1 Secure Function Evaluation
 ■ Introduction
 ■ Examples
 ■ Malicious Setting

2 Oblivious Transfer
 ■ Definition
 ■ Examples

3 Garbled Circuits
 ■ Introduction
 ■ Garbled Circuits
 ■ Correctness
Outline

1 Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting

2 Oblivious Transfer

3 Garbled Circuits
Secure Function Evaluation

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$, for public functions f_i so that

- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- \ldots and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$, for public functions f_i so that

- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- \ldots and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Secure Function Evaluation

t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs.

Note that the knowledge of y_i can leak some information on the x_j’s.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from t users.
- **Malicious users**: the adversary controls a fixed set of t players.
- **Dynamic adversary**: the adversary dynamically chooses the (up to) t players it controls.
Secure Function Evaluation

\[t \text{-Privacy} \]

If \(t \) parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs.

Note that the knowledge of \(y_i \) can leak some information on the \(x_j \)'s.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from \(t \) users.
- **Malicious users**: the adversary controls a fixed set of \(t \) players.
- **Dynamic adversary**: the adversary dynamically chooses the (up to) \(t \) players it controls.
1 Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting

2 Oblivious Transfer

3 Garbled Circuits
Electronic Voting

Private Evaluation of the Sum

For all i: $x_i \in \{0, 1\}$ and $f_i(x_1, \ldots, x_n) = \sum_j x_j$

Example (Homomorphic Encryption)

- P_i encrypts $C_i = E(x_i)$ with an additively homomorphic encryption scheme
- They all compute $C = E(\sum x_i)$
- They jointly decrypt C to get $y = \sum x_i$ using a distributed decryption
Electronic Voting

Private Evaluation of the Sum

For all i: $x_i \in \{0, 1\}$ and $f_i(x_1, \ldots, x_n) = \sum_j x_j$

Example (Homomorphic Encryption)

- P_i encrypts $C_i = E(x_i)$ with an additively homomorphic encryption scheme
- They all compute $C = E(\sum x_i)$
- They jointly decrypt C to get $y = \sum x_i$ using a distributed decryption
Privacy: Limitations

In case of unanimity (i.e. $\sum x_i = n$), one learns all the x_i’s, even in the honest-but-curious setting.

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner.

Replay Attacks

A malicious adversary could try to amplify P_1’s vote, replaying its message C_1 by t corrupted players: this can leak P_1’s vote x_1.

This can be avoided with non-malleable encryption.
Electronic Voting

Privacy: Limitations

In case of unanimity (i.e. $\sum x_i = n$), one learns all the x_i’s, even in the honest-but-curious setting.

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner.

Replay Attacks

A malicious adversary could try to amplify P_1’s vote, replaying its message C_1 by t corrupted players: this can leak P_1’s vote x_1.

This can be avoided with non-malleable encryption.
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Equality Test

Alice owns a value x and Bob owns a value y, in the end, they both learn whether $x = y$ or not

Yao Millionaires’ Problem

Alice owns an integer x and Bob owns an integer y, in the end, they both learn whether $x \leq y$ or not
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Equality Test

Alice owns a value x and Bob owns a value y, in the end, they both learn whether $x = y$ or not

Yao Millionaires’ Problem

Alice owns an integer x and Bob owns an integer y, in the end, they both learn whether $x \leq y$ or not
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Equality Test

Alice owns a value x and Bob owns a value y, in the end, they both learn whether $x = y$ or not

Yao Millionaires’ Problem

Alice owns an integer x and Bob owns an integer y, in the end, they both learn whether $x \leq y$ or not
Equality Test

Alice owns a value $x \in [A, B]$ and Bob owns a value $y \in [A, B]$, in the end, they both learn whether $x = y$ or not

With Homomorphic Encryption

- Alice encrypts $C = E(x)$ with an additively homomorphic encryption scheme
- Bob computes $C' = E(r(x - y))$, for a random element r
- Alice computes $C'' = E(rr'(x - y))$, for a random element r'
- They jointly decrypt C'': the value is 0 iff $x = y$ (or random)
Equality Test

Alice owns a value \(x \in [A, B] \) and Bob owns a value \(y \in [A, B] \), in the end, they both learn whether \(x = y \) or not.

With Homomorphic Encryption

- Alice encrypts \(C = E(x) \) with an additively homomorphic encryption scheme.
- Bob computes \(C' = E(r(x - y)) \), for a random element \(r \).
- Alice computes \(C'' = E(rr'(x - y)) \), for a random element \(r' \).
- They jointly decrypt \(C'' \): the value is 0 iff \(x = y \) (or random).
Yao Millionaires’ Problem

Alice owns an integer $x \in [0, 2^n]$ and Bob owns an integer $y \in [0, 2^n]$, in the end, they both learn whether $x \leq y$ or not.

Theorem [Lin-Tzeng – 2005]

Given $x = x_{n-1} \ldots x_0, y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

\[
T_x^1 = \{x_{n-1} \ldots x_i | x_i = 1\} \quad T_y^0 = \{y_{n-1} \ldots y_{i+1} 1 | y_i = 0\}
\]

\[
x > y \iff T_x^1 \cap T_y^0 \neq \emptyset
\]

\[
x > y \iff \exists ! i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j)
\]
\[
\iff \exists ! i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j)
\]
\[
\iff \exists ! i < n, (y_i = 0) \land (x_{n-1} \ldots x_i = y_{n-1} \ldots y_{i+1} 1)
\]
\[
\iff |T_x^1 \cap T_y^0| = 1
\]
Yao Millionaires’ Problem

Alice owns an integer $x \in [0, 2^n]$ and Bob owns an integer $y \in [0, 2^n]$, in the end, they both learn whether $x \leq y$ or not.

Theorem

[Lin-Tzeng – 2005]

Given $x = x_{n-1} \ldots x_0, y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

$$T^1_x = \{x_{n-1} \ldots x_i | x_i = 1\}, \quad T^0_y = \{y_{n-1} \ldots y_{i+1}1 | y_i = 0\}$$

$$x > y \iff T^1_x \cap T^0_y \neq \emptyset$$

$$x > y \iff \exists i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j)$$
$$\iff \exists i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j)$$
$$\iff \exists i < n, (y_i = 0) \land (x_{n-1} \ldots x_i = y_{n-1} \ldots y_{i+1}1)$$
$$\iff |T^1_x \cap T^0_y| = 1$$
Yao Millionaires’ Problem

We fill and order the sets by length: $\bar{T}_1^i = \{X_i\}$ and $\bar{T}_0^i = \{Y_i\}$ where for $i = 0, \ldots n$:

- if $x_i = 0$, $X_i = 2^n$, otherwise $X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}]$
- if $y_i = 1$, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \ldots y_{i+1}1 \in [0, 2^{n-i}]$

$x > y \iff \exists! i < n, X_i = Y_i$

With Homomorphic Encryption

- Alice encrypts $C_i = E(\bar{T})$ with an additively homomorphic encryption scheme
- Bob computes $C'_i = E(r_i(\bar{T}_1 - \bar{T}_0))$, for random elements r_i and sends them in random order
- Alice computes $C''_i = E(r_i r'_i(\bar{T}_1 - \bar{T}_0))$, for random elements r'_i
- They jointly decrypt the C''_i's: one value is 0 iff $x > y$
Yao Millionaires’ Problem

We fill and order the sets by length: $\bar{T}_x^1 = \{X_i\}$ and $\bar{T}_y^0 = \{Y_i\}$ where for $i = 0, \ldots, n$:

- if $x_i = 0$, $X_i = 2^n$, otherwise $X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}]$
- if $y_i = 1$, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \ldots y_{i+1}1 \in [0, 2^{n-i}]$

$x > y \iff \exists ! i < n, X_i = Y_i$

With Homomorphic Encryption

- Alice encrypts $C_i = E(X_i)$ with an additively homomorphic encryption scheme
- Bob computes $C_i' = E(r_i(X_i - Y_i))$, for random elements r_i and sends them in random order
- Alice computes $C_i'' = E(r_ir_i'(X_i - Y_i))$, for random elements r_i'
- They jointly decrypt the C_i'''s: one value is 0 iff $x > y$
Outline

1 Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting

2 Oblivious Transfer

3 Garbled Circuits
GMW Compiler

- Commitment of the inputs
- Secure coin tossing
- Zero-knowledge proofs of correct behavior
Outline

1 Secure Function Evaluation

2 Oblivious Transfer
 - Definition
 - Examples

3 Garbled Circuits
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Oblivious Transfer

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing:

$x = (x_0, x_1)$ and $y = b$, then $f((x_0, x_1), b) = x_b$ and $g((x_0, x_1), b) = \bot$

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Oblivious Transfer [Rabin – 1981]

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing:

$$x = (x_0, x_1) \text{ and } y = b, \text{ then } f((x_0, x_1), b) = x_b \text{ and } g((x_0, x_1), b) = \bot$$

Oblivious Transfer is equivalent to Secure 2-Party Computation [Kilian – STOC 1988]

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Oblivious Transfer

Alice owns two values x_0, x_1 and Bob owns a bit $b \in \{0, 1\}$, so that in the end, Bob learns x_b and Alice gets nothing:

$x = (x_0, x_1)$ and $y = b$, then $f((x_0, x_1), b) = x_b$ and $g((x_0, x_1), b) = \perp$

Oblivious Transfer is equivalent to **Secure 2-Party Computation**

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation
1 Secure Function Evaluation

2 Oblivious Transfer
 - Definition
 - Examples

3 Garbled Circuits
Oblivious Transfer

Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\):

- Alice chooses \(c \leftarrow R G\) and sends it to Bob.
- Bob chooses \(k \leftarrow R \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice.
- Alice checks \(pk_0 \cdot pk_1 = c\) and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal:
 \[
 C_i \leftarrow g^{r_i} \quad \text{and} \quad C'_i \leftarrow x_i \cdot pk_i^{r_i}, \quad \text{for} \quad r_i \leftarrow R \mathbb{Z}_p
 \]
- Bob can decrypt \((C_b, C'_b)\) using \(k\).

Because of the random \(c\) (unknown discrete logarithm), Bob should not be able to infer any information about \(x_{1-b}\). This is provably secure in the honest-but-curious setting.
Oblivious Transfer

Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\)

- Alice chooses \(c \xleftarrow{R} G\) and sends it to Bob
- Bob chooses \(k \xleftarrow{R} \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice
- Alice checks \(pk_0 \cdot pk_1 = c\) and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal:
 \[
 C_i \leftarrow g^{r_i} \quad \text{and} \quad C_i' \leftarrow x_i \cdot pk_i^{r_i}, \quad \text{for} \quad r_i \xleftarrow{R} \mathbb{Z}_p
 \]
- Bob can decrypt \((C_b, C'_b)\) using \(k\)

Because of the random \(c\) (unknown discrete logarithm), Bob should not be able to infer any information about \(x_{1-b}\)

This is provably secure in the honest-but-curious setting
Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting \((\mathbb{G}, g, p)\), for \(x_0, x_1 \in \mathbb{G}\)

- Alice chooses \(c \xleftarrow{\$} \mathbb{G}\) and sends it to Bob
- Bob chooses \(k \xleftarrow{\$} \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice
- Alice checks \(pk_0 \cdot pk_1 = c\) and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal:
 \[C_i \leftarrow g^{r_i} \text{ and } C'_i \leftarrow x_i \cdot pk_i^{r_i}, \text{ for } r_i \xleftarrow{\$} \mathbb{Z}_p \]
- Bob can decrypt \((C_b, C'_b)\) using \(k\)

Because of the random \(c\) (unknown discrete logarithm), Bob should not be able to infer any information about \(x_{1-b}\)

This is provably secure in the **honest-but-curious setting**
Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting \((\mathbb{G}, g, p)\), for \(x_0, x_1 \in \mathbb{G}\)

- Bob chooses \(r, s, t \xleftarrow{\text{R}} \mathbb{Z}_p\), sets \(X \leftarrow g^r, Y \leftarrow g^s, Z_b \leftarrow g^{rs}, Z_{1-b} \leftarrow g^t\), and sends \((X, Y, Z_0, Z_1)\) to Bob

- Alice checks \(Z_0 \neq Z_1\), and re-randomizes the tuples:
 \(T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0})\) and
 \(T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1})\), for \(u_0, v_0, u_1, v_1 \xleftarrow{\text{R}} \mathbb{Z}_p\)

- Alice encrypts \(x_i\) under \(T_i\): \(C_i = Y'_i\) and \(C'_i = x_i \cdot Z'_i\)

- Bob can decrypt \((C_b, C'_b)\) using \(r\)

The re-randomization keeps the DH-tuple \(T_b\), but perfectly removes information in \(T_{1-b}\). This is provably secure in the malicious setting.
Oblivious Transfer

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting (\mathbb{G}, g, p), for $x_0, x_1 \in \mathbb{G}$

- Bob chooses $r, s, t \xleftarrow{\hspace{1cm}} \mathbb{Z}_p$, sets $X \leftarrow g^r$, $Y \leftarrow g^s$, $Z_b \leftarrow g^{rs}$, $Z_{1-b} \leftarrow g^t$, and sends (X, Y, Z_0, Z_1) to Bob
- Alice checks $Z_0 \neq Z_1$, and re-randomizes the tuples:
 - $T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0})$ and
 - $T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1})$, for $u_0, v_0, u_1, v_1 \xleftarrow{\hspace{1cm}} \mathbb{Z}_p$
- Alice encrypts x_i under T_i: $C_i = Y'_i$ and $C'_i = x_i \cdot Z'_i$
- Bob can decrypt (C_b, C'_b) using r

The re-randomization keeps the DH-tuple T_b, but perfectly removes information in T_{1-b}
Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting \((\mathbb{G}, g, p)\), for \(x_0, x_1 \in \mathbb{G}\)

- Bob chooses \(r, s, t \xleftarrow{\$} \mathbb{Z}_p\), sets \(X \leftarrow g^r, Y \leftarrow g^s, Z_b \leftarrow g^{rs}, Z_{1-b} \leftarrow g^t\), and sends \((X, Y, Z_0, Z_1)\) to Bob

- Alice checks \(Z_0 \neq Z_1\), and re-randomizes the tuples:
 \[T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0}) \]
 \[T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1}) \]
 for \(u_0, v_0, u_1, v_1 \xleftarrow{\$} \mathbb{Z}_p\)

- Alice encrypts \(x_i\) under \(T_i\): \(C_i = Y'_i\) and \(C'_i = x_i \cdot Z'_i\)

- Bob can decrypt \((C_b, C'_b)\) using \(r\)

The re-randomization keeps the DH-tuple \(T_b\),
but perfectly removes information in \(T_{1-b}\)
This is provably secure in the **malicious setting**
Outline

1 Secure Function Evaluation

2 Oblivious Transfer

3 Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness
Boolean circuit, Alice’s inputs \((x_1, x_2, x_3)\), and Bob’s inputs \((y_1, y_2, y_3)\):

They both learn \(z\) in the end, but nothing else.
Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness
Alice converts the circuit into a generic circuit: 1-input or 2-input gates

\[A = \begin{bmatrix} 1 & 0 \end{bmatrix} \] not
\[B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \] and
\[C = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \] or
\[D = \begin{bmatrix} 0 & 1 \end{bmatrix} \] line
\[E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \] or
\[F = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \] and
\[G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \] or
Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys $I_A^0, I_A^1, O_A^0, O_A^1$

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$$

2-Input Garbled Gate

For the gate B (and): 8 random secret keys $I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1$

$$B = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0 \| J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 \| J_B^1, O_B^0)$$

$$C_B^{10} = \text{Encrypt}(I_B^1 \| J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 \| J_B^1, O_B^1)$$
Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys $I_A^0, I_A^1, O_A^0, O_A^1$

$A = \begin{bmatrix} 1 & 0 \end{bmatrix}: C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$

2-Input Garbled Gate

For the gate B (and): 8 random secret keys $I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1$

$B = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}: C_B^{00} = \text{Encrypt}(I_B^0||J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0||J_B^1, O_B^0)$

$C_B^{10} = \text{Encrypt}(I_B^1||J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1||J_B^1, O_B^1)$
Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys $I_A^0, I_A^1, O_A^0, O_A^1$

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$$

2-Input Garbled Gate

For the gate B (and): 8 random secret keys $I_B^0, I_B^1, J_B^0, J_B^1, O_B^0, O_B^1$

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 || J_B^1, O_B^0)$$

$$C_B^{10} = \text{Encrypt}(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 || J_B^1, O_B^1)$$
Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate

Alice publishes the keys corresponding to her inputs:

- for x_1, she sends $I_{D}^{x_1}$
- for x_2, she sends $J_{B}^{x_2}$
- for x_3, she sends $J_{C}^{x_3}$
Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate.

Alice publishes the keys corresponding to her inputs:

- for x_1, she sends $I_{D}^{x_1}$
- for x_2, she sends $J_{B}^{x_2}$
- for x_3, she sends $J_{C}^{x_3}$
Bob’s Inputs

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix}: C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$$

Oblivious Transfer

Alice owns I_A^0, I_A^1 and Bob owns $y_1 \in \{0, 1\}$

- Using an OT, Bob gets $I_A^{y_1}$, while Alice learns nothing
- From the ciphertexts $(C_A^b)_b$, Bob gets $O_A^{y_A}$
Bob’s Inputs

\[A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0) \]

Oblivious Transfer

Alice owns \(I_A^0, I_A^1 \) and Bob owns \(y_1 \in \{0, 1\} \)

- Using an OT, Bob gets \(I_A^{y_1} \), while Alice learns nothing
- From the ciphertexts \((C_A^b)_b \), Bob gets \(O_A^{y_A} \)
Bob’s Inputs

\[B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0 \| J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 \| J_B^1, O_B^0) \]
\[C_B^{10} = \text{Encrypt}(I_B^1 \| J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 \| J_B^1, O_B^1) \]

Oblivious Transfer

Alice owns \(I_B^0, I_B^1 \), and Bob owns \(y_2 \in \{0, 1\} \)
- Using an OT, Bob gets \(I_B^{y_2} \), while Alice learns nothing
- Bob additionally knows \(J_B^{x_2} \)
- From the ciphertexts \((C_B^{bb'})_{bb'} \), Bob gets \(O_B^{y_B} \)
Bob’s Inputs

\[B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \]

\[C_B^{00} = \text{Encrypt}(I_B^0 || J_B^0, O_B^0) \]
\[C_B^{10} = \text{Encrypt}(I_B^1 || J_B^0, O_B^0) \]

Oblivious Transfer

Alice owns \(I_B^0, I_B^1 \), and Bob owns \(y_2 \in \{0, 1\} \)

- Using an OT, Bob gets \(I_B^{y_2} \), while Alice learns nothing
- Bob additionally knows \(J_B^{x_2} \)
- From the ciphertexts \((C_B^{bb'})_{bb'} \), Bob gets \(O_B^{y_B} \)
Internal Garbled Gates

For the gate \(E \) (or): 2 new random secret keys \(O_0^E, O_1^E \)
while \(I_0^E \leftarrow O_0^A, I_1^E \leftarrow O_1^A, J_0^E \leftarrow O_0^B, J_1^E \leftarrow O_1^B \)

\[
E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_{E}^{00} = \text{Encrypt}(I_0^E || J_0^E, O_0^E) \quad C_{E}^{01} = \text{Encrypt}(I_0^E || J_1^E, O_1^E) \\
C_{E}^{10} = \text{Encrypt}(I_1^E || J_0^E, O_1^E) \quad C_{E}^{11} = \text{Encrypt}(I_1^E || J_1^E, O_1^E)
\]
Internal Garbled Gates

For the gate E (or): 2 new random secret keys O_E^0, O_E^1
while $I_E^0 \leftarrow O_A^0$, $I_E^1 \leftarrow O_A^1$, $J_E^0 \leftarrow O_B^0$, $J_E^1 \leftarrow O_B^1$

$E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$:
$C_E^{00} = Encrypt(I_E^0 || J_E^0, O_E^0)$
$C_E^{01} = Encrypt(I_E^0 || J_E^1, O_E^1)$
$C_E^{10} = Encrypt(I_E^1 || J_E^0, O_E^1)$
$C_E^{11} = Encrypt(I_E^1 || J_E^1, O_E^1)$
Evaluation of Internal Gates

$$E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$C_{E}^{00} = \text{Encrypt}(I_{E}^{0} \parallel J_{E}^{0}, O_{E}^{0})$$
$$C_{E}^{01} = \text{Encrypt}(I_{E}^{0} \parallel J_{E}^{1}, O_{E}^{1})$$
$$C_{E}^{10} = \text{Encrypt}(I_{E}^{1} \parallel J_{E}^{0}, O_{E}^{1})$$
$$C_{E}^{11} = \text{Encrypt}(I_{E}^{1} \parallel J_{E}^{1}, O_{E}^{1})$$

Evaluation of Gate E

Bob knows $I_{E}^{y_{A}} = O_{A}^{y_{A}}$ and $J_{E}^{y_{B}} = O_{B}^{y_{B}}$

From the ciphertexts $(C_{E}^{bb'})_{bb'}$, Bob gets $O_{E}^{y_{E}}$
Evaluation of Internal Gates

\[E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : \]
\[C_E^{00} = \text{Encrypt}(I_E^0 || J_E^0, O_E^0) \quad C_E^{01} = \text{Encrypt}(I_E^0 || J_E^1, O_E^1) \]
\[C_E^{10} = \text{Encrypt}(I_E^1 || J_E^0, O_E^1) \quad C_E^{11} = \text{Encrypt}(I_E^1 || J_E^1, O_E^1) \]

Evaluation of Gate E

Bob knows \(I_E^{y_A} = O_A^{y_A} \) and \(J_E^{y_B} = O_B^{y_B} \)

From the ciphertexts \((C_E^{bb'})_{bb'} \), Bob gets \(O_E^{y_E} \)
Output Garbled Gates

For the gate G (or):

\[I_0^G \leftarrow O_0^F, \ I_1^G \leftarrow O_1^F, \ J_0^G \leftarrow O_0^E, \ J_1^G \leftarrow O_1^E \]

\[
G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad C_{G}^{00} = \text{Encrypt}(I_0^G || J_0^G, 0) \quad C_{G}^{01} = \text{Encrypt}(I_0^G || J_1^G, 1) \\
C_{G}^{10} = \text{Encrypt}(I_1^G || J_0^G, 1) \quad C_{G}^{11} = \text{Encrypt}(I_1^G || J_1^G, 1)
\]
Output Garbled Gates

For the gate G (or):

\[
\begin{align*}
I_G^0 & \leftarrow O_E^0, \quad I_G^1 \leftarrow O_E^1, \quad J_G^0 \leftarrow O_F^0, \quad J_G^1 \leftarrow O_F^1 \\
G &= \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : \quad C_G^{00} = \text{Encrypt}(I_G^0 \parallel J_G^0, 0) \\
& \quad C_G^{01} = \text{Encrypt}(I_G^0 \parallel J_G^1, 1) \\
& \quad C_G^{10} = \text{Encrypt}(I_G^1 \parallel J_G^0, 1) \\
& \quad C_G^{11} = \text{Encrypt}(I_G^1 \parallel J_G^1, 1)
\end{align*}
\]
Evaluation of Internal Gates

\[G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : \]

- \(C^0_0^0 = \text{Encrypt}(I^0_0 \| J^0_0, 0) \)
- \(C^0_0^1 = \text{Encrypt}(I^0_0 \| J^1_0, 1) \)
- \(C^1_0^0 = \text{Encrypt}(I^1_0 \| J^0_0, 1) \)
- \(C^1_0^1 = \text{Encrypt}(I^1_0 \| J^1_0, 1) \)

Evaluation of Gate G

Bob knows \(I^y_E = O^y_E \) and \(J^y_F = O^y_F \)

From the ciphertexts \((C^{bb'}_G)_{bb'} \), Bob gets \(z \in \{0, 1\} \)

Bob can then transmit \(z \) to Alice
Evaluation of Internal Gates

\[G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_G^{00} = \text{Encrypt}(I_G^0 || J_G^0, 0) \quad C_G^{01} = \text{Encrypt}(I_G^0 || J_G^1, 1) \]
\[C_G^{10} = \text{Encrypt}(I_G^1 || J_G^0, 1) \quad C_G^{11} = \text{Encrypt}(I_G^1 || J_G^1, 1) \]

Evaluation of Gate G

Bob knows \(I_G^{y_E} = O_G^{y_E} \) and \(J_G^{y_F} = O_G^{y_F} \)

From the ciphertexts \((C_G^{bb'})_{bb'}\), Bob gets \(z \in \{0, 1\} \)

Bob can then transmit \(z \) to Alice
Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow \text{Redundancy is added to the plaintext} \]
 \[\Rightarrow \text{(or authenticated encryption)} \]

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct

- Alice plays the oblivious transfer protocols with correct inputs

- Bob sends back the correct value \(z \)
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow\] Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
- Alice plays the oblivious transfer protocols with correct inputs
- Bob sends back the correct value z
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow \text{Redundancy is added to the plaintext} \]
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow \text{Cut-and-choose technique} \]
- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow \text{Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT} \]
- Bob sends back the correct value \(z \)
 \[\Rightarrow \text{Random tags are appended to the final results 0 and 1 that Bob cannot guess} \]
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 ⇒ Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 ⇒ Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
 ⇒ Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT
- Bob sends back the correct value z
 ⇒ Random tags are appended to the final results 0 and 1 that Bob cannot guess
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow\text{Redundancy is added to the plaintext}\]
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow\text{Cut-and-choose technique}\]

- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow\text{Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT}\]

- Bob sends back the correct value z
 \[\Rightarrow\text{Random tags are appended to the final results 0 and 1 that Bob cannot guess}\]
The previous construction assumes that
- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow\] Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other
- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow\] Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow\] Inputs are committed, checked during the cut-and-choose,
 and ZK proofs are done during the OT
- Bob sends back the correct value \(z \)
 \[\Rightarrow\] Random tags are appended to the final results 0 and 1
 that Bob cannot guess
The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \[\Rightarrow\] Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \[\Rightarrow\] Cut-and-choose technique

- Alice plays the oblivious transfer protocols with correct inputs
 \[\Rightarrow\] Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT

- Bob sends back the correct value \(z \)
 \[\Rightarrow\] Random tags are appended to the final results 0 and 1 that Bob cannot guess
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 \(\Rightarrow\) Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 \(\Rightarrow\) Cut-and-choose technique

- Alice plays the oblivious transfer protocols with correct inputs
 \(\Rightarrow\) Inputs are committed, checked during the cut-and-choose,
 and ZK proofs are done during the OT

- Bob sends back the correct value \(z\)
 \(\Rightarrow\) Random tags are appended to the final results 0 and 1
 that Bob cannot guess