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Dépt Informatique, ENS – CNRS, 45 rue d’Ulm, 75230 Paris Cedex 05, France.
E-mail: David.Pointcheval@ens.fr – URL: http://www.di.ens.fr/∼pointche.

Abstract. For the two last decades, electronic authentication has been an important
topic. The first applications were digital signatures to mimic handwritten signatures
for digital documents. Then, Chaum wanted to create an electronic version of money,
with similar properties, namely bank certification and users’ anonymity. Therefore, he
proposed the concept of blind signatures.
For all those problems, and furthermore for online authentication, zero-knowledge proofs
of knowledge became a very powerful tool. Nevertheless, high computational load is of-
ten the drawback of a high security level. More recently, witness-indistinguishability has
been found to be a better property that can conjugate security together with efficiency.
This paper studies the discrete logarithm problem with a composite modulus and
namely its witness-indistinguishability. Then we offer new authentications more se-
cure than factorization and furthermore very efficient from the prover point of view.
Moreover, we significantly improve the reduction cost in the security proofs of Girault’s
variants of the Schnorr schemes which validates practical sizes for security parameters.
Finally, thanks to the witness-indistinguishability of the basic protocol, we can derive
a blind signature scheme with security related to factorization.
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1 Introduction

Provably secure schemes have ever been an important goal in cryptography. How-
ever, efficiency had hardly been an associated property. Even if authentication
has been widely studied, very few schemes reach both efficiency and security.
The reason is the large use of zero-knowledge protocols.

Identification. Concerning identification schemes, the first theoretical paper was
the famous paper about zero-knowledge [19] which claimed that it was possible
to prove the knowledge of a secret without revealing any information about it.
Unfortunately, such a property, which guarantees security even against active
attacks, often requires many iterations to actually reach a high security level
and therefore results into inefficient protocols, either from the computational
point of view [14, 12, 20, 21, 43, 28, 6, 17] or from the communication load [45, 49,
50, 31], and even both. Recently, a very efficient scheme has been proposed by
Poupard and Stern [38], with security relative to the discrete logarithm problem.
However, the cost of the reduction is so high that the proof can not validate
realistic parameters.

Few years ago, Feige and Shamir [13] defined weaker but sufficient proper-
ties for secure identification protocols, the “witness-hiding” and the “witness-
indistinguishable” properties. They are indeed weaker than the zero-knowledge
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property in the sense that some information about the secret may be leaked, but
not enough to efficiently find the secret. In other words, concerning the “witness
hiding” property, if an attacker can find the secret after an active attack, she
would have been able to find it without any interaction with the prover, within
almost the same time. Whereas the “witness indistinguishable” property means
that the view of the attacker is independent of the witness used as secret key:
many secret keys are related to a public one and the proof only transfers the
information that such a secret key is used, but not which one. In the follow-
ing, we focus on this latter property which provides three-pass identification
schemes secure against active attacks. Okamoto [26] presented some variants of
the Schnorr [44] and Guillou-Quisquater [20] identification schemes, therefore
related to the discrete logarithm in subgroups of prime order and to the RSA
assumption [41] respectively.

The Random Oracle Model. For the last years, the so-called “random oracle
model” [1] has boosted researches, providing an interesting tool for the designers
since it helps to prove the security of very efficient schemes.

Indeed, this model, where some concrete cryptographic objects are idealized,
namely the hash functions which are assumed to be really random ones, helped
to provide security proofs for many encryption schemes [1, 2, 48, 27, 15, 32, 16,
29, 33] and digital/blind signature schemes [3, 35, 34, 36, 25, 37], etc.

In spite of the recent paper [7] making people to be careful with the random
oracle model, this latter is widely considered robust since it is more and more
used. For example, the encryption scheme OAEP [2] which is proven secure in
this model has been incorporated in SET, the Secure Electronic Transaction
system [23] proposed by VISA and Master Card, and will become the new RSA
encryption standard PKCS #1 v2.0 [42]. The security of many other schemes
has been validated in this model.

1.1 Related Work

Identification and Signatures. Few years ago, Schnorr [43, 44] presented a
very efficient identification scheme, and the signature variant, based on the dis-
crete logarithm problem in subgroups of prime order. We do not recall this
famous scheme. However, the identification scheme is well-known to be zero-
knowledge but only using a fixed-size challenge after many sequential iterations.
Therefore, high security level against active attacks implies a high communi-
cation cost and either large memory for storing precomputations or high com-
putation load, since no secure preprocessing has ever been proposed [10, 11].
Nevertheless, many applications assume its security even with the basic three-
pass protocol, using large challenges. Such a security would rely on the unproven
assumption that this scheme is “witness-hiding”.

After the definitions of witness-hiding and witness-indistinguishable proper-
ties [13], Brickell and McCurley [6] proposed a variant of the Schnorr identifica-
tion scheme dealing with the witness-hiding property. Then, Okamoto presented
efficient three-pass identification schemes [26] provably secure even against active



3

attacks, thanks to witness-indistinguishability. One of them uses the represen-
tation problem [4] and is therefore based on the discrete logarithm problem in
subgroups of prime order. The second relies on the RSA assumption [41]. How-
ever, all of the above schemes remained less efficient than the original Schnorr’s
scheme.

In 1991, Girault [17] presented a variant of the Schnorr identification scheme
using a composite modulus instead of a prime one. It also allows an improved
efficiency from the prover point of view. Few years ago, Poupard and Stern [38]
provided a proof of the statistical zero-knowledge property of this scheme and
the security relative to the composite discrete logarithm problem of both the
identification scheme and the signature variant. However, the security proof,
based on the zero-knowledge property of the identification scheme, also requires
many iterations for a high level of security, and moreover uses an expansive re-
duction which can only validate large, and impractical, parameters They recently
improved their reduction [39, 40], making security just relative to factorization.
It is also the direction taken in the present work.

Concerning signatures, thanks to the Pointcheval–Stern’s [37] and Ohta–
Okamoto’s [25] papers, one can efficiently transform any three-pass identification
scheme into a signature scheme. Therefore, an efficient solution for identification
furthermore solves the problem of efficient signatures.

Blind Signatures. In 1982, Chaum [8] wanted to create an electronic version
of money, with similar properties, namely anonymity. He claimed that a way to
do it was to use the notion of electronic coins together with blind signatures. A
blind signature involves two participants, a user and the bank. The user wants
to get a coin signed by the bank in such a way that the bank cannot recognize
later either the coin nor the signature. He proposed a variation of the RSA
signature [41] and later Brands [5] proposed a variation of the Schnorr’s one.

Unfortunately, none of those schemes admits any security proof. Excepted
some theoretical propositions [9, 30, 22] which are totally impractical, we had to
wait 1996 to see blind signature schemes [34] provably secure. They were based
on the Okamoto [26] witness-indistinguishable protocols, and used the following
functions, for which collisions are provably difficult to compute:

– problem of representation = discrete logarithm: fp,g,h(r, s) = grhs mod p.
A collision reveals the discrete logarithm of h in basis g. Indeed,

fp,g,h(r, s) = fp,g,h(r
′, s′) =⇒ h = g(r′−r)/(s−s′) mod p.

– RSA problem/factorization: fN,a,e(r, s) = arse mod N .
For some well-chosen parameters, a collision reveals the e-th root of a modulo
N . Indeed,

fN,a,e(r, s) = fN,a,e(r
′, s′) =⇒ ar′−r = (s/s′)e mod N.

For a large enough prime e, Bezout’s equality provides the e-th root of a
modulo N . Otherwise, if e is a power of two and N a Blum integer, we can
get the factorization of N (cf. [28, 47]).
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Later, another well-known witness-indistinguishable problem has been used [36],
the modular square root : fN(x) = x2 mod N for any 0 ≤ x ≤ N/2, where

fN(x) = fN (y) =⇒ gcd(N, x − y) ∈ {factors of N}.

In those papers, it was claimed that the proposed blind signature schemes
were provably secure against parallel attacks. This means that the bank is guar-
anteed that after having given 10 dollars to a user, this latter cannot withdraw
more than 10 dollars.

However, the main drawback of all those schemes is a high computation
cost, even if they are practical, in comparison with the schemes claimed secure
in the standard model [9, 30, 22]. It is, by now, an important challenge for blind
signatures: a provably secure scheme which is also efficient, and particularly from
the signer point of view since he may have thousands of signatures to perform
at the same time.

1.2 Outline of the Paper

In this paper, we investigate, for the first time, the witness-indistinguishable
protocols provided by the discrete logarithm problem with a composite modulus.

We first recall the Girault’s scheme [17] together with the recent security
results of Poupard and Stern [38]. Unfortunately, as for the Schnorr’s scheme [43],
this scheme has been proven zero-knowledge only using fixed-size challenges.
Then many iterations are required to achieve a high security level. Here, we prove
the security of this scheme, even against active attacks, after only one iteration
of the protocol, using the witness-indistinguishable property [13]. That is an
important improvement for the practical security w.r.t. the previous results [38].
Furthermore, we formally prove the security even if we use small keys, and thus
for a very efficient scheme, whereas it was only heuristic. As previously said, the
security of the signature is therefore a straightforward corollary [37] and can be
considered as folklore.

Thereafter, we consider a blind signature scheme based on this problem, with
a formal proof of security relative to factorization. Besides the provable security,
the main property of this new scheme is efficiency, since it requires only one
multiplication (not a modular one), from the computational point of view of the
bank.

2 The Discrete Logarithm Problem

As shown by Feige and Shamir [13], the witness-indistinguishability (and even
witness-hiding property) of an identification scheme is enough to provide security
against active attacks. Pointcheval and Stern [37] proved that this property
further provides blind signature schemes secure against one-more forgeries under
parallel attacks.

The composite discrete logarithm problem provides such protocols, using the
function fN,g(x) = gx mod N for well-chosen N and g. Let us first define some
useful notions for the following before stating an important theorem.
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Definition 1 (α-strong prime). A prime integer p is said α-strong if p = 2r+1
where r is a large integer whose prime factors are all greater than α.

Definition 2 (α-strong RSA modulus). An integer N is called an α-strong
RSA modulus if N = pq where p and q are both α-strong primes.

Definition 3 (asymmetric basis). Let N = pq be an RSA modulus. A basis
g in

� ?
N is said asymmetric if the parities of Ord(g) are different in

� ?
p and

� ?
q.

In other words, an asymmetric basis is a quadratic residue in only one of both
subgroups

� ?
p and

� ?
q.

Theorem 4. Let N = pq be any α-strong RSA modulus, for some α > 2, and
g any asymmetric basis in

� ?
N, of order greater than α, then a collision of fN,g,

defined by x 7→ gx mod N , provides the factorization of N .

Proof. Let us denote by 2` the order of g in
� ?

N . One may remark that this
order is necessarily even since it is even in at least, but also exactly, one of the
subgroups, say

� ?
p. Furthermore, ` is odd and greater than α, since it should be

greater than α/2 > 1 and any prime factor of (p − 1)/2 or (q − 1)/2 is odd and
greater than α. Therefore,

g2` = 1 mod p and g2` = 1 mod q, but g` = −1 mod p and g` = 1 mod q.

Let us assume that we have a collision x < y for fN,g, fN,g(x) = fN,g(y). If we
note L = y − x, then 2`|L. By extracting the odd part b of L, L = 2ab, we get a
multiple of `. Then

g2b = 1 mod p and g2b = 1 mod q, but gb = −1 mod p and gb = 1 mod q.

Therefore, gb is a non-trivial square root of 1 in
� ?

N : gcd(gb − 1, n) ∈ {p, q}. ut

Then, we have a difficult problem for which two distinct solutions provide the
factorization of the modulus N .

3 Application to Cryptographic Protocols

We first consider the identification scheme, together with the derived signature.
Then, we focus on a new blind signature scheme.

3.1 Identification

Presentation. Let us first recall the Girault’s scheme [17] (see Figure 1).

– We have two security parameters k and k′, where k represents the size of the
challenge and k′ is related to the information leak, and a bound S for the
secret key. Then, we define R = 2k+k′

S. We use an RSA-modulus N = pq
and an element g ∈

� ?
N of high order. The prover chooses a random secret

key s ∈ {0, . . . , S − 1} and publishes v = g−s mod N .
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Prover Verifier

N = pq is an RSA modulus
g is an element of � ?

N of high order

secret : s ∈ {0, . . . , S − 1}
public : v = g−s mod N

r ∈ {0, . . . , R − 1}
x = gr mod N

x
−−−−−−−−−−−−→

e
←−−−−−−−−−−−− e ∈ {0, . . . , 2k − 1}

y = r + es
y

−−−−−−−−−−−−→

x
?
= gyve mod N

Fig. 1. Girault’s Identification Scheme

– The prover initiates the protocol choosing a random r ∈ {0, . . . , R − 1} and
sending the “commitment” x = gr mod N ; The verifier randomly chooses
a “challenge” e ∈ {0, . . . , 2k − 1}, and sends it to the prover; Finally, the
prover computes and sends y = r + es;

– The verifier can check whether x = gyve mod N , or not.

One cannot say this is a proof of knowledge of the discrete logarithm of v in
basis g modulo N , but one can state the following theorem in the particular case
where N is a 2k-strong RSA modulus (which includes the strong-RSA moduli
classically used in practice):

Theorem 5. Let N be a 2k-strong RSA modulus. If there exists an attacker A,
with running time bounded by T , that is able to be accepted with a probability
ε greater than 2 · 2−k, for a non-negligible fraction of v, then discrete loga-
rithms in basis g modulo N can be computed within an expected time bounded by
4T/ε × S/Ord(g).

Proof. Using the classical technique of extraction [14, 12, 37, 25], one can obtain,
from two valid proofs with the same commitment x, a pair (α, β) such that
vα = gβ mod N with 0 < α < 2k. Furthermore, this can be done in expected
time bounded by 4T/ε.

If one first runs this reduction with v = gγ mod N , for a randomly chosen γ
smaller than S, then one gets (α1, β1) such that

L = α1γ − β1 = 0 mod Ord(g),

which is nonzero with probability greater than (S/Ord(g) − 1)−1.
Then, one runs this reduction with v whose discrete logarithm x is wanted

and gets (α2, β2). Let us initialize `0 to the L obtained above. Thereafter, we
recursively compute `i+1 = `i/ gcd(α2, `i) until the gcd equals 1. The limit is
denoted by `. Since α2 < 2k, which is smaller than all the odd prime factors
of λ(N), and then of Ord(g), 2` is still a multiple of Ord(g). We then compute
y = βα−1

2 mod `, and one gets x = y + c` mod Ord(g), where c ∈ {0, 1}. One has
just to check the right value for c.
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On can remark that in the particular case where g is of maximal order λ(N),
a multiple of Ord(g) = λ(N) leads to the factorization of N [24]. ut

Theorem 6. This protocol is statistically zero-knowledge.

Proof. The reader may refer to the Poupard-Stern’s paper [38] or to the proof
of witness-indistinguishability presented below. ut

However, the zero-knowledge property of an interactive proof of knowledge is
a too strong property for identification purpose, and the main drawback is the
sequential iterations of the basic scheme to achieve a high security level. Witness-
indistinguishability [13] is therefore enough to ensure security against active
attacks and provides a much more efficient scheme.

Theorem 7. This protocol is statistically witness-indistinguishable.

Proof. We have to prove that the distribution of the communication tapes is
independent of the secret key used by the prover, even with a dishonest verifier.
Let s1 < s2 be two distinct secret keys in {0, . . . , S − 1} such that

g−s1 = g−s2 = v mod N.

We can show that the following distributions, where r is uniformly chosen in
{0, . . . , R − 1} and S the strategy, possibly probabilistic, of the attacker to get
the challenge e from x, are indistinguishable:

δ1 = {(x = gr mod N, e, y) | y = r + s1e, e = S(x)}

and δ2 = {(x = gr mod N, e, y) | y = r + s2e, e = S(x)}.

Indeed, for any triple (α, β, γ) such that α = gγvβ mod N , we can define

pi(α, β, γ) = Pr
(x,e,y)∈δi

[(x, e, y) = (α, β, γ)], for i = 1, 2.

If we denote by pα,β the probability for the strategy S to output β on the input
α, and if δ is the boolean function defined by δ(true) = 1 and δ(false) = 0,
then we get

pi(α, β, γ) = Pr
r

[α = gr mod N, β = S(α), γ = r + siβ]

= Pr
r

[α = gr mod N ] · pα,β · Pr
r

[γ = r + siβ|γ = r + siβ mod Ord(g)]

=
1

Ord(g)
· pα,β · δ(0 ≤ γ − siβ < R) ·

Ord(g)

R
.

An easy simplification leads to pα,β/R × δ(siβ ≤ γ < R + siβ). Therefore the
distance between both distributions δ1 and δ2 is the sum over all the triples
(α, β, γ) such that γ = log α − s1β mod Ord(g):

∆ =
∑

α,β

pα,β

R
·
2(s2 − s1)β

Ord(g)
≤

2S

R · Ord(g)
×

∑

α,β

β · pα,β.
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By definition of the probability pα,β, it is clear that for any α,
∑

β pα,β = 1,

and therefore the sum over all possible α is equal to Ord(g). Since β < 2k and
R = 2k+k′

S, we get

∆ ≤
2S · 2k

R
=

2

2k′ .

ut

Thanks to this witness-indistinguishability, if we furthermore make g to be an
asymmetric basis in

� ?
N , we get an efficient and secure identification scheme in

only three flows.

Theorem 8. Let N be a 2k-strong RSA modulus and g an asymmetric basis of
high order in

� ?
N . If S ≥ 2 · Ord(g), this protocol is secure against active attacks

relative to the factorization of N .

Proof. In order to prove the security of the identification scheme against active
attacks, we choose a random secret key s < S. We let the attacker verify some
interactions. Then, we assume that she succeeds in her impersonation with prob-
ability ε. Using the first step of the proof of the Theorem 5, we get a multiple
L of the order of g with probability greater than one half. Then, as in the proof
of the Theorem 4, since g is an asymmetric basis, one gets the factorization of
N . ut

Remark 9. It is important to remark that we have only proven that an imper-
sonation under an active attack is harder than the factorization, whereas the
security of the iterated protocol has already been proven relative to the com-
posite discrete logarithm, using the zero-knowledge property.

Nevertheless, when we have the factorization of N , the remaining security
is the same as in the Schnorr’s identification scheme [43, 44]: heuristically, the
discrete logarithm in subgroups of prime orders, which is still hard to solve.

Furthermore, the security result remains even if the challenge grows in order
to get a high security level. Which is not the case for the zero-knowledge property.

Reduction Costs. Let us compare the reduction costs to obtain two answers
from the impersonator. With the Poupard and Stern’s proof [38], this leads with
some more computations to the discrete logarithm of v, with our proof, this
immediately leads to the factorization of N .

Poupard and Stern’s Reduction. We assume that we use a k-bit challenge, and
there exists an impersonator who succeeds with probability ε ≥ 2 · 2−k. Then,
one can easily show [25, 37] that after less than 4/ε iterations, we get two valid
answers with probability greater than 1/2. As a consequence, a passive imper-
sonation, with probability ε greater than 2 · 2−k within time T , can be used
to find two distinct answers for a same commitment within an expected time
bound 4T/ε. On the other hand, an impersonation, with probability ε greater
than 2 · 2−k after ` active attacks, within time T , can be used to find two distinct
answers for a same commitment within a time bound (4/ε + ` × 2k) · T . because
of the simulation which requires many resets. It is almost equal to 2k`T .
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Prover Verifier

N = pq is a 2k-strong RSA modulus

g is an asymmetric basis of � ?
N of order greater than 2k

H is a hash function over 80 bits
secret : s ∈ {0, . . . , S − 1}
public : v = g−s mod N

r ∈ {0, . . . , R − 1}
x = gr mod N

h = H(x)
h

−−−−−−−−−−−−→
e

←−−−−−−−−−−−− e ∈ {0, . . . , 2k − 1}

y = r + es
y

−−−−−−−−−−−−→

h
?
= H(gyve mod N)

Fig. 2. Optimized Identification Scheme

Our Reduction. Using the witness-indistinguishable property, the reduction us-
ing a passive impersonation has the same complexity. On the other hand, an im-
personation with probability ε greater than 2 · 2−k after ` active attacks within
time T can be used to find two distinct answers for a same commitment within
an expected time bound 4T/ε, since no simulation is required.

Summary. An impersonation with probability ε, greater than 2 × 2−k, after
` > 0 active attacks can help to compute discrete logarithms within a time 2k`T
(thanks to the zero-knowledge property) or to factor N within a time 4T/ε
(thanks to the witness-indistinguishable property). This latter is much smaller
than the former. Therefore, a high security level against active attacks can only
be related to factorization: for example, with k = 30 and ` = 240, the reduction
cost is less than 230 from factorization, against 270 from discrete logarithm, which
has no practical meaning!

Communication Load. With the presented proof, S can be chosen over very
few hundreds of bits, provided S ≥ 2 · Ord(g) (namely 160 bits to avoid baby
steps–giant steps attacks [46]). Furthermore, the communication load can be
optimized using the Girault and Stern’s technique [18] as it is presented on
Figure 2. Indeed, a hash function that returns 80-bit digests requires 264 com-
putations to expect a 5-collision. Then, with a k + 3-bit challenge, the security
level remains 2−k. Both remarks lead to very efficient and low-cost protocols (see
Figure 2).

3.2 Signature

We can of course derive this identification scheme into a signature scheme Σ
(see Figure 3), using a hash function to generate the random challenge. The
security against existential forgeries under no-message attacks of the signature
scheme is clear in the random oracle model [12, 26, 25, 37]. Because of the witness-
indistinguishable property, we need not any simulation for the security against
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Initialisation

N = pq is a 2k-strong RSA modulus

g is an asymmetric basis of � ?
N of order greater than 2k

Key Generation

secret key : s ∈ {0, . . . , S − 1}
public key: v = g−s mod N

Signature of m

choose r ∈ {0, . . . , R− 1} and compute x = gr mod N

get e = H(m,x) and compute y = r + es

Σ(m) = (e,y)

Verification of (m, e, y): e
?
= H(m,gyve mod N)

Fig. 3. Signature Scheme

adaptive chosen-message attacks. In fact, we can use a real signer with a secret
key s1 and use the forking lemma [37], or the ID reduction lemma [25], to extract
a second one from the attacker. As previously seen for the identification scheme,
if S ≥ 2 · Ord(g), with high probability, we get the factorization of the modulus
N .

Theorem 10. With S ≥ 2 · Ord(g), an existential forgery under an adaptive
chosen-message attack of this scheme is harder than the factorization.

3.3 Blind Signature

Now, we focus on a new blind signature scheme based on the previously seen
problem. The construction of the blind signature is not straightforward because
the initialization of this scheme requires the security parameters to be carefully
chosen. However, the resulting scheme is very interesting from the bank point
of view. Indeed, its computational load is minimal.

Presentation. Because of the witness-indistinguishable property seen above,
we hope to get a blind signature scheme at least more secure than factorization.
Let first present this scheme (see Figure 4), where k is the security parameter
and k′ the information leak parameter: we define R = 2k+k′

S and M = 2k+2k′
S,

where S ≥ 2 · Ord(g) defines the range set of the secret key.

Security. First, we have to prove that this scheme is really blind, i.e. even
a dishonest bank cannot link later a user and a message/signature pair. This
is a fundamental property required by anonymous protocols (electronic cash,
electronic voting). We want the bank not to be able to recognize a user even
with the message and the signature.

Theorem 11. This scheme is a statistically blind signature scheme.

Proof. The output of this protocol is a signature which has been considered in
the previous section and proven secure. Then, we only have to prove that the
protocol is “blind”.
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Bank User

N = pq is a 2k-strong-RSA modulus

g is an asymmetric basis of � ?
N of order greater than 2k

secret : s ∈ {0, . . . , S − 1}
public : v = g−s mod N

r ∈ {0, . . . , R − 1}
x = gr mod N

x
−−−−−−−−−−−−→

e
←−−−−−−−−−−−−

β ∈ {0, . . . , M − 1},

h = gβ mod N ,

γ ∈ {−2k, . . . , 2k}
α = xhvγ mod N

ε = f(m, α)
e = ε− γ

until e ∈ {0, . . . , 2k − 1}

y = r + es
y

−−−−−−−−−−−−→

x
?
= gyve mod N

ρ = y + β

α
?
= gρvε mod N

Fig. 4. Blind Signature Scheme

Let (m, α, ε, ρ) be a valid signature obtained from an execution of the “blind
signature scheme” after one of both interactions (x1, e1, y1) and (x2, e2, y2). Is it
possible to know, with non-negligible advantage, from which one it comes? To
know that, we have to study the following probabilities for i = 1, 2:

pi(α, ε, ρ) = Pr
β,γ

[α = xig
βvγ , ε = ei + γ and ρ = yi + β | 0 ≤ ε − γ ≤ 2k − 1].

For both values of i,

pi(α, ε, ρ) = Pr
β,γ

[γ = ε − ei and β = ρ − yi | 0 ≤ ε − γ ≤ 2k − 1]

=
δ(0 ≤ ρ − yi ≤ M − 1)

M
× 2−k = δ(yi ≤ ρ ≤ M + yi − 1)/2kM.

Then, the distance between both distributions is equal to

∆ =
∑

ε

2|y2 − y1|

2kM
≤ 2 ×

∑

ε

2kS(1 + 2k′
)

2kM
≤ 2 ×

1 + 2k′

22k′ ≤
3

2k′ .

This distance is therefore negligible into the information leak parameter k′. ut

Now, we also claim the following security result:

Theorem 12. A “one-more” forgery under a parallel attack against this blind
signature scheme is harder than the factorization of N , in the random oracle
model.

Proof. The proof uses the same technique as [37], since it just takes advantage of
the witness-indistinguishability. We therefore refer the reader to this paper. ut
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Scheme Identification Signature Blind Signature

Modulus |N | = 1024 bits with |p| = |q| = 512 bits

Ord(g) 160 bits

Security
parameter

k = 24 k = 128

Information
leak parameter

k′ = 64

|S| (> |Ord(g)|) 168 bits

|R| (= |S| + k + k′) 256 bits 360 bits

|M | (= |S| + k + 2k′) 424 bits

Online Cost
(prover)

Mult(24,168)
+ Add(256,192)

Mult(128,168)
+ Add(360,296)

Communication
360 bits

(45 bytes)

Signature Size
488 bits

(61 bytes)
552 bits

(69 bytes)

Fig. 5. Efficiency of the Proposed Schemes

4 Security and Efficiency

For practical purpose, it seems to be convenient to choose a 1024-bit modulus N
and an asymmetric basis g of 160-bit long order. The information leak parameter
k′ can be fixed to 64, and the security parameter to 24 or 128 depending on the
situation (see Figure 5).

Therefore, the security provably relies on the factorization of the 1024-bit
modulus (which is assumed to be infeasible). In case of discovery of a new and
efficient algorithm to factor large numbers, the security collapses at the same
level as the Schnorr schemes: the discrete logarithms in subgroups of prime order
(unproven for identification, but provable for signatures).

From the prover point of view, these protocols are very efficient. Indeed, if we
only take in account the computation he has to do in real-time, it only consists
of one multiplication and one addition over the natural integers

�
. Furthermore,

the used numbers are very small.
As one can remark, since the commitment can be precomputed, the prover

has only one multiplication and one addition to perform during a proof (identifi-
cation/signature/blind signature). For the recommended parameters, for a blind
signature (the most costly scheme), the bank has just to multiply a 128-bit in-
teger by a 168-bit one and to add the result to a 360-bit integer. The important
gain versus the Schnorr schemes is the suppression of the modular reduction.

Then, at the cost of a little storage, the bank can blindly sign millions of mes-
sages per second, which can be required in a huge electronic cash application or
electronic vote. Furthermore, thanks to the security result, parallel withdrawals
can be performed securely.
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5 Conclusion

In this paper, we have presented many schemes based on the composite dis-
crete logarithm problem. From identification to blind signature, we have proven
efficient schemes to be at least as secure as factorization.

The main contributions of this paper, vs. the Poupard and Stern’s one [38],
are the possible use of small secret keys and the security proof of the three-
pass identification scheme even with large challenges, thanks to the witness-
indistinguishability of the protocol. Both properties lead to the most efficient
identification scheme known for the moment, with provable security (namely
related to factorization). The non-interactive version, using a hash function [12],
thus provides a very efficient signature scheme more secure than factorization,
outputting very short signatures (approximatively 60 bytes).

Furthermore we provide a new blind signature scheme really efficient from
the bank point of view. Indeed, the security result allows parallel withdrawals
and the low computational load of the bank provides a very high rate. Therefore,
this scheme is very well suited for very huge scale applications with thousands
of users.
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