Basics in Cryptology

III – Pairing-based Cryptography

David Pointcheval

Ecole normale supérieure, CNRS & INRIA

ENS – Paris – 2020
Outline

1 Introduction
 ■ Gap Groups
 ■ Pairings
 ■ Short Signatures

2 Identity-Based Encryption
 ■ Security

3 Without Random Oracles
 ■ BB Signature/IBE
 ■ Extension
Outline

1 Introduction
 - Gap Groups
 - Pairings
 - Short Signatures

2 Identity-Based Encryption

3 Without Random Oracles
Gap Groups

Definition (Pairing Setting)

- Let G_1 and G_2 be two cyclic groups of prime order p.
- Let g_1 and g_2 be generators of G_1 and G_2 respectively.
- Let $e : G_1 \times G_2 \rightarrow G^T$, be a bilinear map.

Definition (Various Cases)

1. The symmetric case: $G_1 = G_2$.
2. There exists an isomorphism ψ, from G_2 onto G_1:
 1. ψ is efficiently computable; as well as ψ^{-1}
 2. ψ is efficiently computable; but no efficient isomorphism from G_1 onto G_2
 3. no efficiently computable isomorphism in any direction
Gap Groups

Definition (Pairing Setting)

- Let G_1 and G_2 be two cyclic groups of prime order p.
- Let g_1 and g_2 be generators of G_1 and G_2 respectively.
- Let $e : G_1 \times G_2 \rightarrow G_T$ be a bilinear map.

Definition (Various Cases)

1. The symmetric case: $G_1 = G_2$.
2. There exists an isomorphism ψ, from G_2 onto G_1:
 1. ψ is efficiently computable; as well as ψ^{-1}
 2. ψ is efficiently computable;
 but no efficient isomorphism from G_1 onto G_2
3. no efficiently computable isomorphism in any direction
Definition (co-Diffie-Hellman Problems)

Let \((p, G_1, g_1, G_2, g_2, G^T, e)\) be a pairing setting

- **co-CDH** in \((G_1, G_2)\): Given \(g, g^a \in G_2\) and \(h \in G_1\),
 compute \(h^a\)

- **co-DDH** in \((G_1, G_2)\): Given \(g, g^a \in G_2\) and \(h, h^b \in G_1\),
 decide whether \(a = b\) or not

Note: when \(G_1 = G_2 = G\), **co-CDH** in \((G_1, G_2)\) is **CDH** in \(G\),
and **co-DDH** in \((G_1, G_2)\) is **DDH** in \(G\)

Definition (Gap Groups)

We say that a group \(G\) is a **gap group** if **CDH** in \(G\) is hard,
whereas **DDH** in \(G\) is simple.
Definition (co-Diffie-Hellman Problems)

Let \((p, G_1, g_1, G_2, g_2, G^T, e)\) be a pairing setting

- **co-CDH** in \((G_1, G_2)\): Given \(g, g^a \in G_2\) and \(h \in G_1\), compute \(h^a\)
- **co-DDH** in \((G_1, G_2)\): Given \(g, g^a \in G_2\) and \(h, h^b \in G_1\), decide whether \(a = b\) or not

Note: when \(G_1 = G_2 = G\), **co-CDH** in \((G_1, G_2)\) is **CDH** in \(G\), and **co-DDH** in \((G_1, G_2)\) is **DDH** in \(G\)

Definition (Gap Groups)

We say that a group \(G\) is a **gap group** if **CDH** in \(G\) is hard, whereas **DDH** in \(G\) is simple.
Gap Groups

Definition (co-Diffie-Hellman Problems)

Let \((p, G_1, g_1, G_2, g_2, G_T, e)\) be a pairing setting

- **co-CDH** in \((G_1, G_2)\): Given \(g, g^a \in G_2\) and \(h \in G_1\), compute \(h^a\)

- **co-DDH** in \((G_1, G_2)\): Given \(g, g^a \in G_2\) and \(h, h^b \in G_1\), decide whether \(a = b\) or not

Note: when \(G_1 = G_2 = G\), **co-CDH** in \((G_1, G_2)\) is **CDH** in \(G\), and **co-DDH** in \((G_1, G_2)\) is **DDH** in \(G\)

Definition (Gap Groups)

We say that a group \(G\) is a **gap group** if **CDH** in \(G\) is hard, whereas **DDH** in \(G\) is simple.
Outline

1 Introduction
 - Gap Groups
 - Pairings
 - Short Signatures

2 Identity-Based Encryption

3 Without Random Oracles
Definition (Admissible Bilinear Map)

Let \((p, G_1, g_1, G_2, g_2, G^T, e)\) be a pairing setting, with \(e : G_1 \times G_2 \rightarrow G^T\) a non-degenerated bilinear map

- **Bilinear:** for any \(g \in G_1, h \in G_2\) and \(u, v \in \mathbb{Z}\),
 \[
e(g^u, h^v) = e(g, h)^{uv}\]

- **Non-degenerated:** \(e(g_1, g_2) \neq 1\)

co-DDH in \((G_1, G_2)\) easy

Given \(g, g^a \in G_2\) and \(h, h^b \in G_1\)

\[a = b \mod p \iff e(h, g^a) = e(h^b, g)\]
Definition (Admissible Bilinear Map)

Let \((p, \mathbb{G}_1, g_1, \mathbb{G}_2, g_2, \mathbb{G}_T, e)\) be a pairing setting, with \(e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T\) a non-degenerated bilinear map

- **Bilinear:** for any \(g \in \mathbb{G}_1, h \in \mathbb{G}_2\) and \(u, v \in \mathbb{Z}\),

\[
e(g^u, h^v) = e(g, h)^{uv}
\]

- **Non-degenerated:** \(e(g_1, g_2) \neq 1\)

co-DDH in \((\mathbb{G}_1, \mathbb{G}_2)\) easy

Given \(g, g^a \in \mathbb{G}_2\) and \(h, h^b \in \mathbb{G}_1\)

\[
a = b \mod p \iff e(h, g^a) = e(h^b, g)
\]
Bilinear Diffie-Hellman Problems

We now focus on the symmetric case: $G_1 = G_2 = G$.

Diffie-Hellman Problems

- CDH in G: Given $g, g^a, g^b \in G$, compute g^{ab}
- DDH in G: Given $g, g^a, g^b, g^c \in G$, decide whether $c = ab$ or not

CDH can be hard to solve, but DDH is easy in gap-groups.

Bilinear Diffie-Hellman Problems

- CBDH in G: Given $g, g^a, g^b, g^c \in G$, compute $e(g, g)^{abc}$
- DBDH in G: Given $g, g^a, g^b, g^c \in G$ and $h \in \mathbb{G}^T$, decide whether $h \overset{?}{=} e(g, g)^{abc}$
We now focus on the symmetric case: $G_1 = G_2 = G$.

Diffie-Hellman Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDH in G</td>
<td>Given $g, g^a, g^b \in G$, compute g^{ab}</td>
</tr>
<tr>
<td>DDH in G</td>
<td>Given $g, g^a, g^b, g^c \in G$, decide whether $c = ab$ or not</td>
</tr>
</tbody>
</table>

CDH can be hard to solve, but DDH is easy in gap-groups.

Bilinear Diffie-Hellman Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBDH in G</td>
<td>Given $g, g^a, g^b, g^c \in G$, compute $e(g, g)^{abc}$</td>
</tr>
<tr>
<td>DBDH in G</td>
<td>Given $g, g^a, g^b, g^c \in G$ and $h \in G_T$, decide whether $h = e(g, g)^{abc}$</td>
</tr>
</tbody>
</table>
Bilinear Diffie-Hellman Problems

We now focus on the symmetric case: $G_1 = G_2 = G$.

Diffie-Hellman Problems

- **CDH in G**: Given $g, g^a, g^b \in G$, compute g^{ab}
- **DDH in G**: Given $g, g^a, g^b, g^c \in G$, decide whether $c = ab$ or not

CDH can be hard to solve, but DDH is easy in gap-groups.

Bilinear Diffie-Hellman Problems

- **CBDH in G**: Given $g, g^a, g^b, g^c \in G$, compute $e(g, g)^{abc}$
- **DBDH in G**: Given $g, g^a, g^b, g^c \in G$ and $h \in G^T$, decide whether $h \overset{?}{=} e(g, g)^{abc}$
Outline

1 Introduction
 - Gap Groups
 - Pairings
 - Short Signatures

2 Identity-Based Encryption

3 Without Random Oracles
Let \mathbb{G} be a gap-group of prime order p, with a generator g.

Signature Scheme

- Key generation: choose $x \in \mathbb{Z}_p$, and set $y = g^x$;
- Signature of $M \in \mathbb{G}$: $\sigma = M^x$;
- Verification of (M, σ): check $\text{DDH}(g, y, M, \sigma)$.

Full-Domain Hash

$$\mathcal{H} : \{0, 1\}^* \rightarrow \mathbb{G}$$

- In order to sign m, one first computes $M = \mathcal{H}(m) \in \mathbb{G}$
- then $\sigma = M^x = \text{CDH}(g, y, \mathcal{H}(m))$

The signature of a message m is thus an element $\sigma \in \mathbb{G}$.
Signature in Gap Groups

Let \mathbb{G} be a gap-group of prime order p, with a generator g.

Signature Scheme

- **Key generation:** choose $x \in \mathbb{Z}_p$, and set $y = g^x$;
- **Signature of** $M \in \mathbb{G}$: $\sigma = M^x$;
- **Verification of** (M, σ): check $\text{DDH}(g, y, M, \sigma)$.

Full-Domain Hash

$$\mathcal{H} : \{0, 1\}^* \rightarrow \mathbb{G}$$

- In order to sign m, one first computes $M = \mathcal{H}(m) \in \mathbb{G}$
- then $\sigma = M^x = \text{CDH}(g, y, \mathcal{H}(m))$

The signature of a message m is thus an element $\sigma \in \mathbb{G}$.
Let \mathbb{G} be a gap-group of prime order p, with a generator g.

Signature Scheme

- Key generation: choose $x \in \mathbb{Z}_p$, and set $y = g^x$;
- Signature of $M \in \mathbb{G}$: $\sigma = M^x$;
- Verification of (M, σ): check $\text{DDH}(g, y, M, \sigma)$.

Full-Domain Hash

\[\mathcal{H} : \{0, 1\}^* \rightarrow \mathbb{G} \]

- In order to sign m, one first computes $M = \mathcal{H}(m) \in \mathbb{G}$
- then $\sigma = M^x = \text{CDH}(g, y, \mathcal{H}(m))$

The signature of a message m is thus an element $\sigma \in \mathbb{G}$.
Identity-Based Cryptography

Public-Key Cryptography

Each user ID owns
- a public key pk
- a certificate that guarantees the link between ID and pk
- a private key sk, related to pk

One has to access a dictionary in order to get pk, the public key of ID, together with the certificate, in order to encrypt a message to ID.

Identity-Based Cryptography

Each user ID owns
- a private key sk, related to ID
- the public key pk is indeed ID itself
Identity-Based Cryptography

Public-Key Cryptography

Each user ID owns
- a public key pk
- a certificate that guarantees the link between ID and pk
- a private key sk, related to pk

One has to access a dictionary in order to get pk, the public key of ID, together with the certificate, in order to encrypt a message to ID.

Identity-Based Cryptography

Each user ID owns
- a private key sk, related to ID
- the public key pk is indeed ID itself
Identity-Based Cryptography

Public-Key Cryptography

Each user ID owns
- a public key pk
- a certificate that guarantees the link between ID and pk
- a private key sk, related to pk

One has to access a dictionary in order to get pk, the public key of ID, together with the certificate, in order to encrypt a message to ID.

Identity-Based Cryptography

Each user ID owns
- a private key sk, related to ID
- the public key pk is indeed ID itself
Key Computation

Public-Key Cryptography

- User ID chooses his private key sk
- derives his public key pk
- asks a TTP for the certification of pk w.r.t. ID

Identity-Based Cryptography

- Each user ID asks a TTP for the computation of the private key sk, related to ID
 \Rightarrow extraction

Note

For signature, the two scenarios are quite similar.
Key Computation

Public-Key Cryptography

- User ID chooses his private key sk
- derives his public key pk
- asks a TTP for the certification of pk w.r.t. ID

Identity-Based Cryptography

- Each user ID asks a TTP for the computation of the private key sk, related to ID
 ⇒ extraction

Note

For signature, the two scenarios are quite similar.
Key Computation

Public-Key Cryptography

- User ID chooses his private key sk
- derives his public key pk
- asks a TTP for the certification of pk w.r.t. ID

Identity-Based Cryptography

- Each user ID asks a TTP for the computation of the private key sk, related to ID
 \Rightarrow extraction

Note

For signature, the two scenarios are quite similar.
Identity-Based Encryption

Setup
The authority generates a master secret key msk, and publishes the public parameters, PK.

Extraction
Given an identity ID, the authority computes the private key sk granted the master secret key msk.

Encryption
Any one can encrypt a message m to a user ID using only m, ID and the public parameters PK.

Decryption
Given a ciphertext, user ID can recover the plaintext, with his secret key sk.
Identity-Based Encryption

Setup

The authority generates a master secret key msk, and publishes the public parameters, PK.

Extraction

Given an identity ID, the authority computes the private key sk granted the master secret key msk.

Encryption

Any one can encrypt a message m to a user ID using only m, ID and the public parameters PK.

Decryption

Given a ciphertext, user ID can recover the plaintext, with his secret key sk.
Identity-Based Encryption

Setup

The authority generates a master secret key msk, and publishes the public parameters, PK.

Extraction

Given an identity ID, the authority computes the private key sk granted the master secret key msk.

Encryption

Any one can encrypt a message m to a user ID using only m, ID and the public parameters PK.

Decryption

Given a ciphertext, user ID can recover the plaintext, with his secret key sk.
Identity-Based Encryption

Setup

The authority generates a master secret key msk, and publishes the public parameters, PK.

Extraction

Given an identity ID, the authority computes the private key sk granted the master secret key msk.

Encryption

Any one can encrypt a message m to a user ID using only m, ID and the public parameters PK.

Decryption

Given a ciphertext, user ID can recover the plaintext, with his secret key sk.
Outline

1 Introduction

2 Identity-Based Encryption
 - Security

3 Without Random Oracles
Security Model: IND – ID – CCA

Definition (IND – ID – CCA Security)

The adversary
- receives the global parameters
- asks any extraction-query, and any decryption-query
- outputs a target identity \mathcal{ID}^* and two messages (m_0, m_1)

The challenger flips a bit b, and encrypts m_b for \mathcal{ID}^* into c^*, then the adversary
- asks any extraction-query, and any decryption-query
- outputs its guess b' for b

$$\text{Adv}_{\text{ind–id–cca}} = 2 \times \text{Pr}[b' = b] - 1$$
Definition (IND – ID – CCA Security)

The adversary

- receives the global parameters
- asks any extraction-query, and any decryption-query
- outputs a target identity \mathcal{ID}^{\star} and two messages (m_0, m_1)

The challenger flips a bit b, and encrypts m_b for \mathcal{ID}^{\star} into c^{\star}, then the adversary

- asks any extraction-query, and any decryption-query
- outputs its guess b' for b

$$\text{Adv}^{\text{ind–id–cca}} = 2 \times \Pr[b' = b] - 1$$
Restrictions

- **IND – ID – CCA**: semantic security, full-identity, chosen-ciphertext attacks
 The adversary is just restricted not to ask:
 - the target identity ID^* to the extraction-oracle,
 - nor the challenge ciphertext c^* to the decryption-oracle with ID^*

- **sID**: selective-identity
 The adversary provides the target identity ID^* before receiving the global parameters

- **CPA**: chosen-plaintext attacks
 The adversary does not have access to the decryption-oracle
Restrictions

- **IND – ID – CCA**: semantic security, full-identity, chosen-ciphertext attacks
 The adversary is just restricted not to ask:
 - the target identity ID^* to the extraction-oracle,
 - nor the challenge ciphertext c^* to the decryption-oracle with ID^*

- **sID**: selective-identity
 The adversary provides the target identity ID^* before receiving the global parameters

- **CPA**: chosen-plaintext attacks
 The adversary does not have access to the decryption-oracle
Restrictions

 The adversary is just restricted not to ask:
 - the target identity ID^* to the extraction-oracle,
 - nor the challenge ciphertext c^* to the decryption-oracle with ID^*.

- **sID**: selective-identity
 The adversary provides the target identity ID^* before receiving the global parameters.

- **CPA**: chosen-plaintext attacks
 The adversary does not have access to the decryption-oracle.
Restrictions

- **IND – ID – CCA**: semantic security, full-identity, chosen-ciphertext attacks
 The adversary is just restricted not to ask:
 - the target identity ID^* to the extraction-oracle,
 - nor the challenge ciphertext c^* to the decryption-oracle with ID^*

- **sID**: selective-identity
 The adversary provides the target identity ID^* before receiving the global parameters

- **CPA**: chosen-plaintext attacks
 The adversary does not have access to the decryption-oracle
Restrictions

- **IND – ID – CCA**: semantic security, full-identity, chosen-ciphertext attacks
 The adversary is just restricted not to ask:
 - the target identity ID^* to the extraction-oracle,
 - nor the challenge ciphertext c^* to the decryption-oracle with ID^*

- **sID**: selective-identity
 The adversary provides the target identity ID^* before receiving the global parameters

- **CPA**: chosen-plaintext attacks
 The adversary does not have access to the decryption-oracle
Identity-Based Encryption

[Boneh-Franklin – Crypto ’01]

Setup

- The authority sets up a gap-group framework:
 a group G of prime order p, with a generator g,
 with an admissible bilinear map $e: G \times G \rightarrow G^T$
- It selects a master secret key $msk = s \in \mathbb{Z}_p$
- It publishes the public parameters: $PK = (p, G, e, g, P = g^s)$

Extraction

Given an identity ID, the authority computes
the private key $sk = H(ID)^s$

Note that sk is a BLS signature of ID,
which can be checked by the user: $e(sk, g) \overset{?}{=} e(H(ID), P)$
Identity-Based Encryption

[Boneh-Franklin – Crypto ’01]

Setup

- The authority sets up a gap-group framework:
 - a group G of prime order p, with a generator g,
 - with an admissible bilinear map $e : G \times G \rightarrow G^T$
- It selects a master secret key $msk = s \in \mathbb{Z}_p$
- It publishes the public parameters: $PK = (p, G, e, g, P = g^s)$

Extraction

Given an identity ID, the authority compute
- the private key $sk = H(ID)^s$

Note that sk is a BLS signature of ID, which can be checked by the user: $e(sk, g) \overset{?}{=} e(H(ID), P)$
BF IBE (Cont’d)

Encryption

In order to encrypt a message m to a user \mathcal{ID}

- one chooses a random $r \in \mathbb{Z}_p$
- computes $A = g^r$ and $K = e(P, \mathcal{H}(\mathcal{ID})^r)$
- sends $(A, B = K \times m)$

$$
K = e(P, \mathcal{H}(\mathcal{ID})^r) = e(g^s, \mathcal{H}(\mathcal{ID})^r) = e(g^r, \mathcal{H}(\mathcal{ID})^s) = e(A, sk)
$$

Decryption

Upon reception of (A, B), user \mathcal{ID}

- computes $K = e(A, sk)$
- gets $m = B/K$
BF IBE (Cont’d)

Encryption

In order to encrypt a message m to a user \mathcal{ID}

- one chooses a random $r \in \mathbb{Z}_p$
- computes $A = g^r$ and $K = e(P, \mathcal{H}(\mathcal{ID})^r)$
- sends $(A, B = K \times m)$

\[
K = e(P, \mathcal{H}(\mathcal{ID})^r) = e(g^s, \mathcal{H}(\mathcal{ID})^r) \\
= e(g^r, \mathcal{H}(\mathcal{ID})^s) = e(A, sk)
\]

Decryption

Upon reception of (A, B), user \mathcal{ID}

- computes $K = e(A, sk)$
- gets $m = B/K$
The BF IBE is **IND – ID – CPA** secure under the **DBDH** problem, in the random oracle model.

By masking m with $H(K)$: $B = m \oplus H(K)$, the BF IBE is **IND – ID – CPA** secure under the **CBDH** problem, in the random oracle model.

CCA Security

Usual tricks in the random oracle model to achieve **IND – ID – CCA**.

- How to avoid the random oracle model?
- How to avoid a full-domain hash function onto G?
BF IBE Security Analysis

Theorem

The BF IBE is **IND – ID – CPA** secure under the **DBDH** problem, in the random oracle model.

By masking m with $H(K)$: $B = m \oplus H(K)$, the BF IBE is **IND – ID – CPA** secure under the **CBDH** problem, in the random oracle model.

CCA Security

Usual tricks in the random oracle model to achieve **IND – ID – CCA**.

- How to avoid the random oracle model?
- How to avoid a full-domain hash function onto G?
BF IBE Security Analysis

Theorem

The BF IBE is **IND** – **ID** – **CPA** secure under the **DBDH** problem, in the random oracle model.

By masking \(m \) with \(H(K) \): \(B = m \oplus H(K) \),

*the BF IBE is **IND** – **ID** – **CPA** secure under the **CBDH** problem, in the random oracle model*

CCA Security

[Fujisaki-Okamoto – Crypto ’01]

Usual tricks in the random oracle model to achieve **IND** – **ID** – **CCA**.

- How to avoid the random oracle model?
- How to avoid a full-domain hash function onto \(G \)?
BF IBE Security Analysis

Theorem

The BF IBE is IND – ID – CPA secure under the DBDH problem, in the random oracle model.

By masking \(m \) with \(H(K) \): \(B = m \oplus H(K) \), the BF IBE is IND – ID – CPA secure under the CBDH problem, in the random oracle model.

CCA Security

Usual tricks in the random oracle model to achieve IND – ID – CCA.

- How to avoid the random oracle model?
- How to avoid a full-domain hash function onto \(G \)?
Outline

1. Introduction
2. Identity-Based Encryption
3. Without Random Oracles
 - BB Signature/IBE
 - Extension
Let G be a cyclic group of prime order p, with two independent generators g, h, equipped with an admissible bilinear map

$$e : G \times G \rightarrow G^T$$

For any message $m \in \mathbb{Z}_p$ (output by a hash function), we define $F(m) = uv^m$, where u and v are independent public elements in G.
Boneh-Boyen’s Signature (Cont’d)

Signature Scheme

- **Key generation**: choose $x \in \mathbb{Z}_p$, and set $G = g^x$ as well as $H = h^x$; The public key is G, whereas H is kept private.

- **Signature of** $m \in \mathbb{Z}_p$: $\sigma = (H \times F(m)^r, g^r)$, for a random $r \in \mathbb{Z}_p$;
 Here, $F(m) = G^m \times u$

- **Verification of** $(m, (\sigma_1, \sigma_2))$: check whether

$$e(g, \sigma_1) = e(g, h^x \times F(m)^r)$$

$$= e(g, h^x) \times e(g, F(m)^r) = e(g^x, h) \times e(g^r, F(m))$$

$$\overset{?}{=} e(G, h) \times e(\sigma_2, F(m))$$
Boneh-Boyen’s Signature (Cont’d)

Signature Scheme

- Key generation: choose \(x \in \mathbb{Z}_p \), and set \(G = g^x \) as well as \(H = h^x \);
 The public key is \(G \), whereas \(H \) is kept private.

- Signature of \(m \in \mathbb{Z}_p \): \(\sigma = (H \times F(m)^r, g^r) \), for a random \(r \in \mathbb{Z}_p \);
 Here, \(F(m) = G^m \times u \)

- Verification of \((m, (\sigma_1, \sigma_2))\): check whether

\[
e(g, \sigma_1) = e(g, h^x \times F(m)^r) \\
= e(g, h^x) \times e(g, F(m)^r) = e(g^x, h) \times e(g^r, F(m)) \\
? = e(G, h) \times e(\sigma_2, F(m))
\]
Boneh-Boyen’s Signature (Cont’d)

Signature Scheme

- **Key generation:** choose $x \in \mathbb{Z}_p$, and set $G = g^x$ as well as $H = h^x$;
 The public key is G, whereas H is kept private.

- **Signature of** $m \in \mathbb{Z}_p$: $\sigma = (H \times F(m)^r, g^r)$, for a random $r \in \mathbb{Z}_p$;
 Here, $F(m) = G^m \times u$

- **Verification of** $(m, (\sigma_1, \sigma_2))$: check whether

\[
\begin{align*}
e(g, \sigma_1) &= e(g, h^x \times F(m)^r) \\
&= e(g, h^x) \times e(g, F(m)^r) = e(g^x, h) \times e(g^r, F(m)) \\
&\overset{?}{=} e(G, h) \times e(\sigma_2, F(m))
\end{align*}
\]
Theorem (Selected-Message CMA)

For a message m^* chosen ahead, before having seen the parameters and the public key, signing m^* under a chosen-message attack is intractable under the CDH problem in G.

Simulation: Selected-Message Forgery

Let us be given g, $G = g^a$ and $h = g^b$,
we want to extract $H = h^a = g^{ab}$.
We set $u = G^{-m^*} g^\beta$ for a random β:

$$F(m) = G^m u = G^{m-m^*} g^\beta \quad F(m^*) = g^\beta$$

A forgery for m^*: (σ_1, σ_2), such that

$$e(g, \sigma_1) = e(G, h) e(\sigma_2, g^\beta) \implies e(G, h) = e(g, \sigma_1 / \sigma_2^\beta)$$

CDH(g, h, G) = $\sigma_1 / \sigma_2^\beta$
Boneh-Boyen’s Signature: Security Analysis

Theorem (Selected-Message CMA)

For a message m^* chosen ahead, before having seen the parameters and the public key, signing m^* under a chosen-message attack is intractable under the CDH problem in G.

Simulation: Selected-Message Forgery

Let us be given g, $G = g^a$ and $h = g^b$, we want to extract $H = h^a = g^{ab}$.

We set $u = G^{-m^*} g^\beta$ for a random β:

$$ F(m) = G^m u = G^{m-m^*} g^\beta \quad F(m^*) = g^\beta $$

A forgery for m^*: (σ_1, σ_2), such that

$$ e(g, \sigma_1) = e(G, h)e(\sigma_2, g^\beta) \implies e(G, h) = e(g, \sigma_1/\sigma_2^\beta) $$

$$ CDH(g, h, G) = \sigma_1/\sigma_2^\beta $$
Boneh-Boyen’s Signature: Security Analysis

Simulation: CMA

For any query $m \neq m^*$, we simulate a signature:

$$\sigma_1 = h^{-\beta/(m-m^*)} F(m)^r$$
and

$$\sigma_2 = g^r h^{1/(m^*-m)}$$

Let us set $\rho = r - b/(m - m^*)$:

$$\sigma_1 = h^{-\beta/(m-m^*)} \times F(m)^r$$
$$= h^{-\beta/(m-m^*)} \times (G^{m-m^*} g^\beta)^{\rho + b/(m-m^*)}$$
$$= h^{-\beta/(m-m^*)} \times G^{\rho(m-m^*)} \times G^b \times g^{\beta \rho} \times h^{\beta/(m-m^*)}$$
$$= h^a \times G^{\rho(m-m^*)} \times g^{\beta \rho}$$
$$= h^a \times F(m)^\rho$$

$$\sigma_2 = g^r \times h^{1/(m^*-m)} = g^{r-b/(m-m^*)} = g^\rho$$
Identity-Based Encryption

Setup

- The authority sets up a gap-group framework:
 - a group \mathbb{G} of prime order p,
 - with three independent generators g, h and u,
 - with an admissible bilinear map $e : \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}^T$
- It selects a master secret key $s \in \mathbb{Z}_p$, and keeps $H = h^s$
- It publishes the parameters: $(p, \mathbb{G}, e, g, h, G = g^s)$

Extraction

Given an identity ID, the authority computes the key
$sk = (sk_1 = H \times F(ID)^r, sk_2 = g^r)$, where $F(x) = uG^x$

Note that sk is a BB signature of ID: $e(g, sk_1) \overset{?}{=} e(G, h) \times e(sk_2, F(ID))$
Identity-Based Encryption

[Boneh-Boyen – Eurocrypt ’04]

Setup

- The authority sets up a gap-group framework:
 a group \mathbb{G} of prime order p,
 with three independent generators g, h and u,
 with an admissible bilinear map $e : \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}^T$
- It selects a master secret key $s \in \mathbb{Z}_p$, and keeps $H = h^s$
- It publishes the parameters: $(p, \mathbb{G}, e, g, h, G = g^s)$

Extraction

Given an identity ID, the authority computes the key
$sk = (sk_1 = H \times F(ID)^r, sk_2 = g^r)$, where $F(x) = uG^x$

Note that sk is a BB signature of ID: $e(g, sk_1) \stackrel{?}{=} e(G, h) \times e(sk_2, F(ID))$
Identity-Based Encryption

Setup

- The authority sets up a gap-group framework:
 a group G of prime order p,
 with three independent generators g, h and u,
 with an admissible bilinear map $e : G \times G \rightarrow G^T$
- It selects a master secret key $s \in \mathbb{Z}_p$, and keeps $H = h^s$
- It publishes the parameters: $(p, G, e, g, h, G = g^s)$

Extraction

Given an identity ID, the authority computes the key
$sk = (sk_1 = H \times F(ID)^r, sk_2 = g^r)$, where $F(x) = uG^x$

Note that sk is a BB signature of ID: $e(g, sk_1) \overset{?}{=} e(G, h) \times e(sk_2, F(ID))$
Identity-Based Encryption

[Boneh-Boyen – Eurocrypt ’04]

Setup

- The authority sets up a gap-group framework:
 - a group \(G \) of prime order \(p \),
 - with three independent generators \(g, h \) and \(u \),
 - with an admissible bilinear map \(e : G \times G \to G^T \)

- It selects a master secret key \(s \in \mathbb{Z}_p \), and keeps \(H = h^s \)

- It publishes the parameters: \((p, G, e, g, h, G = g^s) \)

Extraction

Given an identity \(ID \), the authority computes the key
\[
sk = (sk_1 = H \times F(ID)^r, sk_2 = g^r), \quad \text{where } F(x) = uG^x
\]

Note that \(sk \) is a BB signature of \(ID: e(g, sk_1) \equiv e(G, h) \times e(sk_2, F(ID)) \)
BB IBE (Cont’d)

Encryption

In order to encrypt a message \(m \in \mathbb{G}^T \) to a user \(\mathcal{ID} \):

- one chooses a random \(t \in \mathbb{Z}_p \)
- computes \(A = F(\mathcal{ID})^t \), \(B = g^t \) and \(K = e(G, h)^t \)
- sends \((A, B, C = K \times m)\)

\[
K = e(G, h)^t = e(g^s, h)^t = e(g^t, h^s) = e(g^t, H) \\
= e(g^t, sk_1 / F(\mathcal{ID})^t) = e(g^t, sk_1) / e(g^t, F(\mathcal{ID})^t) \\
= e(B, sk_1) / e(g^t, F(\mathcal{ID})^t) = e(B, sk_1) / e(sk_2, A)
\]

Decryption

Upon reception of \((A, B, C)\),
user \(\mathcal{ID} \) computes \(K = e(B, sk_1) / e(A, sk_2) \) and gets \(m = C / K \)
BB IBE (Cont’d)

Encryption

In order to encrypt a message $m \in \mathbb{G}^T$ to a user \mathcal{ID}

- one chooses a random $t \in \mathbb{Z}_p$
- computes $A = F(\mathcal{ID})^t$, $B = g^t$ and $K = e(G, h)^t$
- sends $(A, B, C = K \times m)$

\[
K = e(G, h)^t = e(g^s, h)^t = e(g^t, h^s) = e(g^t, H) = e(g^t, sk_1 / F(\mathcal{ID})^r) = e(g^t, sk_1) / e(g^t, F(\mathcal{ID})^r) = e(B, sk_1) / e(g^t, F(\mathcal{ID})^t) = e(B, sk_1) / e(sk_2, A)
\]

Decryption

Upon reception of (A, B, C), user \mathcal{ID} computes $K = e(B, sk_1) / e(A, sk_2)$ and gets $m = C / K$
BB IBE (Cont’d)

Encryption

In order to encrypt a message \(m \in \mathbb{G}^T \) to a user \(\mathcal{ID} \):

- one chooses a random \(t \in \mathbb{Z}_p \)
- computes \(A = F(\mathcal{ID})^t \), \(B = g^t \) and \(K = e(G, h)^t \)
- sends \((A, B, C = K \times m)\)

\[
K = e(G, h)^t = e(g^s, h)^t = e(g^t, h^s) = e(g^t, H) \\
= e(g^t, sk_1 / F(\mathcal{ID})^r) = e(g^t, sk_1) / e(g^t, F(\mathcal{ID})^r) \\
= e(B, sk_1) / e(g^r, F(\mathcal{ID})^t) = e(B, sk_1) / e(sk_2, A)
\]

Decryption

Upon reception of \((A, B, C)\), user \(\mathcal{ID} \) computes \(K = e(B, sk_1) / e(A, sk_2) \) and gets \(m = C / K \)
BB IBE Security Analysis

The BB IBE is IND – sID – CPA secure under the DBDH problem
Outline

1. Introduction
2. Identity-Based Encryption
3. Without Random Oracles
 - BB Signature/IBE
 - Extension
Waters’ Signature

Let \mathbb{G} be a cyclic group of prime order p, with two independent generators g, h, equipped with an admissible bilinear map

$$e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}^T$$

For any message $m \in \{0, 1\}^k$ (output by a hash function), we define

$$F(m) = u'(\prod u_i^{m_i}), \quad m = m_1 \ldots m_k,$$

where u' and u_1, \ldots, u_k are independent public elements in \mathbb{G}.
Waters’ Signature (Cont’d)

Signature Scheme

- **Key generation**: choose $x \in \mathbb{Z}_p$, and set $G = g^x$ as well as $H = h^x$; The public key is G, whereas H is kept private.

- **Signature of $m \in \{0, 1\}^k$**: $\sigma = (H \times F(m)^r, g^r)$, for a random $r \in \mathbb{Z}_p$;

- **Verification of $(m, (\sigma_1, \sigma_2))$**: check whether

 $$
eq e(G, h) \times e(\sigma_2, F(m))$$

 $e(g, \sigma_1) = e(g, h^x \times F(m)^r)$

 $= e(g, h^x) \times e(g, F(m)^r) = e(g^x, h) \times e(g^r, F(m))$
Waters’ Signature (Cont’d)

Signature Scheme

- Key generation: choose \(x \in \mathbb{Z}_p \)
 and set \(G = g^x \) as well as \(H = h^x \);
 The public key is \(G \), whereas \(H \) is kept private.

- Signature of \(m \in \{0, 1\}^k \): \(\sigma = (H \times F(m)^r, g^r) \),
 for a random \(r \in \mathbb{Z}_p \);

- Verification of \((m, (\sigma_1, \sigma_2))\): check whether

\[
e(g, \sigma_1) = e(g, h^x \times F(m)^r) \\
= e(g, h^x) \times e(g, F(m)^r) = e(g^x, h) \times e(g^r, F(m)) \\
\]

\(\overset{?}{=} \)

\(e(G, h) \times e(\sigma_2, F(m)) \)
Waters’ Signature (Cont’d)

Signature Scheme

- Key generation: choose $x \in \mathbb{Z}_p$, and set $G = g^x$ as well as $H = h^x$; The public key is G, whereas H is kept private.
- Signature of $m \in \{0, 1\}^k$: $\sigma = (H \times F(m)^r, g^r)$, for a random $r \in \mathbb{Z}_p$;
- Verification of $(m, (\sigma_1, \sigma_2))$: check whether
 \[
 e(g, \sigma_1) = e(g, h^x \times F(m)^r) \\
 = e(g, h^x) \times e(g, F(m)^r) = e(g^x, h) \times e(g^r, F(m)) \\
 \overset{?}= e(G, h) \times e(\sigma_2, F(m))
 \]
Theorem

The Water’s IBE is IND – ID – CPA secure under the DBDH problem