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Abstract—A wavelet scattering network computes a translation invariant image representation which is stable to deformations and
preserves high-frequency information for classification. It cascades wavelet transform convolutions with nonlinear modulus and
averaging operators. The first network layer outputs SIFT-type descriptors, whereas the next layers provide complementary invariant
information that improves classification. The mathematical analysis of wavelet scattering networks explains important properties of
deep convolution networks for classification. A scattering representation of stationary processes incorporates higher order moments
and can thus discriminate textures having the same Fourier power spectrum. State-of-the-art classification results are obtained for
handwritten digits and texture discrimination, with a Gaussian kernel SVM and a generative PCA classifier.

Index Terms—Classification, convolution networks, deformations, invariants, wavelets
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1 INTRODUCTION

major difficulty of image classification comes from the

considerable variability within image classes and the
inability of euclidean distances to measure image simila-
rities. Part of this variability is due to rigid translations,
rotations, or scaling. This variability is often uninformative
for classification and should thus be eliminated. In the
framework of kernel classifiers [32], the distance between
two signals x and x' is defined as a euclidean distance
k x x'’k applied to a representation x of each Xx.
Variability due to rigid transformations is removed if is
invariant to these transformations.

Nonrigid deformations also induce important variability
within object classes [17], [3]. For instance, in handwritten
digit recognition, one must take into account digit deforma-
tions due to different writing styles [3]. However, a full
deformation invariance would reduce discrimination since
a digit can be deformed into a different digit, for example, a
one into a seven. The representation must therefore not be
deformation invariant. It should linearize small deforma-
tions, to handle them effectively with linear classifiers.
Linearization means that the representation is Lipschitz
continuous to deformations. When an image x is slightly
deformed into x’, thenk x  x'k must be bounded by the
size of the deformation, as defined in Section 2.

Translation invariant representations can be constructed
with registration algorithms [33], autocorrelations, or with
the Fourier transform modulus. However, Section 2.1
explains that these invariants are not stable to deformations
and hence not adapted to image classification. Trying to
avoid Fourier transform instabilities suggests replacingWe address these questions from a mathematical and
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Fig. 3. To display scattering coefficients, the disk covering the image
frequency support is partitioned into sectors p, which depend upon
the path p. (a) For m% 1, each % ; is a sector rotated by r; that
approximates the frequency support of ~ () Form¥%2, al % 4; -
are obtained by subdividing each % ;.

constant images over a disk representing the Fourier support
of the image x. This frequency disk is partitioned into sectors
T p gopm indexed by the path p. The image value is Stp xdup
on the frequency sectors #p, shown in Fig. 3.

For m Y% 1, a scattering coefficient St ; xdub depends
upon the local Fourier transform energy of x over the
support of .- Its value is displayed over a sector % ; that
approximates the frequency support of LFor %2 iy,
there are K rotated sectors located in an annulus,
corresponding to each r; 2 G, as shown by Fig. 3a. Their
areas are proportional to k k¥ K 121,

Second-order scattering coefficients St ;; 2 xdub are
computed with a second wavelet transform that performs
a second frequency subdivision. These coefficients are
displayed over frequency sectors % |; o that subdivide
the sectors % ; of the first wavelets ) ., as illustrated in
Fig. 3b. For % 2 i2r,, the scale 2i> divides the radial axis,
and the resulting sectors are subdivided into K angular
sectors corresponding to the different r,. The scale and
angular subdivisions are adjusted so that the area of each

4 1; 5 is proportional to kj j? k.

(b)
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Fig. 4 shows the Fourier transform of two images and the
amplitude of their scattering coefficients. In this case, the
scale 27 is equal to the image size. The top and bottom images
are very different, but they have the same first-order
scattering coefficients. The second-order coefficients clearly
discriminate these images. Section 3.1 shows that the second-
order scattering coefficients of the top image have a larger
amplitude because the image wavelet coefficients are more
sparse. Higher order coefficients are not displayed because
they have a negligible energy, as explained in Section 3.

3 SCATTERING PROPERTIES

A convolution network is highly nonlinear, which makes it
difficult to understand how the coefficient values relate to
the signal properties. For a scattering network, Section 3.1
analyzes the coefficient properties and optimizes the
network architecture. Section 3.2 describes the resulting
computational algorithm. For texture analysis, the scatter-
ing transform of stationary processes is studied in Sec-
tion 3.3. Section 3.4 shows that a cosine transform further
reduces the size of a scattering representation.

3.1 Energy Propagation and Deformation Stability
A windowed scattering S is computed with a cascade of
wavelet modulus operators W, and its properties, thus,
depend upon the wavelet transform properties. Conditions
are given on wavelets to define a scattering transform that
is nonexpansive and preserves the signal norm. This
analysis shows that kSip xk decreases quickly as the length
of p increases, and is nonnegligible only over a particular
subset of frequency-decreasing paths. Reducing computa-
tions to these paths defines a convolution network with
much fewer internal and output coefficients.

The norm and distance on a transform Tx ¥4 ¥x,g,, which
output a family of signals will be defined by
x! K2

n

kKTx TxK Y Z kxn
n

(© (d)

Fig. 4. (a) Two images xdub. (b) Fourier modulus jxd! bj. (c) First-order scattering coefficients Sxi | displayed over the frequency sectors of
Fig. 3a. They are the same for both images. (d) Second-order scattering coefficients Sxi ;; » over the frequency sectors of Fig. 3b. They are
different for each image.
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therefore sufficient to compute the scattering transform
along frequency-decreasing paths. It defines a much smaller
convolution network. Section 3.2 shows that the resulting
coefficients are computed with OdN log N b operations.

Preserving energy does not imply that the signal
information is preserved. Since a scattering transform is
calculated by iteratively applying W, one needs to invert W
to invert S. The wavelet transform W is a linear invertible
operator, so inverting Wz % fz? »;jz? jg op amounts
to recovering the complex phases of wavelet coefficients
removed by the modulus. The phase of Fourier coefficients
cannot be recovered from their modulus, but wavelet
coefficients are redundant, as opposed to Fourier coeffi-
cients. For particular wavelets, it has been proven that the
phase of wavelet coefficients can be recovered from their
modulus, and that W has a continuous inverse, and the
phase can be recovered with a convex optimization [37].

Still, one cannot exactly invert S because we discard
information when computing the scattering coefficients
Sipx % Uip ? 5 of the last layer P™. Indeed, the propa-
gated coefficients jUipx? j of the next layer are elimi-
nated because they are not invariant and have a negligible
total energy. The number of such coefficients is larger than
the total number of scattering coefficients kept at previous
layers. Initializing the inversion by considering that these
small coefficients are zero produces an error. This error is
further amplified as the inversion of w progresses across
layers from m to 0. Numerical experiments conducted over
one-dimensional audio signals [2], [7] indicate that recon-
structed signals have good audio quality with m % 2 as long
as the number of scattering coefficients is comparable to the
number of signal samples. Audio examples in
www.di.ens.fr/data/scattering show that reconstructions
from first-order scattering coefficients are typically of much
lower quality because there are much fewer first-order than
second-order coefficients. When the invariant scale 2’
becomes too large, the number of second-order coefficients
also becomes too small for accurate reconstructions.
Although individual signals cannot be recovered, recon-
structions of equivalent stationary textures are possible
with arbitrarily large scale scattering invariants [7].

For classification applications, besides computing a rich
set of invariants, the most important property of a scattering
transform is its Lipschitz continuity to deformations.
Indeed, wavelets are stable to deformations and the
modulus commutes with deformations. Let x dub ¥ xdu

dupb be an image deformed by the displacement field . Let
k kq Yasup,j oubj and kr k4 Yasup,jr oubj< 1. If Sx is
computed on paths of length m m, then it is proven in
[25] that for signals x of compact support:

kSx Sxk Cmkxkd2 'k ky pkr kqP; d11p

with a second-order Hessian term which is part of the
metric definition on C?2 deformations, but which is
negligible if dup is regular. If 2k k,=kr k,, then the
translation term can be neglected and the transform is
Lipschitz continuous to deformations:

kSx  Sxk Cmkxkkr ky: d12p
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If m goes to 1, then Cm can be replaced by a more
complex expression [25] which is numerically converging
for natural images.

3.2 Fast Scattering Computations
We describe a fast scattering implementation over fre-
quency decreasing paths where most of the scattering
energy is concentrated. A frequency decreasing path p ¥
82 Iiry;...;2 Imrpb satisfiess 0<j . jipr  J. If the wave-
let transform is computed over K rotation angles, then the
total number of frequency-decreasing paths of length m is
K™ (7). Let N be the number of pixels of the image x. Since
5 is a low-pass filter scaled by 27, Sipxdub ¥ Ukp x ?
,»8ub is uniformly sampled at intervals 27, with %1 or
Y, 1=2. Each Stp x is an image with 22 2N coefficients.
The total number of coefficients in a scattering network of
maximum depth m is thus

lul J
P %N 222J2Km(m>: §13p

mYy40

Ifm%2,thenP > 2N2 2K2J2=2. It decreases exponen-
tially when the scale 27 increases.

Algorithm 1 describes the computations of scattering
coefficients on sets P} of frequency decreasing paths of
length m  m. The initial set P} % f;g corresponds to the
original image Uh; x Yax. Let pp be the path that begins
by p and ends with 2 P.If %2 ir, then Uipp xdub ¥
jUlpx? dubj has energy at frequencies mostly below
2 1 . To reduce computations, we can thus subsample this

convolution at intervals 2/, with %1 or ¥ 1=2, to
avoid aliasing.
Algorithm 1. Fast Scattering Transform
for m¥% 1 to m do
forall p2PJ ' do
Output Sipxd 27nb Y% Uipx? 43 27np
end for
forall pp m 2Py with %2 Inry, do
Compute
Utpp mxd 2mnp % jUipx? 8 2mnbj
end for
end for

for all p2 P} do
Output Sipxd 2°nb % Uipx? 26 27nb

end for

At the layer m there are K mé%b propagated signals Ulp x
with p2 PJ'. They are sampled at intervals 2/ which
depend on p. One can verify by induction on m that layer m
has a total number of samples equalto 2 K=3p™ N. There
are also KM(7J) scattering signals Sipx, but they are
subsampled by 27 and thus have much fewer coefficients.
The number of operations to compute each layer is
therefore driven by the OK=3b" N logNp operations
needed to compute the internal propagated coefficients
with FFTs. For K > 3, the overall computational complexity
is thus O8K=3b" N log Nb.
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TABLE 4

Percentage of Errors of MNIST Classifiers, Depending on the Training Size
Training x Wind. Four. Scat. m =1 Scat. m =2 | Conw.
size PCA SVM | PCA SVM | PCA SVM | PCA SVM Net.
300 14.5 15.4 7.35 7.4 5.7 8 4.7 5.6 7.18
1000 7.2 8.2 | 3.74 374 | 235 4 2.3 2.6 3.21
2000 5.8 6.5 | 299 29 1.7 2.6 1.3 1.8 2.53
5000 4.9 4 234 22 1.6 1.6 | 1.03 14 1.52
10000 455 311 | 224 165 | 1.5  1.23 | 0.88 1 0.85
20000 425 22 | 192 115 | 14 096 | 0.79 0.58 | 0.76
40000 4.1 1.7 1.85 0.9 1.36 0.75 0.74 0.53 0.65
60000 4.3 1.4 1.80 0.8 1.34 0.62 0.7 0.43 0.53

Affine space scattering models can be interpreted as
generative models computed independently for each class.
As opposed to discriminative classifiers such as SVM, we
do not estimate cross-correlation interactions between
classes, besides optimizing the model dimension d. Such
estimators are particularly effective for a small number of
training samples per class. Indeed, if there are few training
samples per class, then variance terms dominate bias errors
when estimating off-diagonal covariance coefficients be-
tween classes [4].

An affine space approximation classifier can also be
interpreted as a robust quadratic discriminant classifier
obtained by coarsely quantizing the eigenvalues of the
inverse covariance matrix. For each class, the eigenvalues
of the inverse covariance are setto 0 in Vi and to 1 in V7,
where d is adjusted by cross validation. This coarse
gquantization is justified by the poor estimation of covar-
iance eigenvalues from few training samples. These affine
space models are robust when applied to distributions of
scattering vectors having non-Gaussian distributions,
where a Gaussian Fisher discriminant can lead to sig-
nificant errors.

4.2 Handwritten Digit Recognition

The MNIST database of hand-written digits is an example
of structured pattern classification where most of the
intraclass variability is due to local translations and
deformations. It is comprised of at most 60,000 training
samples and 10,000 test samples. If the training dataset is
not augmented with deformations, the state of the art was
achieved by deep-learning convolution networks [30],
deformation models [17], [3], and dictionary learning [27].
These results are improved by a scattering classifier.

All computations are performed on the reduced cosine
scattering representation described in Section 3.4, which
keeps the lower frequency half of the coefficients. Table 4
computes classification errors on a fixed set of test images,
depending upon the size of the training set, for different
representations and classifiers. The affine space selection of
Section 4.1 is compared with an SVM classifier using RBF
kernels, which are computed using Libsvm [10], and whose
variance is adjusted using standard cross validation over a
subset of the training set. The SVM classifier is trained with
a renormalization which maps all coefficientsto? 1;1.The
PCA classifier is trained with the renormalization factors
(19). The first two columns of Table 4 show that classifica-
tion errors are much smaller with an SVM than with the
PCA algorithm if applied directly on the image. The third

and fourth columns give the classification error obtained
with a PCA or an SVM classification applied to the modulus
of a windowed Fourier transform. The spatial size 27 of the
window is optimized with a cross validation that yields a
minimum error for 2’ % 8. It corresponds to the largest
pixel displacements due to translations or deformations in
each class. Removing the complex phase of the windowed
Fourier transform yields a locally invariant representation
but whose high frequencies are unstable to deformations, as
explained in Section 2.1. Suppressing this local translation
variability improves the classification rate by a factor 3 for a
PCA and by almost 2 for an SVM. The comparison between
PCA and SVM confirms the fact that generative classifiers
can outperform discriminative classifiers when training
samples are scarce [28]. As the training set size increases,
the bias-variance tradeoff turns in favor of the richer SVM
classifiers, independently of the descriptor.

Columns 6 and 8 give the PCA classification result
applied to a windowed scattering representation for m % 1
and m % 2. The cross validation also chooses 2° ¥4 8. Fig. 7
displays the arrays of normalized windowed scattering
coefficients of a digit “3.” The first- and second-order
coefficients of Sip Xdup are displayed as energy distribu-
tions over frequency disks described in Section 2.3. The
spatial parameter u is sampled at intervals 2° so each image
of N pixels is represented by N2 > ¥, 4? translated disks,
both for order 1 and order 2 coefficients.

Increasing the scattering order from MY 1 to MY 2
reduces errors by about 30 percent, which shows that
second-order coefficients carry important information even
at a relatively small scale 2’ % 8. However, third-order
coefficients have a negligible energy and including them
brings marginal classification improvements while increas-
ing computations by an important factor. As the learning set
increases in size, the classification improvement of a
scattering transform increases relative to windowed Fourier
transform because the classification is able to incorporate
more high-frequency structures, which have deformation
instabilities in the Fourier domain as opposed to the
scattering domain.

Table 4 shows that below 5,000 training samples, the
scattering PCA classifier improves results of a deep-
learning convolution network, which learns all filter
coefficients with a back-propagation algorithm [20]. As
more training samples are available, the flexibility of the
SVM classifier brings an improvement over the more rigid
affine classifier, yielding a 0.43 percent error rate on the
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TABLE 8
Percentage of Errors on Scaled/Rotated MNIST Digits
Transformations Scat. m =1 | Scat. m =2

on MNIST images PCA PCA
None 1.6 0.8
Rotations 6.7 3.3

Scalings 2 1
Rot. + Scal. 12 5.5

have a smaller impact on the error rate than rotations
because scaled scattering vectors span an invariant linear
space of lower dimension. Second-order scattering outper-
forms first-order scattering, and the difference becomes
more significant when rotation and scaling are combined.
Second-order coefficients are highly discriminative in the
presence of scaling and rotation variability.

4.3 Texture Discrimination

Visual texture discrimination remains an outstanding image
processing problem because textures are realizations of non-
Gaussian stationary processes, which cannot be discrimi-
nated using the power spectrum. The affine PCA space
classifier removes most of the variability of SX EdSXp
within each class. This variability is due to the residual
stochastic variability, which decays as J increases, and to
variability due to illumination, rotation, scaling, or perspec-
tive deformations when textures are mapped on surfaces.
Texture classification is tested on the CUReT texture
database [21], [35], which includes 61 classes of image
textures of N ¥4 2002 pixels. Each texture class gives images
of the same material with different pose and illumination
conditions. Specularities, shadowing, and surface normal
variations make classification challenging. Pose variation
requires global rotation and illumination invariance. Fig. 8
illustrates the large intraclass variability after a normal-
ization of the mean and variance of each textured image.
Table 9 compares error rates obtained with different
image representations. The database is randomly split into a
training and a testing set, with 46 training images for each
class as in [35]. Results are averaged over 10 different splits.
A PCA affine space classifier applied directly on the image
pixels yields a large classification error of 17 percent. The
lowest published classification errors obtained on this
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Fig. 8. Examples of textures from the CUReT database with normalized
mean and variance. Each row corresponds to a different class, showing
intraclass variability in the form of stochastic variability and changes in
pose and illumination.

dataset are 2 percent for Markov random fields [35],
1.53 percent for a dictionary of textons [15], 1.4 percent for
basic image features [11], and 1 percent for histograms of
image variations [6]. A PCA classifier applied to a Fourier
power spectrum estimator also reaches 1 percent error. The
power spectrum is estimated with windowed Fourier
transforms calculated over half-overlapping windows
whose squared modulus are averaged over the whole
image to reduce the estimator variance. A cross-validation
optimizes the window size to 27 ¥ 32 pixels.

For the scattering PCA classifier, the cross validation
chooses an optimal scale 27 equal to the image width to
reduce the scattering estimation variance. Indeed, contrarily
to a power spectrum estimation, the variance of the
scattering vector decreases when 2’ increases. Fig. 9
displays the scattering coefficients Sip X of order m % 1
and m ¥ 2 of a CureT textured image X. A PCA classifica-
tion with only first-order coefficients (m ¥4 1) yields an error
0.5 percent, although first-order scattering coefficients are
strongly correlated with second-order moments whose
values depend on the Fourier spectrum. The classification
error is improved relative to a power spectrum estimator

TABLE 9
Percentage of Classification Errors of Different Algorithms on CUReT
Training X MRF | Textons | BIF | Histo. | Four. Spectr. | Scat. 7w =1 | Scat. m =2
size PCA | [35] [15] [11] [6] PCA PCA PCA
46 17 2 1.5 1.4 1 1 0.5 0.2

(b)

(©

Fig. 9. (a) Example of CureT texture X dub. (b) First-order scattering coefficients Sip X, for 2’ equal to the image width. (c) Second-order scattering

coefficients Sip X dup.
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because SX% | X ¥4 jX? |j? o is an estimator of a first-
order moment St ;| X % E§X? jp and thus has a lower
variance than second-order moment estimators. A PCA
classification with first- and second-order scattering coeffi-
cients (m ¥ 2) reduces the error to 0.2 percent. Indeed,
scattering coefficients of order m ¥ 2 depend upon mo-
ments of order 4, which are necessary to differentiate
textures having same second-order moments, as in Fig. 5.
Moreover, the estimation of St ;; 5 X ¥ EdkX ? d? b
has a low variance because X is transformed by a
nonexpansive operator as opposed to X9 for high-order
moments q 2. For m¥% 2, the cross validation chooses
affine space models of small dimension d % 16. However,
they still produce a small average approximation error (20)
2% 2:5 10 ! and the separation ratio (21) is 3 % 3.

The PCA classifier provides a partial rotation invariance
by removing principal components. It mostly averages the
scattering coefficients along rotated paths. The rotation of
PYa82 Jiry:...;2 Imrb by r is defined by rp %482 Iirry; ...
2 Impr Wb, This rotation invariance obtained by averaging
comes at the cost of a reduced representation discrimin-
ability. As in the translation case, a multilayer scattering
along rotations recovers the information lost by this
averaging with wavelet convolutions along rotation angles
[26]. It preserves discriminability by producing a larger
number of invariant coefficients to translations and rota-
tions, which improves rotation invariant texture discrimi-
nation [26]. This combined translation and rotation
scattering yields a translation and rotation invariant
representation which remains stable to deformations [25].

5 CONCLUSION

A scattering transform is implemented by a deep convolu-
tion network. It computes a translation invariant represen-
tation which is Lipschitz continuous to deformations, with
wavelet filters and a modulus pooling nonlinearity.
Averaged scattering coefficients are provided by each
layer. The first layer gives SIFT-type descriptors, which
are not sufficiently informative for large-scale invariance,
whereas the second layer brings additional stable and
discriminative coefficients.

The deformation stability gives state-of-the-art classifica-
tion results for handwritten digit recognition and texture
discrimination, with SVM and PCA classifiers. If the dataset
has other sources of variability due to the action of another
Lie group such as rotations, then this variability can also be
eliminated with an invariant scattering computed on this
group [25], [26].

In complex image databases such as CalTech256 or
Pascal, important sources of image variability do not result
from the action of a known group. Unsupervised learning is
then necessary to take into account this unknown varia-
bility. For deep convolution networks, it involves learning
filters from data [20]. A wavelet scattering transform can
then provide the first two layers of such networks. It
eliminates translation or rotation variability, which can help
in learning the next layers. Similarly, scattering coefficients
can replace SIFT vectors for bag-of-feature clustering
algorithms [8]. Indeed, we showed that second layer
scattering coefficients provide important complementary
information, with a small computational and memory cost.
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