively, which only slightly
differ from the original one.

The DSA–I Variant. This first variant differs from the original scheme just
by replacing the “x 7→ x mod q” truncating function by any hash function G.
To sign a message M , the Sign algorithm picks a random invertible element k
in

� ?
q and computes

R = gk mod p T =G(R)
U =H(M) S = (U +XT)/k mod q.

Formally, the random tape ω defines k and Sign(ω,M) = (S, T). The Ver algo-
rithm consists of checking whether

G
(

g
U

S Y
T

S mod p
)

= T or not, where U = H(M).

The second variant is a bit more different from DSA, but it requires weaker
(more acceptable) assumptions whenever possible.

6

The DSA–II Variant. To sign a message M , the Sign algorithm picks a ran-
dom invertible element k in

� ?
q and computes

R = gk mod p T =G(R)
U =H(M,T) S = (U +XT)/k mod q.

Formally, the random tape ω defines k and Sign(ω,M) = (S, T). The Ver algo-
rithm consists of checking whether

G
(

g
U

S Y
T

S mod p
)

= T or not, where U = H(M,T).

We note that, based on [24], this second variant has already been included in
the ISO/IEC 14888 report [16]. We further note that below we will also give
arguments for security when G is the mod q function.

3.4 Security

One can prove relatively easily that the DSA–I variant is unforgeable [7, 24] rela-
tive to the discrete logarithm problem assuming that both G and H are random
oracles. However, this is a very strong assumption which has no real practical im-
pact to the original DSA. Indeed, while the (easily replaceable) SHA-1 function
can be assumed practically “ideal”, as it is usually done in the random oracle
based papers [2–4, 22, 23], the “x 7→ x mod q” map of DSA cannot be assumed
random due to its algebraic properties. Similarly, KCDSA can be investigated
in the full “random oracle” model [24].

In the following, we formally define two (general) families of El Gamal-type
signature schemes which include the above variants (KCDSA and DSA–II), but
may be used to guide future designs as well. We then provide security proofs
assuming some generic hash functions to be ideal random ones while assum-
ing that some others are just (multi)-collision-resistant/free. This will provide
validation related to the DSA and KCDSA national standards.

4 The Trusted El Gamal Type Signature Schemes

For the two types of schemes defined in the following, there are

– system parameters p, q, g such that q and p are primes, q|p − 1, and g is
an element of order q in the group

� ?
p, i.e. the group of invertible integers

modulo p.
– two hash functions G and H, whose output ranges are denoted by G and

H respectively. We assume that q/2 < |G|, |H| < 2q. In both cases, H is
considered as an ideal random function (or a random oracle), whereas G
only requires some practical properties, such as (multi)-collision-resistance
or (multi)-collision-freeness.

– three functions:

F1 : (
�
q,

�
q,G,H) −→ �

q F2 : (
�
q,G,H) −→ �

q F3 : (
�
q,G,H) −→ �

q

satisfying for all (a, b, T, U) ∈ (
�
q,

�
q,G,H),

F2(F1(a, b, T, U), T, U) + b · F3(F1(a, b, T, U), T, U) = a mod q.

7

In addition, each user has private and public keysX, Y , such that Y = gX mod p.

Definition 5 (The TEGTSS Verification Equation). A tuple (W,S, T, U)
is said to satisfy the TEGTSS verification equation if for EG = F2(S, T, U), and
EY = F3(S, T, U) then W = gEGY EY mod p.

Then, Trusted El Gamal Types Signature Schemes are of two distinct types,
depending on the use of the functions G and H.

4.1 Type I: the TEGTSS–I schemes.

– To sign a message M , the signer chooses an element k at random in
� ?
q,

computes T = G(M) and generates R = gk mod p. He then gets U = H(R)
and computes S = F1(k,X, T, U).
The signature of M is the triple (S, T, U). In practice, the pair (S, U) is
enough since T = G(M), but we keep the triple for the reader’s convenience.

– To verify the signature (S, T, U) of the message M , a verifier computes
EG = F2(S, T, U) and EY = F3(S, T, U) and finally W = gEGY EY mod p. He
then checks whether T = G(M) and U = H(W) or not.

TEGTSS–I Properties. To provide a TEGTSS–I scheme, F3 must satisfy
the following conditions for tuples (W,Si, Ti, Ui) for i = 1, 2 that satisfy the
TEGTSS Verification Equation:

1. if T1 6= T2, then F3(S1, T1, U1) 6= F3(S2, T2, U2).
2. For a fixed verifying tuple (W,S1, T1, U1) there is a one-to-one map between

the values of U2 and the values of T2 such that (W,S2, T2, U2) verifies the
TEGTSS equation and F3(S1, T1, U1) = F3(S2, T2, U2).

Example: the KCDSA Signature. Both signature and verification algo-
rithms are exactly as described above, with the following functions:

F1(k,X, T, U) = (k − T ⊕ U)/X mod q
F2(S, T, U) = T ⊕ U mod q and F3(S, T, U) = S mod q,

where T = G(M), R = gk mod p, U = H(R) and S = F1(k,X, T, U).

Lemma 6. The KCDSA signature is a TEGTSS–I scheme.

Proof. We need to show that the functions F1, F2 and F3 satisfy the properties
of a TEGTSS–I scheme:

– for all (k,X, T, U) ∈ (
�
q,

�
q,Q,H),

F2(F1(k,X, T, U), T, U) +X × F3(F1(k,X, T, U), T, U)
= T ⊕ U +X × (k − T ⊕ U)/X = k mod q,

– if F3(S1, T1, U1) = F3(S2, T2, U2), then S1 = S2 = S and since W is fixed,
F2(S, T1, U1) = F2(S, T2, U2) and U1 = U2. Therefore T1 ⊕ U1 = T2 ⊕ U2 and
consequently T1 = T2.

– suppose F3(S1, T1, U1) = F3(S2, T2, U2) for a given W . Then S1 = S2 = S.
Since W is fixed, F2(S, T1, U1) = F2(S, T2, U2): T1 ⊕ U1 = T2 ⊕ U2. Therefore
T2 = T1 ⊕ U1 ⊕ U2.

ut

8

4.2 Type II: the TEGTSS–II schemes.

– To sign a message M , the signer chooses an element k at random in
� ?
q,

computes R = gk mod p and T = G(R). He then gets U = H(M,T) and
computes S = F1(k,X, T, U).
The signature of M is the triple (S, T, U). In practice, the pair (S, T) is
enough, since U = H(M,T). But the triple is kept for the reader’s conve-
nience.

– To verify the signature (S, T, U) on the message M , a verifier computes
EG = F2(S, T, U) and EY = F3(S, T, U) and finally W = gEGY EY mod p. He
then checks whether T = G(W) and U = H(M,T) or not.

TEGTSS–II Properties. To provide a TEGTSS–II scheme, the functions F2

and F3 must satisfy the following one-to-one condition: for given T , EG and EY ,
there exists a unique pair (U, S) such that

EG = F2(S, T, U) and EY = F3(S, T, U).

Furthermore, this pair is easy to find.

Example: the DSA–II Variant. This DSA variant is exactly as described
above, with the following functions:

F1(k,X, T, U) = (U +XT)/k mod q
F2(S, T, U) = U/S mod q and F3(S, T, U) = T/S mod q,

where R = gk mod p, T = G(R), U = H(M,T) and S = F1(k,X, T, U).

Lemma 7. The DSA–II signature is a TEGTSS–II scheme.

Proof. We need to show that the functions F1, F2 and F3 satisfy TEGTSS–II
properties:

– for all (k,X, T, U) ∈ (
�
q,

�
q,Q,H),

F2(F1(k,X, T, U), T, U) +X × F3(F1(k,X, T, U), T, U)
= U/S +XT/S = (U +XT)/S = k mod q,

– for given T , EG and EY , F2(S, T, U) = EG and F3(S, T, U) = EY imply
S = T/EY mod q and U = SEG mod q.

ut

5 Security Results

We next claim the following security results for Trusted El Gamal Type Signa-
ture Schemes of both types.

Theorem 8. Let us consider an attacker A against a Trusted El Gamal Type
Signature Scheme. Let us assume that A is able to perform an existential forgery
under an adaptively chosen-message attack with probability ε > 4/q after Q
queries to the H function.

9

– for Type I schemes, if G is collision-resistant and H a random oracle, then
one extracts the secret key X with less than 25Q/ε replays of A, with constant
probability greater than 1/100.

– for Type II schemes, if G satisfies one of the following conditions,
• G is (`+ 1)-collision-resistant
• or, x 7→ G(gx mod p) is (`+ 1)-collision-free

and H a random oracle, then one extracts the secret key X with less than
25Q` log(2`)/ε replays of A (where log denotes the logarithm is basis 2), with
constant probability greater than 1/100.

The rest of this section is devoted to the proof of the above Theorem.

5.1 General Method of Proof

We construct a simulator that produces signatures of a given message in a rea-
sonable (poly) time in a way indistinguishable from the signer’s. Therefore, if the
attacker could construct a successful adaptively chosen-message attack using the
legitimate signer, then she would be able to do so using only the simulator. Then
we use a forking lemma as in [23] to show that if the attacker can construct a
signature with a specific ideal hash function, she can (with non-negligible prob-
ability) construct many signatures with the same fixed values, but in which the
ideal hash functions output different answers. We then show that two such sig-
natures can be used to compute the discrete logarithm of the public key, thus
solving the discrete logarithm problem.

In their paper [23], Pointcheval and Stern defined particular sub-cases of the
Type II signatures, where G is the identity and therefore clearly multi-collision-
resistant and even collision-free. Here, we need similar tools, namely their “split-
ting lemma” and an improved version of their “forking lemma”. The “splitting
lemma” is a formal probabilistic version of the “heavy rows lemma” [11, 22].

Lemma 9 (The Splitting Lemma). Let A ⊂ X × Y and we assume that
Pr[(x, y) ∈ A] ≥ ε. Define

B =

{

(x, y) ∈ X × Y Pr
y′∈Y

[(x, y′) ∈ A] ≥ ε

2

}

and B̄ = (X × Y)\B,

then the following statements hold:

(i) Pr[B] ≥ ε/2
(ii) ∀(x, y) ∈ B,Pry′∈Y [(x, y′) ∈ A] ≥ ε/2.
(iii) Pr[B |A] ≥ 1/2.

Proof. See Pointcheval–Stern’s [23] or Ohta-Okamoto’s [22] papers. ut

For any ` ≤ √
q/4, one can state the following variant of the forking lemma [23].

Lemma 10 (The Improved Forking Lemma). Let us consider a probabilis-
tic polynomial time Turing machine A, called the attacker, and a probabilistic
polynomial time simulator B. If A can find with probability ε > 4/q a verifiable
tuple (M,R, S, T, U) with less than Q queries to the hash function, for a new

10

message M and for a U directly defined by H, then with a constant probability
1/96, with (1 + 24Q` log(2`))/ε replays of A and B with different random ora-
cles, A will output `+1 verifiable tuples (Mi, Ri, Si, Ti, Ui)i=1,...,`+1 such that the
Ui are pairwise distinct, and all the Ri equal for TEGTSS–I schemes but all the
(Mi, Ti) equal for TEGTSS–II schemes.

Proof. Let Ω and Φ denote the sets of all random tapes that could be used by
the attacker A and the simulator B respectively, and let ω denote an arbitrary
random tape in Ω, and let φ denote an arbitrary random tape in Φ. Let Ψ
denote the set of all random tapes that define the random oracle H and let ψ
denote an arbitrary random tape in Ψ . The attacker A can query H directly
by requesting the value of H(X) for some X or A can cause a query of H
indirectly by asking B for a signature of a message M . During the execution
of the protocol, let Q1, . . . ,QQ, denote the ordered set of direct queries for
H. We assume that U = H(Qj), with Qj = R for TEGTSS–I schemes, and
Qj = (M,T) for TEGTSS–II schemes, for some j ≤ Q, since A would have
to know the random answer U to be able to determine if (M,R, S, T, U) was a
verifiable tuple, excepted with probability ν ≤ 2/q ≤ ε/2.

Therefore, the probability over the choice of ω, φ and ψ such that A outputs
a new verifiable tuple, (M,R, S, T, U), after Q values, for a new message M and
U directly defined by H (and not by the simulator B) is at least ε − ν ≥ ε/2.
We say that (ω, φ, j, ψ) is a winning input if for tapes (ω, φ, ψ), A outputs a
verifiable tuple (M,R, S, T, U) after Q queries, for a new message M , in which
Qj = R or Qj = (M,T), respectively: Qj is the crucial query.

By the Splitting-Lemma (Lemma 9), there exists a set Γ ⊆ Ω ×Φ such that
Pr[(ω, φ) ∈ Γ] ≥ ε/4, and for (ω, φ) ∈ Γ , Pr[∃j, (ω, φ, j, ψ) winning] ≥ ε/4.
Furthermore,

Pr[(ω, φ) ∈ Γ | (ω, φ, j, ψ) winning] ≥ 1

2
.

For each (ω, φ) ∈ Γ , let us define J (ω, φ) to be the set of indices j ≤ Q
such that Pr[(ω, φ, j, ψ) winning] ≥ ε/8Q. Since the number of possible j is
upper-bounded by Q, one can easily prove by contradiction that J (ω, φ) 6= ∅
and

Pr[j ∈ J (ω, φ) | (ω, φ, j, ψ) winning] ≥ 1

2
.

For (ω, φ) ∈ Γ and j ∈ J (ω, φ), define a partition of the set Ψ into Hash-
Classes, where a Hash-Class is defined by a tuple (P1, P2, . . . , Pj−1) and ψ ∈ Ψ
is in the Hash-Class (P1, P2, . . . , Pj−1) if H(Qi) = Pi for i ≤ j − 1 for all queries
Qi for i ≤ j − 1 that result from running (ω, φ, ψ). Moreover, Ψω,φ,j,ψ will be
defined to be the Hash-Class (P1, P2, . . . , Pj−1) where H(Qi) = Pi for i ≤ j − 1
for all queries Qi for i ≤ j − 1 that result from running (ω, φ, ψ).

By the Splitting-Lemma (Lemma 9), there exists a set of Hash-Classes,
Θ(ω, φ, j) such that Pr[ψ ∈ Θ(ω, φ, j)] ≥ ε/16Q and for each ψ ∈ Θ(ω, φ, j),
Pr[(ω, φ, j, ψ′) winning | ψ′ ∈ Ψω,φ,j,ψ] ≥ ε/16Q. Furthermore,

Pr[ψ ∈ Θ(ω, φ, j) | (ω, φ, j, ψ) winning] ≥ 1

2
.

11

To generate two verifiable tuples, tapes ω, φ are chosen at random. If A
does not forge a signature, then new tapes ω, φ are chosen, until a forgery
(M1, R1, S1, T1, U1) occurs, with Qj as crucial query and Hash-Class Ψω,φ,j,ψ.
This is a “good” forgery if (ω, φ) ∈ Γ , j ∈ J (ω, φ) and ψ ∈ Θ(ω, φ, j), which
happens with probability greater than

Pr[ψ ∈ Θ(ω, φ, j) | (ω, φ, j, ψ) winning ∧ (ω, φ) ∈ Γ ∧ j ∈ J (ω, φ)]

×Pr[j ∈ J (ω, φ) | (ω, φ, j, ψ) winning ∧ (ω, φ) ∈ Γ]

×Pr[(ω, φ) ∈ Γ) | (ω, φ, j, ψ) winning] ≥ 1

2
× 1

2
× 1

2
=

1

8
.

Thereafter, one fixes tapes ω, φ and chooses ψ′ at random in Hash-Class Ψω,φ,j,ψ.
A is run again for 24Q log(2`)/ε repetitions (where log denotes the logarithm
in basis 2) or until another forgery is produced with Qj as crucial query: such
an event occurs with probability greater than (1− 1/2`), if the first forgery was
a “good” one. One repeats this process ` − 1 other times, and therefore gets `
more forgeries with probability greater than (1 − 1/2`)` ≥ 1/3.

With probability greater than (1 − `/|H|)` ≥ e−4`2/q, the Ui are pairwise dis-
tinct. Finally, one gets the following probability of success, if ` ≤ √

q/4,

Pr

[

`+ 1 winning inputs after (1 + 24Q` log(2`))/ε trials
with pairwise distinct Ui

]

≥ Pr[a winning input after 1/ε trials]

×Pr[a “good” winning input | winning input]

×Pr

[

` other winning inputs
after 24Q` log(2`)/ε trials

“good” winning input

]

× e−4`2/q

≥ 1

3
× 1

8
× 1

3
× 3

4
=

1

96
≥ 1

100
.

ut

In the following, we apply this forking lemma to prove the security of both
families.

5.2 TEGTSS – Type I

Let us start with the Type I (which includes the KCDSA scheme), proving first
the existence of an indistinguishable simulator.

Lemma 11. Suppose H is an ideal random function with output between 0 and
|H|−1. Then there exists a simulator that creates verifiable tuples such that after
b steps, the probability that the simulator can be distinguished from a signer is
less than b2/2q.

Proof. Given a message M to be signed, the simulator generates tuples by com-
puting T = G(M), then picking U at random between 0 and |H| − 1 and S
at random between 0 and q − 1. The simulator computes EG = F2(S, T, U),
EY = F3(S, T, U) and R = gEGY EY mod p. It then defines H(R) to be equal

12

to U . In the event that H(R) was already defined, the simulator would declare
failure. These tuples will be uniformly distributed among all verifiable tuples
(R, S, T = G(M), U) such that R = gEGY EY mod p.

The adversary can only distinguish between this distribution and the signer’s
one if the simulator computes an R for which H(R) was already defined or if
the signer computes an R which he had used earlier. Let b denote the number
of queries that have been made to the random oracle H. The probability of one
of these events happening is less than 1 − e−b(b−1)/2q (birthday paradox) which
can be approximated by b2/2q. ut

Theorem 12. Suppose that H is an ideal random function but G a collision-
resistant hash function. Given an attacker A that can find with probability ε a
verifiable tuple (M,R, S, T, U) for a new message M , with less than Q queries to
the hash function H, then with constant probability 1/96, with less than 25Q/ε
replays of A, with different random oracles, A extracts the secret key X.

Proof. When the attacker A outputs a new verifiable tuple (M,R, S, T, U), either
H(R) had been defined by the simulator (case 1) or directly by H (case 2).

– case 1: the simulator had produced a verifiable tuple, (M ′, R, S ′, T ′, U ′),
for which M 6= M ′ and therefore T = G(M) 6= G(M ′) = T ′, since G is
collision-resistant. Because of the TEGTSS–I properties, one has two distinct
representations of the same R in the basis (g, Y), which leads to X [6].

– case 2: A outputs a verifiable tuple, (M,R, S, T, U), in which R = Qj for
some j ≤ Q and A made a direct query for the value of H(Qj). Using the
forking lemma (Lemma 10), after less than (1 + 24Q)/ε replays of A, one
gets two tuples (M1, R, S1, T1, U1) and (M2, R, S2, T2, U2) such that U1 6= U2.
With a closer look at the proof of the forking lemma, one can see that U2

follows the uniform distribution. Given U2, let T2 be the unique value such
that F3(S1, T1, U1) = F3(S2, T2, U2) for a verifiable tuple. By the assumption
that G is collision-resistant, and therefore one-way, the probability that A
can find a message M2 such that G(M2) = T2 is vanishingly small. Conse-
quently, we likely have F3(S1, T1, U1) 6= F3(S2, T2, U2) and thus two distinct
representations of the same R in the basis (g, Y), which leads to X [6].

ut

5.3 TEGTSS – Type II

Let us now study the Type II (which includes the DSA–II scheme), proving first
the existence of an indistinguishable simulator.

Lemma 13. Suppose H is an ideal random function with output between 0 and
|H|−1. Then there exists a simulator that creates verifiable tuples such that after
b steps, the probability that the simulator can be distinguished from a signer is
less than b2/2q.

Proof. Given a message M to be signed, the simulator generates tuples by first
picking A and B at random, both in

�
q. It then computes R = gAY B mod p and

T = G(R). Using the property of F2 and F3, S and U are defined as the only

13

values leading to both EG = A and EY = B. Then H(M,T) is defined to be
equal to U . As above, this simulation is indistinguishable but with an advantage
upper-bounded by b2/2q. ut

Theorem 14. Let us assume that H is an ideal random function and G an
(`+1)-collision-resistant function. Given an attacker A that can find with prob-
ability ε a verifiable tuple (M,R, S, T, U) for a new message M , with less than
Q queries to the hash function H, then with constant probability 1/96, with less
than 25Q` log(2`)/ε replays of A, with different random oracles, A extracts the
secret key X.

Proof. A outputs a verifiable tuple, (M,R, S, T, U), in which (M,T) = Qj

for some j ≤ Q and A made a direct query for the value of H(Qj), since
M is a new message, never asked of the simulator. Using the forking lemma
(Lemma 10), after less than (1 + 24Q` log(2`))/ε replays of A, one gets ` + 1
tuples (M,Ri, Si, T, Ui) such that the Ui are pairwise distinct, with T = G(Ri).

Since G is (` + 1)-collision-resistant, there exists a pair of indices (i, j) for
which we have Ri = Rj. Assume that EGi = EGj and EY i = EY j. Then, because
of the TEGTSS–II properties, Si = Sj and Ui = Uj, which contradicts the fact
that the Ui are all distinct. Then from two representations of the same R in
basis (g, Y), one gets X [6]. ut

Theorem 15. Let us assume that H is an ideal random function and x 7→
G(gx mod p) an (` + 1)-collision-free function. Given an attacker A that can
find with probability ε a verifiable tuple (M,R, S, T, U) for a new message M ,
with less than Q queries to the hash function H, then with constant probability
1/96, with less than 25Q` log(2`)/ε replays of A, with different random oracles,
A extracts the secret key X.

Proof. As above, after less than (1+24Q` log(2`))/ε replays of A, one gets `+1
tuples (M,Ri, Si, T, Ui) such that the Ui are pairwise distinct, with T = G(Ri)
and Ri = gEGiY EY i = gxi mod p for some xi. Since x 7→ G(gx mod p) is (`+ 1)-
collision-free, the same conclusion as above holds. ut

6 Application to some Signature Schemes

Lemma 16. If G is just collision-resistant but H a random oracle, the KCDSA
is unforgeable relative to the discrete logarithm problem.

Proof. It is an immediate corollary from Lemma 6 and Theorem 8. ut

6.1 The DSA–II Variant

Lemma 17. If G is an (`+ 1)-collision-resistant function or x 7→ G(gx mod p)
is an (`+ 1)-multi-collision-free function, but H a random oracle, then DSA–II
is unforgeable relative to the discrete logarithm problem.

Proof. It is an immediate corollary from Lemma 7 and Theorem 8. ut

14

Remark 18. One can first remark that for any random function G, the proba-
bility that x 7→ G(gx mod p) has a (` + 1)-multi-collision is approximately less
than q/(`+ 1)! [24], which is very small for ` = log q.

This provides a security argument for a very slight variant of the original
DSA, where the H(M) is just replaced by H(M,T). Indeed, it is very unlikely
that the “x 7→ (gx mod p) mod q” map has (log q)-multi-collision. Indeed, even
just a 2-collision would lead to an important weakness in the original DSA design
by an attack similar than Vaudenay’s [31]: if for a given (p, q, g) provided by a
honest authority someone happens to find out a 2-collision

T = gk mod p mod q = gk
′

mod p mod q

then he can choose two different messages M and M ′ and a particular X as his
private key so that the signatures of M and M ′ collide. Namely, if

X =
kH(M ′) − k′H(M)

T (k − k′)
mod q

then (H(M) + XT)/k mod q = S = (H(M ′) + XT)/k′ mod q so that he can
reveal the signature (S, T) of M and later on claim it was the signature of M ′.

6.2 Short-Length Signatures

The Type II of TEGTSS has the attractive property of providing short signa-
tures. Indeed, a hash function that returns 80-bits digests can be considered as
5-collision-resistant, since a search would require 264 computations [13]. There-
fore, since the practical signature consists of the pair (S, T) where S ∈ �

q and T
the digest produced by G, a 5-collision-resistant hash function, it can be shorter
than 30 byte-long.

7 Conclusion

We have studied and validated security (under the random oracle model) of
general schemes which include some standardized schemes or very close variant
thereof. We proved their security while maintaining the efficiency of the standard
schemes. We, therefore, believe that perhaps the standard bodies should look
carefully into our study.

References

1. R. Anderson and S. Vaudenay. Minding your p’s and q’s. In Asiacrypt ’96, LNCS 1163, pages
26–35. Springer-Verlag, Berlin, 1996.

2. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient
Protocols. In Proc. of the 1st CCCS, pages 62–73. ACM Press, New York, 1993.

3. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt with RSA. In
Eurocrypt ’94, LNCS 950, pages 92–111. Springer-Verlag, Berlin, 1995.

4. M. Bellare and P. Rogaway. The Exact Security of Digital Signatures – How to Sign with RSA
and Rabin. In Eurocrypt ’96, LNCS 1070, pages 399–416. Springer-Verlag, Berlin, 1996.

15

5. D. Bleichenbacher. Generating El Gamal Signatures without Knowing the Secret Key. In Euro-

crypt ’96, LNCS 1070, pages 10–18. Springer-Verlag, Berlin, 1996.
6. S. A. Brands. An Efficient Off-Line Electronic Cash System Based on the Representation Problem.

Technical Report CS-R9323, CWI, Amsterdam, 1993.
7. E. F. Brickell. Invited lecture given at the Crypto ’96 conference. unpublished manuscript.
8. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracles Methodology, Revisited. In Proc.

of the 30th STOC, pages 209–218. ACM Press, New York, 1998.
9. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Informa-

tion Theory, IT–22(6):644–654, November 1976.
10. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.

IEEE Transactions on Information Theory, IT–31(4):469–472, July 1985.
11. U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology,

1:77–95, 1988.
12. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions of Identification and Signature

Problems. In Crypto ’86, LNCS 263, pages 186–194. Springer-Verlag, Berlin, 1987.
13. M. Girault and J. Stern. On the Length of Cryptographic Hash-Values used in Identification

Schemes. In Crypto ’94, LNCS 839, pages 202–215. Springer-Verlag, Berlin, 1994.
14. S. Goldwasser, S. Micali, and R. Rivest. A “Paradoxical” Solution to the Signature Problem. In

Proc. of the 25th FOCS, pages 441–448. IEEE, New York, 1984.
15. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptive

Chosen-Message Attacks. SIAM Journal of Computing, 17(2):281–308, April 1988.
16. ISO. ISO/IEC 14888 Final Draft – Information Technology – Security Techniques - Digital

Signatures with Appendix. International Organization for Standardization, Berlin, Germany,
1998.

17. KCDSA Task Force Team. The Korean Certificate-based Digital Signature Algorithm. IEEE
P1363a Submission, August 1998.
Available from http://grouper.ieee.org/groups/1363/addendum.html.

18. C. H. Lim and P.J. Lee. A Study on the Proposed Korean Digital Signature Algorithm. In
Asiacrypt ’98, LNCS 1514, pages 175–186. Springer-Verlag, Berlin, 1998.

19. M. Naor and M. Yung. Universal One-way Hash Functions and their Cryptographic Applications.
Proceedings of 21st STOC, May 1989.

20. NIST. Digital Signature Standard (DSS). Federal Information Processing Standards Publication
186, November 1994.

21. NIST. Secure Hash Standard (SHS). Federal Information Processing Standards Publication
180–1, April 1995.

22. K. Ohta and T. Okamoto. On Concrete Security Treatment of Signatures Derived from Identifi-
cation. In Crypto ’98, LNCS 1462, pages 354–369. Springer-Verlag, Berlin, 1998.

23. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology, 1999.
Available from http://www.di.ens.fr/~pointche.

24. D. Pointcheval and S. Vaudenay. On Provable Security for Digital Signature Algorithms. Technical
Report LIENS-96-17, LIENS, October 1996.

25. R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, The Internet Engineering Task Force,
April 1992.

26. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

27. J. Rompel. One-way Functions are Necessary and Sufficient for Signature. Proceedings of 22d
STOC, May 1990.

28. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Crypto ’89, LNCS 435,
pages 235–251. Springer-Verlag, Berlin, 1990.

29. C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3):161–
174, 1991.

30. P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman Key Agreement with Short Exponents.
In Eurocrypt ’96, LNCS 1070, pages 332–343. Springer-Verlag, Berlin, 1996.

31. S. Vaudenay. Hidden Collisions on DSS. In Crypto ’96, LNCS 1109, pages 83–88. Springer-Verlag,
Berlin, 1996.

