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Abstract Within the germinal center in follicles, B-cells proliferate, mutate
and di�erentiate, while being submitted to a powerful selection : a micro-
evolutionary mechanism at the heart of adaptive immunity. A new foreign
pathogen is confronted to our immune system, the mutation mechanism that
allows B-cells to adapt to it is called somatic hypermutation : a programmed
process of mutation a�ecting B-cell receptors at extremely high rate. By con-
sidering random walks on graphs, we introduce and analyze a simplified math-
ematical model in order to understand this extremely e�cient learning process.
The structure of the graph reflects the choice of the mutation rule. We focus
on the impact of this choice on typical time-scales of the graphs’ exploration.
We derive explicit formulas to evaluate the expected hitting time to cover a
given Hamming distance on the graphs under consideration. This character-
izes the e�ciency of these processes in driving antibody a�nity maturation.
In a further step we present a biologically more involved model and discuss
its numerical outputs within our mathematical framework. We provide as well
limitations and possible extensions of our approach.
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1 Introduction

Understanding the role and functional implication of mutations is a central
question in biological evolutionary theory [17,57,24,15], but also for the study
of evolutionary algorithms [3]. Beyond the mutation rate, which is naturally an
important parameter, our aim in this article is to highlight the role of various
mutation rules on the exploration of the space of traits. In our mathematical
framework, configurations are represented as vertices of a graph which are con-
nected if there exists a mutation allowing to pass from one state to another.
We are mainly interested in understanding the characteristic time-scales for
the exploration of the state-space as a function of the mutation rule. To this
end, we relate mutation rules with specific graph topologies and build upon
random walks on graphs and spectral graph theories to analyze resulting time-
scales.

More precisely, beyond general theoretical results, we are particularly in-
terested to apply our framework to the B-cell a�nity maturation in Germinal
Centers (GCs). The adaptive immune system is able to create a specific re-
sponse against almost any kind of pathogens penetrating our organism and
inflict a disease. This task is performed by the production of high a�nity
antigen-specific antibodies. These proteins are produced by B-lymphocytes
which are submitted to a learning process improving their afinity to recog-
nize a particular antigen. This process is called Antibody A�nity Maturation
(AAM) and takes place in GCs [40]. Even if substantial progress has been
made in adaptative immunology, since somatic hypermutation was discovered
by the nobel price Susumu Tonegawa [54] in 1987, there are still facts that re-
main unclear about the GC reaction and the exact dynamics of AAM. Indeed,
it seems di�cult to make exact measurements of the antigenic repertoire in
vivo, or to have precise spatial and temporal data about lymphocytes during
the GC reaction, or to understand the exact dynamic of mutation and selec-
tion of B-cells while they are submitted to AAM (e.g. [16,43]). Nevertheless,
some refined techniques start to be available [21], showing possible correlations
between proliferation and mutation rates with respect to B-cells’ a�nity. This
provides further motivation for setting appropriate mathematical frameworks
to describe such systems.

The a�nity of a B-cell is biologically observed as a matching between the
B-cell receptor (BCR) and the antigen. We aim at understanding how mu-
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tation rules allow to explore the state-space of all possible configurations of
BCRs. The mutational mechanism that B-cells undergo in order to improve
their a�nity is called Somatic Hypermutation (SHM): it targets, at a very
high rate, the DNA encoding for the specific portion of the BCR involved in
the binding with the antigen, called Variable (V) regions. SHM can introduce
mutations at all four nucleotides, and mutation hot-spots have been identified
[53]. The e�ect of these mutations on the BCR, once expressed on the outer
surface of B-cells, is very complex, as the substitution of a single amino-acid
can modify the geometrical structure of the BCR, creating or deleting bonds
(see [1], Chapter 4, for more details about the crystal structure of BCRs and
their binding with antigens). All these features contribute in many di�erent
ways in the exploration of possible BCRs’ configurations.
Although the mutation process occurs at the level of the DNA, the result of
the mutation can be summarized by the modification of the amino-acid string
composing the BCR. Therefore, in the present paper, we consider e�ective mu-
tations directly at the level of the amino-acid string (Section 4.3). However,
the structure of our mathematical model can be left substantially unchanged
even in the hypothesis that we are considering mutations on the DNA, which
leads to a modify the definition of a�nity and the size of the state-space.

There already exists a certain number of mathematical models and re-
sults about GC reaction and AAM. In particular, [30,31] proposed determin-
istic population modeling of SHM and AAM, considering for instance the
hypothesis of recycling mechanisms during GC’s reaction, later investigated
by experiments [55]. In [42,44], the authors introduced and discussed several
immunological problems, such as the size of the repertoire, or the strength
of antigen-antibody binding, or the pourcentage of recycling. They provide
suitable mathematical tools, using both deterministic and probabilistic ap-
proaches, together with numerical simulations. More recently, biologically very
detailed models of GCs were proposed [37], using, for instance, agent-based
models [38], mostly analyzed through extensive numerical simulations. Our
aim here is not to build a very detailed and sophisticated model, but rather
to contribute to the theoretical foundation of adaptive immunity modeling
through the mathematical analysis of generic mutation models on graphs. So
far, this approach has not been developed and applied to GC reaction and
AAM modeling. In particular, this framework enables the study of various
mutation rules, such as for instance, a�nity-dependent mutations, which are
currently debated in the biological literature [21].

Beyond the fundamental understanding of physiological processes and their
associated pathologies, this research is related to important biotechnological
applications, such as the synthetic production of specific antibodies for drugs,
vaccines or cancer immunotherapy [20,50], since this production process in-
volves the selection of high a�nity peptides and requires smart methods to
generate an appropriate diversity, and also to the theoretical understanding of
bio-inspired algorithms such as in [9].
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In this article, we consider pure mutational models obtained as random
walks on graphs given by alterations of the edge set of the N -dimensional
hypercube. We are mostly interested in understanding the variation of hitting
times as a function of the underlying graphs, hence relating mutation rules to
the characteristic time-scales of the process. Section 2 contains mainly results
which are based on random walks theory (e.g. [41,39,46]) and, more specifi-
cally, random walks on graphs (e.g. [36,2]). This is a topic of active research
due to the great number of important applications in recent years, such as
graph clustering [48], ranking algorithms for search-engines [6,27], or social
network modeling [29,22,32].
For the sake of clarity, in Section 2 we start with the most basic mutational
model which is the simple random walk on the N -dimensional hypercube (e.g.
[13,25,12,56]). We set notations useful in order to define our models, then we
briefly overview some basic properties of random walks on graphs, and estab-
lish particular results in the case of the hypercube. In Section 3, we study
several mutation rules and their e�ects on the structure of the graph and,
consequently, its associated random walk, in particular in terms of the hitting
times. We use both spectral and probabilistic methods. We especially focus on
two mutation rules that are the combination of simpler ones: the class switch
of 1 or 2-length strings (Section 3.1.3), where the mutation rule depends on the
distance to the target, and the mutation rule which allows to do more than a
single mutation at each step (Section 3.1.4). Table 1 in Section 3.2 summarizes
the main results of Section 2 and 3 : we display expected times to reach some
position of the graph, as a function of each mutation rule. Finally, Section 4 is
dedicated to modeling aspects and discussions about possible extensions and
limitations of the proposed framework.

2 A basic mutational model

In this section we start by setting up the general mathematical framework,
which we will keep to pattern and study all mutational mechanisms discussed
in the current section and in Section 3. Hence, we state a basic mutational
model. The choice of this environnement is motivated by the modeling of
amino-acids chains and their modifications during SHM. It is for this reason
that we often recall some biological facts and refer to BCRs and antigens to
provide motivation. Despite this, this framework seems to us the simplest and
most adaptable one to study di�erent mutational rules in a more general evo-
lutionary context.

We suppose it is possible to classify the amino-acids, which determine the
chemical properties of both BCR and antigen, into 2 classes denoted by 0
and 1 respectively (they could represent amino-acids negatively and positively
charged respectively). Henceforth BCRs and antigen are represented by binary
strings of same fixed length N , hence, the state-space of all possible BCR con-
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figurations is {0,1}N . We will give some more details about these hypotheses
in Section 4.3.

Definition 1 We denote by HN the standard N -dimensional hypercube. BCR
and antigen configurations are represented by vertices of HN , denoted by xi

with 1 Æ i Æ 2N , or sometimes simply by their indices. We denote the antigen
target vertex by x: it is given at the beginning of the process and never changes.

We suppose that there is a single B-cell entering the GC reaction. The
configuration of its receptor is denoted by X

0

. If Xt is the configuration of the
BCR after t mutations, then depending on the mutational rule, one or more
bits in Xt can change after the next mutation. This gives rise to a Random
Walk (RW) on {0,1}N , where a mutation on the BCR corresponds to a jump
to a neighbor node. Of course, the definition of neighbors changes depending
on the mutation rules we introduce (we specify neighborhood each time we
discuss a new mutation rule). In a general way:

Definition 2 Given xi, xj œ {0,1}N , we say that xi and xj are neighbors,
and denote xi ≥ xj , if there exists at least one edge (or loop) between them.

As far as the complementarity is concerned, we have to make a further sim-
plification. As we have already discuss in the Introduction, the tridimensional
structure of the BCR is hard to model. For this reason we consider a linear
contact, i.e. positively charged amino-acids are complementary to negatively
charged ones when they are at the same position within the binary string.
For the sake of simplicity, we state that 0 matches with 0 and 1 with 1 (we
can suppose that the antigen representing string is given in its complementary
form). Formally, we define the a�nity as the number of identical bits shared
by the BCR representing string and x.

Definition 3 For all xi œ {0,1}N , its a�nity with x, aff(xi,x) is given by
aff(xi,x) := N ≠ h(xi,x), where h(·, ·) : ({0,1}N ◊ {0,1}N ) æ {0, . . . ,N} re-
turns the Hamming distance.

Definition 4 For all x = (x
1

, . . . ,xN ), y = (y
1

, . . . ,yN ) œ {0,1}N , their Ham-
ming distance is given by:

h(x,y) =
Nÿ

i=1

”i where ”i =

Y
]

[
1 if xi ”= yi

0 otherwise

Other definitions of a�nity are often (e.g. [37]) constructed as functions
of the Hamming distance aff(xi,x) = F (h(xi,x)), for instance with F given
by the Gaussian probability density function. These modeling aspect become
important when considering the selection mechanism, which is not treated in
the present article. Therefore, for our purpose, we can focus on the above def-
inition of a�nity.
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As first basic mutational rule, we choose to study the one given by single
switch-type mutations. At each time step a randomly chosen amino-acid within
the BCR binary string switches its amino-acid class. This clearly leads us to a
Simple Random Walk (SRW) on HN . Indeed, we can formalize it as follows:

Definition 5 Let Xn œ HN be the BCR at step n. Let i œ {1, . . . ,N} be a ran-
domly chosen index. Then Xn+1

:= (Xn,1, . . . ,Xn,i≠1

,1≠Xn,i,Xn,i+1

, . . . ,Xn,N ).

Remark 1 Referring to Definition 2 of neighborhood, as we consider here the
standard N -dimensional hypercube, ’xi, xj œ HN , xi ≥ xj … h(xi,xj) = 1.

We denote the transition probability matrix of the SRW on HN by PN or
simply by P if no misunderstanding is possible. For all xi, xj œ HN :

P(Xn = xj |Xn≠1

= xi) =: p(xi,xj) =

Y
]

[
1/N if xj ≥ xi

0 otherwise
; P = (p(xi,xj))

xi,xjœHN

The unique stationary distribution for P is the homogeneous probability distri-
bution on HN , denoted by fi: ’xi œ HN , fii := fi(xi) = 2≠N . Indeed, (Xn)nØ0

is clearly reversible with respect to fi. The uniqueness follows by the Ergodic
Theorem.

We also recall a property of HN that we will have to deal with: the bipar-
titeness.

Definition 6 A graph G = (V,E) is bipartite if there exists a partition of the
vertex set V = V

1

Û V
2

, s.t. every edge connects a vertex in V
1

to a vertex in
V

2

.

Typically a bipartition of the hypercube can be obtained by separating
the vertices with an odd number of 1 is in their string from those with an
even number of 1 is. In Figure 1 we emphasize the bipartite structure of the
hypercube H

3

.

110 111

101100

010 011

001000

110 111

101 100

010011

001000

Figure 1: Hypercube for N = 3 showing its bipartite structure.

A direct and elementary consequence of this property is the periodic be-
havior of the SRW on HN , which in particular causes some problems for the
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convergence through fi. This problem is classically overcome by adding N loops
at each vertex, that makes this RW become a lazy Markov chain [34]. The cor-
responding transition probability matrix will be given by PL := (P + I

2

N )/2,
where In denotes the n-dimensional identity matrix.

2.1 Spectral analysis

Most matrices describing the characteristics of the SRW on HN can be ob-
tained recursively, thanks to the recursive construction of the hypercube and
the operation of cartesian product between two graphs.

Definition 7 Given two graphs G
1

= (V
1

,E
1

) and G
2

= (V
2

,E
2

), the cartesian
product between G

1

and G
2

, G
1

◊G
2

, is a graph with vertex set V = V
1

◊V
2

=
{(u,v) |u œ V

1

, v œ V
2

}. Two di�erent vertices (u
1

,v
1

) and (u
2

,v
2

) are adjacent
in G

1

◊G
2

if either u
1

= u
2

and v
1

v
2

œ E
2

or v
1

= v
2

and u
1

u
2

œ E
1

.

Its a known result [25] that for N > 1, HN is obtained from HN≠1

as:
HN = HN≠1

◊ H
1

. This characteristic implies the recursive construction of
the adjacency matrix and allows to determine the corresponding eigenvalues
and eigenvectors. We denote by AN the adjacency matrix corresponding to
HN ; by In the n-dimensional identity matrix. Then we have:

A
1

=
0

1

Q

a 0 1

1 0

R

b ; A
2

=

00

01

10

11

Q

cccccca

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

R

ddddddb
=

Q

a A
1

I
2

I
2

A
1

R

b

Here we wrote in gray the strings corresponding to each row: in order to obtain
the adjacency matrices in this form, we simply have to order vertices of HN

in lexicographical order.

By iteration we obtain [18]:

An =

Q

a An≠1

I
2

n≠1

I
2

n≠1 An≠1

R

b

This iterative construction allows also to determine recursively the spectra
of AN and, consequently, of PN = AN /N (as HN is a N -regular graph, the
transition probability matrix corresponds to the adjacency matrix divided by
N). Here below we recall the explicit values of the eigenvalues of AN and PN

respectively. An extensive proof can be found in [18].

Theorem 1 The eigenvalues of AN are: N,N ≠ 2,N ≠ 4, . . . ,≠N + 4,≠N +
2,≠N . If we order the N + 1 distinct eigenvalues of AN as ⁄A

1

> ⁄A
2

> · · · >

⁄A
N+1

, then the multiplicity of ⁄A
k is

! N
k≠1

"
, 1 Æ k Æ N +1
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Corollary 1 The eigenvalues of PN are: 1,1≠2/N,1≠4/N,. . . ,≠1+4/N,≠1+
2/N,≠1. If we order the N + 1 distinct eigenvalues of P as ⁄

1

> ⁄
2

> · · · >
⁄N+1

, then the multiplicity of ⁄k is
! N

k≠1

"
, 1 Æ k Æ N +1

Finally we recall the expression of the eigenvectors of AN (and then also
of P), that we will gather together into a matrix. The eigenvectors for A

1

are:

z

1

=

S

U 1

1

T

V for ⁄A
1

= 1 and z

2

=

S

U 1

≠1

T

V for ⁄A
2

= ≠1 ∆ Z
1

= [z
1

,z
2

]

Thanks to the relations between the cartesian product of two graphs and
their eigenvectors, it follows by induction that [18]:

Zn =

Q

a Zn≠1

Zn≠1

Zn≠1

≠Zn≠1

R

b

Finally, one renormalizes each vector zi multiplying it by
Ô

2≠N . We denote
by QN the resulting matrix, where each column is a 2N vector vi =

Ô
2≠N

zi.

2.2 Evolution of Hamming distances to a fixed node

In this section we focus our attention on the distance process, which is the
process obtained from the SRW on HN by looking at the Hamming distance
between the B-cell representing string at each mutation step and the antigen
target representing string. More precisely, (Dn)nØ0

:= (h(Xn,x))nØ0

is a RW
on {0, . . . ,N}. From a biological point of view this process represents the evo-
lution of the a�nity of our mutating B-cell to the presented antigen. The idea
of analyzing the distance of a RW on a graph to some position, where dis-
tance means the minimal number of steps that separate two positions, is not
unusual. N. Berestycki in [5] applied that to genome rearrangements, where
the distance on the graph corresponds biologically to the minimal number of
reversals or other mutations needed to transform one genome into the other.
Due to the perfect symmetry of the graph we are taking into account and
our particular choice of the a�nity (which is directly related to the Hamming
distance), by studying (Dn) we reduce considerably the number of vertices of
the graph, passing from 2N to N + 1 nodes, without losing the most impor-
tant properties of the corresponding transition matrix. However, if we consider
more complicated models of mutation, it is not possible to reduce the study
of the process to the distances to a fixed node. In Figure 2 we show explicitly
how pass from (Xn) to (Dn): since x is fixed and known, we are able to group
the vertices by their Hamming distance to x. Moreover we keep the original
probability of going to the next distance class by considering weighted and
directed edges.

The transition probability matrix for (Dn), denoted by Q, is given by
Proposition 1 below.
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1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

0
1

2
3

1

1
3

2
3

2
3

1
3

1

Figure 2: From the (Xn) process (on the left) to the (Dn) process (on the
right) (case N = 3). Near each arrow the probability to travel in the corre-
sponding direction is exhibited. The red vertex always corresponds to x, while
we represent vertices at the same distance with the same color (yellow for
h = 1, green for h = 2, and blue for h = 3).

Proposition 1 For all d, dÕ œ {0, . . . ,N}:

P(Dn = dÕ |Dn≠1

= d) =: q(d,dÕ) =

Y
___]

___[

d/N if dÕ = d≠1

(N ≠d)/N if dÕ = d+1

0 if |dÕ ≠d| ”= 1

(1)

Q = (q(d,dÕ))d,dÕœ{0,...,N} is a (N + 1) ◊ (N + 1) tridiagonal matrix where
the main diagonal consists of zeros. The stationary distribution for Q is the
binomial probability distribution B

!
N, 1

2

"
=

1
Cd

N
1

2

N

2

dœ{0,...,N}
, where Cd

N =
!N

d

"
= N !

d!(N≠d)!

is the binomial coe�cient. It is the unique stationary distribu-
tion for Q: a simple calculation points out the fact that (Dn)nØ0

is reversible
with respect to B

!
N, 1

2

"
, then the uniqueness follows again by the Ergodic

Theorem.

Anew, we have to deal with bipartiteness: the graph we are taking into
account in this section is clearly bipartite, since we can separate its vertices
into two subsets containing odd and even nodes respectively and there are no
edges connecting two vertices in the same subset. In order to overcome this
problem we add N loops at each vertex xi œ HN which means that the new
transition probability matrix for the (Dn) process is, for all d, dÕ œ {0, . . . ,N}:

P(Dn = dÕ |Dn≠1

= d) =: qL(d,dÕ) =

Y
______]

______[

1/2 if dÕ = d

d/(2N) if dÕ = d≠1

(N ≠d)/(2N) if dÕ = d+1

0 if |dÕ ≠d| ”= 1

(2)

We denote by QL the matrix QL := (qL(d,dÕ))d,dÕœ{0,...,N}. Then:
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Proposition 2 (Dn)nØ0

converges in law to a binomial random variable with
parameters N and 1/2. Explicitly:

(QL)d æ B
3

N,
1
2

4

d

for n æ +Œ

Proof The proof follows directly observing that QL represents an irreducible
and, now, aperiodic MC, with the same stationary distribution as Q (see [41]
for a proof of the general result). ÙÛ

The spectral analysis of Q gives us the following result.
Theorem 2 For fixed N , the spectra of the transition probability matrix Q
corresponding to the (Dn) process is composed by the same N + 1 distinct
eigenvalues as the spectra of P, each with multiplicity 1.
Proof The proof consists of a simple calculation of the eigenvalues of matrix
Q for little N . Then we reason by iteration. We can also give the system we
use for determining the eigenvectors. For fixed N let us denote by ⁄±k the
eigenvalue ±(N≠2k)

N for 0 Æ k Æ ÂN/2Ê. We denote by x±k the corresponding
unknown eigenvector. Then we have the following matrix equation:

Qx±k = ⁄±kx±k

Which is: Y
___________________________]

___________________________[

x±k,2 = ⁄±kx±k,1

1

N x±k,1 + N≠1

N x±k,3 = ⁄±kx±k,2

2

N x±k,2 + N≠2

N x±k,4 = ⁄±kx±k,3

...

N≠1

N x±k,N≠1

+ 1

N x±k,N+1

= ⁄±kx±k,N

x±k,N = ⁄±kx±k,N+1

ÙÛ
Remark 2 Using the classical results of S. N. Ethier and T. G. Kurtz [14]
it is possible to prove that, denoting by xN (t) the process xN (t) = DÂNtÊ

N ,
it converges in probability through x(t), solution of the di�erential equation
ẋ(t) = ≠2x(t)+1 on a finite time window:

’Á > 0, ’T > 0, P
A

sup
tœ[0,T ]

|xN (t)≠x(t)| > Á

B
æ 0 for N æ Œ.
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Remark 3 We can easily observe that x(t) rapidly converges to 1/2 for all
x

0

œ [0,1]. In particular if we start at x
0

= 1/2 , we stay there for all t. That
suggests that the (Dn) process, for N going to infinity, reaches a value of about
N/2 exponentially fast, and then tends to remain there.

From an heuristic viewpoint we can explain how we derived the above
equation. First of all, we take into account the following rescaled process:

xn := Dn/N

As (Dn) œ {0, . . . ,N}, xn œ [0,1]. Denoting by qn(x) = P(xn = x) and using
Equation (1), we have:

qn+1

(x) = (1≠x)qn

3
x≠ 1

N

4
+xqn

3
x+ 1

N

4

Now we apply the Taylor is theorem for N ∫ 1:

qn+1

(x) = (1≠x)
3

qn(x)≠ 1
N

qÕ
n(x)+o

3
1
N

44
+x

3
qn(x)+ 1

N
qÕ

n(x)+o

3
1
N

44

From which we get:

qn+1

(x)≠ qn(x) = 1
N

(x≠ (1≠x))qÕ
n(x)+o

3
1
N

4

Defining the process q̃(t,x) = qÂNtÊ(x), with t = n
N , we obtain:

ˆtq̃(t,x) = (2x≠1)ˆxq̃(t,x)+o

3
1
N

4

And consequently, the corresponding transport equation is:

ˆtq(t,x) = (2x≠1)ˆxq(t,x) (3)

The di�erential equation associated with Equation (3) (its characteristic equa-
tion) is:

ẋ(t) = ≠2x(t)+1

which has solution:

x(t) = 1
2 +

3
x

0

≠ 1
2

4
e≠2t

It is also possible to derive a di�usion approximation by expanding the gen-
erator at second order.
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2.3 Hitting times

In this section we give explicit formulas to compute the hitting time from node
xi to xj : the expected number of steps before xj is visited, starting from xi.
More precisely, we define by ·{xj} := inf{n Ø 0 |Xn = xj}: we are interested
in studying its expectation, E

xi [·{xj}]. The formula we gave in Section 2.3.1
is directly obtained from the more general one given by L. Lovász in [36] (we
recall Equation (6) simply because we will need it later). On the other hand,
the formula given in Section 2.3.2 is obtained from the (Dn) process and the
procedure is inspired by those one used in [33].

2.3.1 Analysis of E
x0 [·{x}] using the spectrum of P.

Definition 8 Let H be the 2N ◊2N symmetric matrix having as (i, j)th entry:
(H)ij = H(i, j) = E

xi [·{xj}] for all xi, xj œ HN . Clearly H(i, i) = 0 for all i.

The N -regularity of the graph implies that:

H(i, j) = 1+
ÿ

{k|h(i,k)=1}
PikH(k,j) = 1+ 1

N

ÿ

{k|h(i,k)=1}
H(k,j) for i ”= j (4)

To relate the hitting time with the spectrum, we first define F := J +PH ≠H,
where J is a 2N ◊2N matrix whose entries are all 1. From Equation (4), it fol-
lows that F is a diagonal matrix, as (H)ij = (J)ij +(PH)ij for i ”= j. Moreover
F Õfi = 1, where 1 = (1, . . . ,1)Õ, since

F Õfi = (J +(P ≠ I
2

N )H)Õ fi = Jfi+H Õ(P ≠I
2

N )Õfi = Jfi+H Õ(P Õfi≠fi) = Jfi = 1

Therefore, we deduce that F = 2N I
2

N and that H is solution of

(I
2

N ≠P)H = J ≠2N I
2

N (5)

As shown in [36], the solution is given by H := (I
2

N ≠P +1fiÕ)≠1(J ≠2N I
2

N ),
yielding:

Theorem 3 Given a SRW on HN , the hitting time from vertex i to j is given
by:

H(i, j) = 2N
2

Nÿ

k=2

1
1≠⁄k

(v2

kj ≠vkivkj), (6)

where ⁄k is the kth eigenvalue of P and vki corresponds to the ith component
of the kth eigenvector of P, as given in Section 2.1.
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2.3.2 Analysis of E
x0 [·{x}] from the Dn viewpoint.

For the sake of simplicity, we denote H(D
0

) := E
x0 [·{x}] as it depends only

on the initial Hamming distance of X

0

to x, D
0

.

Remark 4 Due to (1), starting at point x

0

with D
0

= d, we have:
Y
]

[
P(D

1

= d+1 |D
0

= d) =: q(d,d+1) = (N ≠d)/N

P(D
1

= d≠1 |D
0

= d) =: q(d,d≠1) = d/N

We are now able to define a new recursive formula for (4), which will be more
convenient if evaluated explicitly:

H(d) = 1+ N ≠d

N
H(d+1)+ d

N
H(d≠1) (7)

with boundary conditions:

H(0) = 0 and H(1) = 2N ≠1 =
Nÿ

j=0

Cj
N ≠1 (8)

Taking the di�erence ∆(d) := H(d)≠H(d≠1), we obtain:

∆(d+1) = H(d+1)≠H(d) = d

N

!
∆(d+1)+∆(d)

"
≠1

And finally:

∆(d+1) = d

N ≠d
∆(d)≠ N

N ≠d
with ∆(1) = H(1) (9)

Then we can prove by iteration the following result:

Theorem 4 Given a SRW on HN , the hitting time to cover a Hamming dis-
tance equal to d, H(d) with 0 Æ d Æ N is obtained as:

H(d) =
d≠1ÿ

d=0

qN≠1≠d
j=1

Cd+j
N +1

Cd
N≠1

(10)

Proof One have to prove that:

∆(d+1) =
qN≠1≠d

j=1

Cd+j
N +1

Cd
N≠1

(11)

∆(d+1) = d ·∆(d)
N ≠d

≠ N

N ≠d
= d

N ≠d

3
(d≠1) ·∆(d≠1)

N ≠ (d≠1) ≠ N

N ≠ (d≠1)

4
≠ N

N ≠d

= d(d≠1) ·∆(d≠1)
(N ≠d)(N ≠ (d≠1)) ≠N

3
d

(N ≠d)(N ≠ (d≠1)) + 1
N ≠d

4
(12)
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Proceeding by iteration we obtain two terms, where the first one multiplies
∆(1). From Equation (9) we know that ∆(1) = H(1) =

qN
j=0

Cj
N ≠ 1. A con-

venient use of the properties of the factorial operator allows us to reach the
following expression:

(12) = d!(N ≠1≠d)!
(N ≠1)!

Q

a
Nÿ

j=0

Cj
N ≠1

R

b≠N

3
d!(N ≠1≠d)!

(N ≠1)! + d!(N ≠1≠d)!
2!(N ≠2)! + · · ·

+ d!(N ≠1≠d)!
(d≠1)!(N ≠ (d≠1))! + d!(N ≠1≠d)!

d!(N ≠d)!

4
=

= d!(N ≠1≠d)!
(N ≠1)!

Q

a1+
N≠1≠dÿ

j=1

N !
(d+ j)!(N ≠ (d+ j))!

R

b =
qN≠1≠d

j=1

Cd+j
N +1

Cd
N≠1

By using again (9), we can now easily express H(d) in the following way

H(d) =
d≠1ÿ

d=0

∆(d+1) =
d≠1ÿ

d=0

qN≠1≠d
j=1

Cd+j
N +1

Cd
N≠1

which can be evaluated for reasonable values of N . ÙÛ

We can immediately observe that H(d) is a monotonically increasing func-
tion. Moreover, H is concave. Indeed, thanks to Proposition 4 we can prove
that ’d œ {1, . . . ,N ≠1}:

H(d)≠H(d≠1) Ø H(d+1)≠H(d) ≈∆ ∆(d) Ø ∆(d+1)

Furthermore, we can evaluate the following limit:

lim
NæŒ

H(–N)
2N

for – œ]0,1]. (13)

Remark 5 The case – = 0 is trivial: if – = 0 this limit is equal to 0 since
H(0) = 0.

Remark 6 Proposition 3 below, which evaluates (13), confirms the statement
made in Remark 3: as N goes to infinity, (Dn) goes quickly to N/2 and then
H(d) is always of order ≥ 2N irrespective of d ”= 0.

Proposition 3 For all – œ]0,1]:

lim
NæŒ

H(–N)
2N

= 1
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Proof Since H is an increasing function and by using Equation (10) we have:

2N ≠1 = H(1) Æ H(–N) Æ H(N) =
N≠1ÿ

d=0

N≠1≠dÿ

j=1

Cd+j
N

Cd
N≠1

+
N≠1ÿ

d=0

1
Cd

N≠1

=: I
1

+ I
2

We examine the two terms of the last member separately.

I
2

Æ 2+ 2
N ≠1 +(N ≠4) 2

(N ≠1)(N ≠2) (14)

We can prove it just by looking at Pascal is triangle.

Now, if we consider I
1

, we see that there is no contribution for d = N ≠1,
as the internal sum is zero valued. Moreover we have:

N≠1≠dÿ

j=1

Cd+j
N Æ

Nÿ

j=0

Cj
N = 2N

And so:

I
1

Æ 2N
N≠2ÿ

d=0

1
Cd

N≠1

(14)

Æ 2N

3
1+ 2

N ≠1 +(N ≠4) 2
(N ≠1)(N ≠2)

4

By putting together all these inequalities and dividing by factor 2N we get
that:

1≠ 1
2N

Æ H(–N)
2N

Æ 1+ 2
N ≠1 + 2(N ≠4)

(N ≠1)(N ≠2) + 1
2N

3
2+ 2

N ≠1 + 2(N ≠4)
(N ≠1)(N ≠2)

4

The result comes directly by applying the squeeze theorem. ÙÛ

This result can be extended to a SRW on a generic state-space SN , with
|S| = s. More precisely, one can prove in a similar way as we did for HN the
following result:

Proposition 4 The order of magnitude of the hitting time for a switch-type
mutational model on the state-space SN , with |S| = s, is sN , for N big enough.

This is the consequence of Theorem 5 and Proposition 5 below.

Theorem 5 Given a SRW on SN , the hitting time to cover a Hamming dis-
tance equal to d, Hs(d) with 0 Æ d Æ N is obtained as:

Hs(d) =
d≠1ÿ

d=0

qN
j=d+1

Cj
N (s≠1)j

Cd
N≠1

(s≠1)d
(15)

Proposition 5 For all – œ]0,1]:

lim
NæŒ

Hs(–N)
sN

= 1
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3 More mutational models: how does the structure of the

hypercube change?

In this section, we explore other mutation rules, which change the internal
graph structure of the hypercube, therefore the dynamics of the RW and the
characteristic time-scales of the exploration of the state-space.

3.1 Study of various mutation rules

In this section, we study mainly three mutation rules : a model of switch of
k-length strings, a model of permutation of two bits and a model of switch
of 1 or 2-length strings depending on the Hamming distance to a fixed node
representing the antigen target cell.

3.1.1 The exchange mutation model.

We consider a model where given an initial B-cell representing string, each
mutation step consists in permuting two randomly chosen bits.

Definition 9 Let Xn œ {0,1}N be the BCR at step n. Let i œ {1, . . . ,N}, j œ
{1, . . . ,N}\{i} two randomly chosen indexes. Then (we can suppose, without
loss of generality, that j > i):

Xn+1

= (Xn,1, . . . ,Xn,i≠1

,Xn,j ,Xn,i+1

, . . . ,Xn,j≠1

,Xn,i,Xn,j+1

, . . . ,Xn,N )

With this mutation rule, we loose a very important property : the connec-
tivity of the graph. We denote by H

(s)

µ {0,1}N the set containing the Cs
N

vertices having s 1 in their strings. The state-space {0,1}N is divided into
N +1 connected components: H

(s)

, 0 Æ s Æ N .

Proposition 6 There are exactly N(N≠1)

2

(non-oriented) edges ending at each
vertex counting the possible loops. Each node x œ H

(s)

has exactly (N≠s)

2≠(N≠s2
)

2

loops.

Corollary 2 P(Xn = xj |Xn≠1

= xj) = (N≠s)

2≠(N≠s2
)

N(N≠1)

. Then the probability
of remaining on the same node is 1 if s = 0 or s = N .

Proof (Proposition 6) The first statement is obtained by simple combinatory
arguments. Let us consider x œ H

(s)

with 0 Æ s Æ N : it is composed by exactly
s ones and N ≠s zeros. For the sake of clarity let us consider that {0, . . . ,N} =
I ÛJ so that |I| = s, |J | = N ≠s and xi = 1 ’ i œ I, xj = 0 ’j œ J . We obtain
a loop each time we choose both random indices either in I (C2

s possibilities)
or in J (C2

N≠s possibilities). Then the total number of loops is obtained by
the sum of these two cases, i.e. (N≠s)

2≠(N≠s2
)

2

. ÙÛ
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We can also describe qualitatively the behavior of the (Dn) process refer-
ring to this current model. As a general principle, we have that Dn = Dn≠1

+i,
i œ {0,±2}. Therefore, clearly P(Dn = dÕ|Dn≠1

= d) = 0 if |dÕ ≠ d| > 2 or
|dÕ ≠d| = 1. Moreover, we have maximal and minimal values of Dn depending
on s

0

and s so that X

0

œ H
(s0)

and x œ H
(s)

. Indeed:

Proposition 7 Given x œ H
(s)

and X

0

œ H
(s0)

, then ’n Ø 0:
Y
___]

___[

|s≠s
0

| Æ Dn Æ s+s
0

if s+s
0

Æ N

|s≠s
0

| Æ Dn Æ (N ≠s)+(N ≠s
0

) if s+s
0

> N

Proof The proof follows immediately by counting how many possibilities there
are to arrange s ones and N ≠s zeros in a N -length string. ÙÛ

Remark 7 From Proposition 7 one can see that if s = s
0

=: s and 2s ”= N then:

0 Æ Dn < N

3.1.2 Class switch of k-length strings.

Let X

0

= (X
0,1, . . . ,X

0,N ) œ {0,1}N be the B-cell entering the somatic hyper-
mutation process. At each mutation step we switch the class of k consecutive
amino-acids.

Definition 10 Let Xn œ {0,1}N be the BCR at step n. Let i œ {1, . . . ,N ≠
(k ≠ 1)} be a randomly chosen index. Then Xn+1

:= (Xn,1, . . . ,Xn,i≠1

,1 ≠
Xn,i, . . . ,1≠Xn,i+k≠1

,Xn,i+k, . . . ,Xn,N ).

Remark 8 If k = 1 we are in the case of a SRW on HN .
If k = N we stay on a 2-length cycle. Indeed we have that Xl = X

0

for l even
and Xl = 1 ≠ X

0

for l odd. For this reason the case k = N does not appear
interesting neither from a mathematical nor from a biological point of view.

Here below we give some basic properties of this RW, that one can easily
prove by simple combinatory arguments.

Proposition 8 Each vertex has exactly N ≠ (k ≠ 1) neighbors and no loops.
Therefore, for all xi, xj in {0,1}N :

P(Xn = xj |Xn≠1

= xi) =: pk(i, j) =

Y
___]

___[

1
N ≠ (k ≠1) if xj ≥ xi

0 otherwise

Remark 9 As regards to this current model, given xi, xj œ {0,1}N , we have:
xi ≥ xj … h(xi,xj) = k and the k di�erent elements have consecutive indexes.
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Thus, Pk = (pk(xi,xj))
xi,xjœHk

is the 2N ◊2N transition probability ma-
trix.

For fixed k œ {1, . . . ,N} the graph underlying the RW corresponding to
the model of class switch of k-length strings has exactly 2k≠1 connected com-
ponents, each one composed of 2N≠(k≠1) elements.
Because of the non connectivity of the graph, we can focus on the connected
component to which X

0

belongs and find out the properties of our RW on
it. For fixed N and k and dealing with each connected component separately,
we are describing a SRW on a (N ≠ (k ≠1))-hypercube. Henceforth we obtain
2k≠1 distinct hypercube-type structures of the same size.

We can limit our study to the connected component containing X

0

, which
is, up to a change of variables, a (N ≠ (k ≠ 1))-dimensional hypercube. Let
Pk be the restriction of Pk to this connected component. If we conveniently
order the 2N≠(k≠1) distinct vertices, than Pk = PN≠(k≠1)

. At this stage, it is
possible to translate all classical results we know about the SRW on Hn, for n =
N ≠ (k ≠1), on each connected component of this current graph, remembering
the definition of neighborhood given in Remark 9.

3.1.3 Class switch of 1 or 2-length strings depending on the Hamming
distance to x.

The models we described in Sections 3.1.1 and 3.1.2 present an important lim-
itation: the underlying graphs are non-connected. Due to the choice we made
of a�nity, a model which does not enable to explore the whole state-space is
not very relevant. Indeed, if the graph is non-connected and the target chain
does not belong to the connected component containing the B-cell which first
enters the somatic hypermutation process, then we never reach the target con-
figuration. From a biological viewpoint, it may be more relevant to consider
a smoother a�nity model, in which the BCR representing string reaches the
target when most, but not all, bits are similar. In this case, considering a non-
connected graph, is not necessarily a problem.

Another way to overcome the problem of non-connectivity is to consider a
model which allows to vary the length of the strings submitted to switch-type
mutations. Moreover, it is biologically credible that during the GC process B-
cells can modify their mutation rate, making it somehow inversely proportional
to their a�nity to the antigen [45,7,4]: the greater the a�nity, the lower is
the mutation rate. Indeed, B-cells during the GC process compete for di�erent
rescue signals (from Helper T-cells or FDCs), and that determines their fate:
undergo further mutations or di�erentiate into plasma cells or memory cells
([1], Chapters 7). We found the hypothesis that the regulation of the hyper-
mutation process is dependent on receptor a�nity also in other works, as [9]
by L.N. De Castro and F. J. Von Zuben, where they proposed a computational
implementation of the clonal selection principle to design genetic optimization
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algorithms, taking into account AAM during an adaptive immune response.
In terms of our mathematical model, we can translate it by making the size k
of the strings which can mutate to be directly proportional to the Hamming
distance to x at each mutation step:

kn = f(Dn), with f : {0, . . . ,N} æ {0, . . . ,N} being an increasing function.

Despite many choices of the function f are possible, hereinafter we consider a
very elementary case, where f is a step function on two intervals.

Definition 11 Let Xn œ {0,1}N be the BCR at step n. We denote by kn:

kn := f (Dn) =

Y
]

[
1 if Dn Æ 1

2 if Dn > 1

Let i œ {1, . . . ,N ≠ (kn ≠1)} be a randomly chosen index. Then:
Xn+1

:= (Xn,1, . . . ,Xn,i≠1

,1≠Xn,i, . . . ,1≠Xn,i+kn≠1

,Xn,i+kn , . . . ,Xn,N ).

This model is an interesting and simple way to generalize the basic muta-
tional model without loosing the property of connectivity of the graph. The
addition of this flexibility was not only motivated by biological reasons, but we
also expect that this modification decreases the hitting time to a fixed node.
This is actually true: the hitting time is halved compared to the basic model
(at least for N big enough). We will also show that the stationary distribution
is concentrated on a half part of the hypercube, the one to whom x belongs.

Remark 10 For fixed N and k = 2 the graph is divided into two connected
components composed of 2N≠1 vertices. Two nodes belonging to the same
connected component have a Hamming distance of 2t with 0 Æ t Æ ÂN/2Ê. On
the other hand, two vertices belonging to di�erent connected components have
a Hamming distance of (2t+1) with 0 Æ t Æ Â(N ≠1)/2Ê.

In order to analyze this process, we have to distinguish two cases. For fixed
N and x, the process we obtain:

case 1: D
0

= 2t, t > 0. X

0

belongs to the same connected component as x,
so we are working on a (N ≠1)-dimensional hypercube, following the model
of class switch of 2-length strings. we stay in this connected component all
over the process till we arrive at x, as it is impossible to obtain a Hamming
distance equal to 1.

case 2: D
0

= 2t + 1, t > 0. We necessarily take k = 2 and Remark 10 im-
plies that X

0

belongs to a di�erent connected component than x. In order
to reach the connected component containing x, we have to visit a node x

ú
so that h(xú,x) = 1, and |{x

ú |h(xú,x) = 1}| = N . Then, if D
0

= 1 we are
allowed to change only one element of the B-cell representing string. With
probability 1/N we arrive directly at x and with probability (N ≠1)/N we
obtain D

1

= 2. Then we go back to case 1.
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Proposition 9 The graph corresponding to the current model is divided into
two connected components: H(1≠2)

N and its complementary HN
(1≠2), s.t. x œ

HN
(1≠2). HN

(1≠2) is accessible from H(1≠2)

N , but not conversely. Vertices be-
longing to HN

(1≠2) are positive recurrent and vertices belonging to H(1≠2)

N are
transient.
Proof The existence of two connected components depends on the use of the
model of switch of 2-length strings. Indeed the structure of the graph we are
considering here essentially corresponds to that of the graph underlying the
model of switch of 2-length strings, up to the addition of some oriented edges
from H(1≠2)

N to HN
(1≠2). As long as we stay in HN

(1≠2) or H(1≠2)

N we are just
allowed to switch 2-length strings. Moreover, we have already observed that
when we are in HN

(1≠2) we can’t exit, while when we are in H(1≠2)

N we can
reach HN

(1≠2) by visiting one among the N nodes having Hamming distance
1 from x, and that happens in a finite number of steps. Therefore:

Y
___]

___[

P(·
xi < Œ) = 1 for all xi œ HN

(1≠2) ∆ xi is recurrent

P(·
xi < Œ) < 1 for all xi œ H(1≠2)

N ∆ xi is transient

In particular, vertices belonging to HN
(1≠2) are positive recurrent as the chain

is irreducible on HN
(1≠2) and |HN

(1≠2)| < Œ. ÙÛ
The following known result about stochastic processes, justify Corollary 3

below.
Theorem 6 Let (Xn)nØ0

be a Markov chain on a state-space S and xi œ S
be positive recurrent. Let mi be the mean return time: mi = E(·{xi} |X

0

= xi).
Denoting by Sr ™ S the positive recurrent connected component to which xi

belongs, then a stationary distribution fi is given by:
fii = mi ’xi œ Sr

fii = 0 ’xi œ S \Sr

Theorem 6 is proven by considering the relations among recurrent and
transient classes, stationary distributions and return time (see [41] for some
more details).
Corollary 3 The stationary distribution for the RW we describe in the present
section, fi, is given by:

fii =

Y
___]

___[

1
2N≠1

if xi œ HN
(1≠2)

0 if xi œ H(1≠2)

N

(16)

Corollary 3 is a consequence of Theorem 6 and the study of the SRW on
an N -dimensional hypercube.
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3.1.4 Allowing 1 to k mutations

In this section we analyze how the N -dimensional hypercube changes if we
allow 1 to k independent switch-type mutations at each step, with k fixed,
k Æ N .

Definition 12 Let Xn œ {0,1}N be the BCR at step n. Let k be an integer,
1 Æ k Æ N and ’ i, 1 Æ i Æ k, ai := P(i independent switch-type mutations).
Then with probability ai, Xn+1

is obtained from Xn by repeating i times,
independently, the process described by Definition 5.

By definition, the corresponding transition probability matrix is a con-
vex combination of Pi, for 1 Æ i Æ k (Pi is the transition probability matrix
corresponding to i iterations of the process of a single bit mutation):

kÿ

i=1

aiPi, with
kÿ

i=1

ai = 1. (17)

Definition 13 Let us fix ai = 1/k ’ i. We denote by P(k) := 1/k
qk

i=1

Pi.
Accordingly, we denote the graph underlying this RW H(k)

N .

Remark 11 Since the mutations are assumed to be independent, then k rep-
resents the maximum Hamming distance the process can cover in a single
mutation step. Thanks to the independence of each single mutation, two or
more mutations may nullify their respective action: in particular for k Ø 2
there is a non-zero probability of remaining at the same position. From a bi-
ological point of view, this behavior can be interpreted as the possibility of
doing mutations which have no e�ect on the BCR structure.

We can now evaluate the eigenvalues of P(k), ⁄
(k)

j by using the eigenvalues
⁄j of P (Section 2.1). Due to the fact that all Pi commute with each other,
the eigenvalues are given by:

⁄
(k)

j = 1
k

kÿ

i=1

⁄i
j (18)

and P(k) and P have the same eigenvectors. We give explicitly the expression
of all ⁄

(k)

i and concentrate on the second largest eigenvalue, ⁄
(k)

2

.

Proposition 10 The N +1 distinct eigenvalues of matrix P(k) are:

– ⁄
(k)

1

= 1 ;

– ⁄
(k)

j = ⁄j

k
·
1≠⁄k

j

1≠⁄j
for 2 Æ j Æ N ;

– ⁄
(k)

N+1

= 1
2k

1
(≠1)k ≠1

2
=

Y
]

[
0 if k is even

-1/k if k is odd



22 Irene Balelli, Vuk MiliöiÊ, Gilles Wainrib

The multiplicity of ⁄
(k)

j is
! N

j≠1

"
, 1 Æ j Æ N +1

Proof This result comes directly from the evaluation of Equation (18), for the
already known values of all ⁄j (Corollary 1). ÙÛ

Then, in particular, the second largest eigenvalue of P(k) is:

⁄
(k)

2

= N ≠2
2k

A
1≠

3
1≠ 2

N

4k
B

(19)

Remark 12 For all k Ø 2, ⁄
2

> ⁄
(k)

2

. First of all, we can observe that ⁄
(k)

2

decreases for increasing k. Therefore:

⁄
2

≠⁄
(k)

2

Ø ⁄
2

≠⁄
(2)

2

= N ≠2
4N2

(4N ≠N2 +(N ≠2)2) = N ≠2
N2

> 0

For N ∫ 1, the series expansion of ⁄
(k)

2

gives us:

⁄
(k)

2

= N ≠2
2k

3
1≠

3
1≠ 2k

N
+ 2k(k ≠1)

N2

+O
3

1
N3

444

= N ≠2
N

≠ (N ≠2)(k ≠1)
N2

+O
3

1
N2

4

We can observe how the spectral gap changes. If we consider the series
expansion of

!
1≠ 2

N

"k for N æ Œ, we get:

⁄
(k)

1

≠⁄
(k)

2

= 2
N

+ (N ≠2)(k ≠1)
N2

+O
3

1
N2

4

It can be interesting to choose k as a function of N . Let us consider, for
example, k = –N , with 0 < – Æ 1. In this case, we have:

⁄
(–N)

2

= N ≠2
2–N

A
1≠

3
1≠ 2

N

4–N
B

for N æ Œ= N ≠2
2–N

3
1≠

3
e≠2– +O

3
1
N

444

=
(N ≠2)

!
1≠e≠2–

"

2–N
+O

3
1
N

4
æ 1≠e≠2–

2–
for N æ Œ

We can observe that 1≠e≠2–

2– =: ⁄
(–N)

2

decreases when – increases. More-
over:

– ⁄
(–N)

2

æ 1 for – æ 0, which means that the spectral gap, 1 ≠ ⁄
(–N)

2

con-
verges to zero for N æ Œ and – æ 0;

– If – = 1 then ⁄
(N)

2

= 1

2

≠ 1

2e2 . Therefore, the spectral gap will be 1

2

+ 1

2e2
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The spectral gap indicates how quickly our RW converges through its sta-
tionary distribution. As expected, if – æ 0 then the spectral gap will be close
to 0. On the other hand for all – > 0 the spectral gap tends to a strictly pos-
itive quantity, while the spectral gap corresponding to the case of the basic
model converges to zero for N æ Œ. In particular, when – = 1 (i.e. we are
considering the optimal case, in which we are allowed to do among 1 and N
mutations at each mutation step), the spectral gap, 1

2

+ 1

2e2 , is significantly
bigger than the one obtained for the basic model, 2/N .

3.2 Comparison of hitting times

In this section we compare hitting times referring to some relevant mutational
models we have already presented. We do not consider models that entail
non-connected graphs (the model of class switch of k-length strings and the
exchange mutation model): this choice is motivated by the discussion from the
beginning of Section 3.1.3. In Table 1 below we collect most important char-
acteristics of these RWs on {0,1}N : the hitting time and its approximation for
big N , that we will discuss in this current section, the stationary distribution
and the value of the second larger eigenvalue when known.

Table 1: Table 1 summarizes the main characteristics of most random processes
we introduce and analyze in Sections 2 and 3.

Model Hitting time Stationary
distribution

Second bigger
eigenvalue

Basic
model

H(d) =
qd≠1

d=0

qN≠1≠d

j=1
Cd+j

N
+1

Cd
N≠1

≥ 2N fi 1 ≠ 2
N

Switch 1-2 ≥ 2N≠1 fi
--
HN

(1≠2) -

Allowing 1
to k muta-
tions

T
(k)
N (d) =

q2N

l=2 µ
(k)
l ≠

1
2N Cd

N

q2N

l=2 µ
(k)
l RN (l,d)

fi N≠2
2k

1
1 ≠

!
N≠2

N

"k
2

3.2.1 Class switch of 1 or 2-length strings depending on the Hamming
distance to x.

We use results obtained in Section 2 for the (Dn) process concerning the
SRW on the N -dimensional hypercube and we apply them to this model. Here
we shall introduce another definition of the distance, which is adapted to a
connected component HN,2 µ {0,1}N , where we denote by HN,2 one of the two
parts in which {0,1}N is divided applying the model of class switch of 2-length
strings. We recall that HN,2 is a (N ≠1)-dimensional hypercube, and that the
graph underlying the model of class switch of 1 or 2-length strings corresponds
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essentially to the graph obtained with the model of switch of 2-length strings,
up to the addition of some oriented edges from H(1≠2)

N to HN
(1≠2).

Definition 14 For all xi, xj œ HN,2 we denote by h(2)(xi,xj) the number
of edges in a shortest path connecting them. Simultaneously we denote by
D

(2)

n = h(2)(Xn,x), D
(2)

n œ {0, . . . ,N ≠1} ’n Ø 0.

Considering the process (D(2)

n )nØ0

, all the results we determined in Section
2 hold true. Furthermore, let us denote by E(2)

xi [·A] the expected number of
steps before set A œ H2

N is visited starting at xi œ H2

N and following the model
of switch of 2-length strings. Then, we also denote by H

(2)

N≠1

(d) = E(2)

x

[·{x}]
where d = h(2)(x,x).

Remark 13 Clearly if D
0

= 2t and t > 0, which means that X

0

and x belong
to the same connected component in the model of class switch of 2-length
strings, then the mean hitting time for the current model will be of the order
of a half the mean hitting time for the basic model, as we are considering here
a (N ≠1)-dimensional hypercube instead of a N -dimensional one.

The result below, which is an immediate application of the Ergodic The-
orem, will help us understanding better the general behavior of this mean
hitting time:

Proposition 11 Let (Xn)nØ0

be a SRW on HN . We denote by T +

d := inf{n Ø
1 |Dn = d} and Td := inf{n Ø 0 |Dn = d}. Then:

ED0=d[T +

d ] = 2N

Cd
N

(20)

Proof The proof is obtained by applying the Ergodic Theorem to the (Dn)
process and its stationary distribution, the binomial probability distribution.

ÙÛ

For the discussion we made in Section 2.2 and, in particular, Remark 3 we
can conclude that for N ∫ 1 the order of magnitude of the time we spend to
reach the N nodes at Hamming distance 1 from x is:

ED0=d[T
1

] ≥ 2N

N
(21)

Then we can claim the following result, which comes directly from Equation
(21):

Proposition 12 Let us suppose that D
0

= 2tú +1 with 0 < tú Æ Â(N ≠1)/2Ê.
Then for N ∫ 1 we have:

E(2)

D0=d[T
1

] ≥ 2N≠1

N
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Finally we have:

Proposition 13 We denote by E(1≠2)

x0 [·{x}] the mean hitting time to reach x

starting from x

0

and referring to the mutation model of class switch of 1 or 2
length strings. Then, for N ∫ 1 we have:

E(1≠2)

x0 [·{x}] ≥ 1
2Ex0 [·{x}] with E

x0 [·{x}] ≥ 2N ,

where E
x0 [·{x}] is the hitting time from x

0

to x according to the basic model,
as defined in Section 2.3.

Proof First of all we observe that the last statement is a direct consequence
of Proposition 3. As far as the first statement is concerned, we observe that
according to the model we are analyzing here and due to Proposition 12, for
N ∫ 1 the order of magnitude of E(1≠2)

x0 [·{x}] is:

E(1≠2)

x0 [·{x}] ≥ 1
2

3
2N≠1

N
+2N≠1

4
+ 1

22N≠1

where the first term corresponds to the case x

0

/œ HN
(1≠2) and the second one

corresponds to the opposite case (as we choose randomly the first vertex, x

0

,
we have probability 1/2 that it belongs to each part of the hypercube). For
the last term we used again Proposition 3 applied to a (N ≠ 1)-dimensional
hypercube and according to the (D(2)

n ) process and the corresponding hitting
time H

(2)

N≠1

(d). The result follows. ÙÛ

Table 2: Average expected times from [0, . . . ,0] to [1, . . . ,1], comparing the basic
mutational model and the model of class switch of 1 or 2 length strings. Here
we denote by ‰·{x}n

the average value obtained over n simulations and by ‚‡n

its corresponding estimated standard deviation.

Mutational model N n ‰·{x}n
‚‡nÔ

n

Basic 10 5000 1188.7996 16.2930

11 5000 2312.5648 32.1073

Switch 1-2 10 5000 602.8124 8.4773

11 5000 1181.5174 16.9023

Remark 14 We simulated the basic mutational model and the model of class
switch of 1 or 2 length strings in order to compare the hitting times from
x

0

:= [0, . . . ,0] to x := [1, . . . ,1] for both mutational models. We consider the
case N = 10 and N = 11 in order to have an example in which the process
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starts from HN
(1≠2) and from H(1≠2)

N respectively. Indeed, if N = 10 the
process starts from the connected component to which x belongs, while when
N = 11 we have to reach one of the N nodes having distance 1 from x to reach
the connected component containing x. The average resulting hitting times
are summarized in Table 2.

3.2.2 Allowing 1 to k mutations.

In this section we study the mean hitting time to cover a fixed Hamming
distance d. First of all, we give the expression of the hitting time from node i
to node j using the spectra. This formula is deduced by the more general one
given in [36], in the case of regular graphs (the graph we obtained by a convex
combination of matrices Pi is a regular multigraph). We refer to the notations
given in Section 2 for the eigenvectors of matrix P: vs = (vs1

, . . . ,vs2

N ) is the
eigenvector of P corresponding to ⁄s. These eigenvectors are the columns of
matrix QN (Section 2.1), and each component vsi corresponds to node i, as
they were organized while constructing the adjacency matrix. Denoting by
T (i, j) the hitting time from node i to node j in H(k)

N , we obtain the following
expression:

T (i, j) = 2N
2

Nÿ

l=2

1
1≠⁄

(k)

l

(v2

lj ≠vlivlj),

which can be written using column vectors of ZN .

T (i, j) =
2

Nÿ

l=2

1
1≠⁄

(k)

l

(z2

lj ≠zlizlj)

We are interested in studying the equation below:

T
(k)

N (d) := 1
2N Cd

N

ÿ

h(i,j)=d

T (i, j) = 1
2N Cd

N

2

Nÿ

l=2

1
1≠⁄

(k)

l

ÿ

h(i,j)=d

(z2

lj ≠zlizlj),

(22)
where 2N Cd

N corresponds to the number of couples of nodes of {0,1}N having
Hamming distance d.
First of all we can observe that for all l and for all j, z2

lj = 1. Moreover, in
order to simplify notations, we denote µ

(k)

l := (1 ≠ ⁄
(k)

l )≠1. Also, we denote
RN (l,d) :=

q
h(i,j)=d zlizlj . We have proved:

Proposition 14

T
(k)

N (d) =
2

Nÿ

l=2

µ
(k)

l ≠ 1
2N Cd

N

2

Nÿ

l=2

µ
(k)

l RN (l,d) (23)

All the elements of this equation are known, except RN (l,d). Let us consider
the 2N ◊(N +1) matrix RN = (RN (l,d)), with 1 Æ l Æ 2N and 0 Æ d Æ N . One
can prove by iteration:
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Proposition 15

RN = ZN ·LN (24)
where ZN := (z

1

, . . . ,z
2

N ) is recursively obtained from ZN≠1

(Section 2.1),
and

Y
______]

______[

L
1

= 2I
2

, In being the n-dimensional identity matrix

LN =

Q

a 2 ·LN≠1

0

2

N≠1

0

2

N≠1 2 ·LN≠1

R

b , 0n being the n-length zero column vector

3.2.3 Numerical simulations

In Figure 3 we plot some examples of the dependence of T
(k)

N (d) on d and k
for di�erent values of N .
Figure 3a shows that for increasing k, T

(k)

N (d) varies on a smaller interval:
[1023,1186.5] for k = 1, [1028.1,1068.6] for k = 5 and [1025.6,1044.8] for k = 10.
It is intuitive to understand this fact: the hitting time depends less from the
initial Hamming distance if we allow to make more mutations at the same
mutation step. Indeed, we can actually visit more distant nodes since the first
steps, so the initial Hamming distance has a smaller influence on the result.
Figures 3b and 3c show the dependence of T

(k)

N (d) on k. We obtain the best
result for the biggest k, except in the case d = 1 (as already shown by Figure
3a). Curves corresponding to the case d = 5 and d = 10 are really close: we can
evaluate their minimal and maximal values, which are respectively 1043.25 and
1177.60 for d = 5, and 1044.82 and 1186.54 for d = 10. This fact highlights once
again that if d > 1, the initial Hamming distance poorly influences the value
of the hitting time. The case d = 1 shows surprisingly that the hitting time is
not necessarily a monotone function of k. Figure 3c allows us to focus to this
behavior and better understand its causes. Indeed, as N is quite small, this
figure shows more clearly the oscillating behavior of T

(k)

N (d) while studying its
dependence on k: for even values of k, T

(k)

5

(1) increases, while for odd values
of k it decreases. Intuitively, as the distance we want to cover is d = 1, if we
allow to do 2 mutations instead of simply one, then we have a high probability
to go further since the beginning of the process. Let us now look to Equation
(22) and, in particular to the factor:

q
2

N

l=2

(1 ≠ ⁄
(k)

l )≠1. We can understand
the phenomenon plotted in Figure 3c by looking at Proposition 10. If k is odd
and little enough then the last eigenvalue, which is negative (equal to ≠1/k),
has an important negative influence over the value of T

(k)

N (d). Clearly, this
fact has a substantial e�ect only if N and k are little enough, otherwise it will
be compensated by the e�ect of all other eigenvalues.

One may wonder what would be the best choice for the coe�cients ai (Def-
inition 12), 1 Æ i Æ k, so that T

(k)

N (d) is minimized for a fixed k. We have to
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(a)

(b) (c)

(d) N = 5 (e) N = 10

(f) N = 5 (g) N = 10

Figure 3: (a) Dependence of T
(k)

N (d) on d for N = 10 and k = 1, 5 or 10.
(b) Dependence of T

(k)

N (d) on k for N = 10 and di�erent values of d. (c)
Dependence of T

(k)

5

(1) on k. (d, e) Dependence of T
(k)

N (d) on d for di�erent
values of both N and k. Values obtained by using as transition probability
matrices P(k) and Pkú respectively are compared. (f, g) Dependence of T

(k)

N (d)
on k for di�erent values of both N and d. Again, cases corresponding to P(k)

and Pkú are compared.
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minimize the convex combination
qk

i=1

ai⁄
i
l. The answer is quite evident: if

k > 2, then the minimum is obtained by taking all ai = 0 and akú = 1, where
kú = 2Â(k + 1)/2Ê ≠1. Then the best choice for the transition probability ma-
trix is Pkú . The fact that we need to consider the greater odd component has
also another explanation, which is more intuitive. Indeed if we consider the
RW given by P2t, then due to the bipartite structure of the hypercube we will
be trapped in one of the connected-components of the graph, i.e. the resulting
graph is non-connected. That means that we will not be able to reach those
nodes having a di�erent parity of 1s in their string, referring to X

0

.

In Figures 3d, 3e, 3f and 3g we plotted together the values of the hitting
time to cover a Hamming distance d for di�erent values of N , k, and d, com-
paring the process given by P(k) and the one corresponding to Pkú . This gives
more evidence of the fact that the second one is the optimal one. It is inter-
esting to look at the case in which d is fixed and we let k vary. For k = 1 both
processes gave the same result as P1

ú = P = P(1). Moreover we necessarily
have that for k = 2 the process P(2) is the faster one: we recall that defining
Pkú we consider the greater odd k, and then P2

ú = P, while the process P(2)

allows to do 1 or 2 mutations at each mutation step. Then Pkú is actually
the best choice among all possible convex combinations of Pi i� k > 2. In Fig-
ures 3d and 3e we observe the oscillating behavior of T

kú
N (d). That depends

on the structure of RN , considering that
q

2

N ≠1

l=2

RN (l,d) = 0 for d odd and
q

2

N ≠1

l=2

RN (l,d) = ≠2(2N Cd
N ) for d even. One can get convinced of this fact

by explicitly compute T
kú
N (d) for N = 3. Moreover simulations show that this

behavior is softened for increasing d, and that T
kú
N (N ≠1) > T

kú
N (N). This fact

is actually confirmed by simulations on the real process. Finally, Figures 3f and
3g clearly show that for k = 2 the process given by P(k) allows to cover quickly
a fixed Hamming distance. As expected, the best hitting time is obtained for
k = N , and for increasing N and k the value of this hitting time has a smaller
variation.

Table 3: An example of comparison between the theoretical and experimental

values of T
(5)

5

(4) for P(5).
\

T
(5)

5

(4)n denotes the average value obtained over n
simulations and ‚‡n its corresponding estimated standard deviation.

Transition probability matrix N d k n T
(5)

5

(4)
\

T
(5)

5

(4)n
‚‡nÔ

n

P(k) 5 4 5 480000 34.62 34.67 0.05

We can test all these observations by simulating the real process for both
transition probability matrices, Pkú and P(k). Results obtained are consistent
with our theoretical analysis. In order to give an idea of the values we can
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obtain by testing the process, in Table 3 we compare the theoretical value of
T

(k)

N (d) corresponding to P(k), and the experimental value with its precision,
for N = 5, k = 5 and d = 4.

4 Modeling issues

The mathematical framework described in previous sections can be used to
model mutations characteristic of SHM. In Sections 4.1 and 4.2 we give some
more details about GCs and the binding between B-cells and antigens. There-
fore, in Section 4.3 we set the modeling assumptions which justify to math-
ematically describe SHM process as RW on binary strings. Of course, this
is a not exhaustive approximation. Hence, some limitations are discussed in
Section 4.4 and some propositions for further developments are given as well.

4.1 The Germinal center reaction

Antigen-activated B-cells, together with their associated T cells, move into a
primary lymphoid follicle, where they proliferate and ultimately form a GC.
GCs are composed mainly of B-cells, but antigen specific T-cells, which have
also been activated and migrated to the lymphoid follicle, make up about 10%
of GC lymphocytes and provide indispensable help to B-cells. Indeed, when
B-cells start to proliferate in GC, they need to receive proper survival signals,
or they die by apoptosis. The number of B-cells within a germinal center grows
at high pace: it can double every 6-8 hours. After about 3 days of strong prolif-
eration, B-cells start undergoing SHM, in order to diversify the variable region
of their BCRs, and those cells that express newly generated modified BCRs
are selected for enhanced antigen binding. The fast proliferation rate of B-cells
is required for the generation of a large number of modified BCRs within a
short frame time (one cell gives 104 blasts in 72 hours). Some B-cells positively
selected in the light zone di�erentiate into memory B-cells or plasma cells. The
GC reaches its maximal size within approximately two weeks, after which the
structure slowly involutes and disappears within several weeks. During the GC
process B-cells are subjected to powerful selection mechanisms that facilitate
the generation of high a�nity antibodies: a B-cell that express a newly gen-
erated BCR needs to be tested for enhanced antigen binding. This process
is mediated by FDCs and follicular helper T-cells. BCR stimulation through
antigen binding coupled with co-stimulatory signals that are transmitted to
the B-cell by GC T-cells, provides survival signals to the cell; by contrast,
failure of the BCR to bind antigen causes cell death by apoptosis. The final
di�erentiation of a GC B-cell into a plasma cell or a long-lived memory B-cell
is driven by the acquisition of a high-a�nity BCR. For short-lived memory
B-cells, the di�erentiation process seems to be stochastic, as throughout GC
formation GC B-cells are constantly selected to enter the memory pool [40,
52].
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4.2 B-cell receptors and antigen-antibody binding

Immunoglobulins (Ig) present at the antigen receptor are Y-shaped macro
proteins composed of four polypeptide chains assembled by disulfide bonds:
two identical heavy (H) chains and two identical light (L) chains. Each chain
consists of two regions: a constant (C) region, which has an e�ector function,
and a variable (V) region composed by the variable parts of the two chains
together. During GC reaction the only one involved in SHMs is the V region,
which also determines the antigen binding site. We call antigen binding site or
paratope the specialized portion of the BCR V region used for identifying other
molecules, while the regions on any molecule that the paratopes can recognize
are called epitopes. B-cells are able to bind ligands whose surfaces are ‘comple-
mentary’ to that of their antigen binding site, where complementarity means
that the amino-acids composing the paratope and the epitope are distributed
in such a way to form bonds which are able to hold the antigen to the B-cell.
In this case these bonds are all non-covalent (as hydrogen bonds, electrostatic
bonds, van der Waals forces and hydrophobic bonds), which are by their nature
reversible. Multiple bonding between the antigen and the B-cell ensures that
the antigen is bound tightly to the B-cell. The interaction between paratope
and epitope can be characterized in terms of a binding a�nity, that will be
proportional to their complementarity. The a�nity is the strength of the reac-
tion between a single antigenic determinant and a single combining site on the
B-cell: it summarizes the attractive and repulsive forces operating between the
antigenic determinant and the combining site of the B-cell, and corresponds
to the equilibrium constant that describes the antigen-B-cell reaction [19].
Each antigen typically has several epitopes, so that the surface of an antigen
presents variable motifs that B-cells, through their receptors, can discriminate
as distinct epitopes. If we define an epitope by its spatial contact with a BCR
during binding, the number of relevant amino-acids is approximately 15, and
among these amino-acids only around 5 in each epitope strongly influence the
binding. These strong sites may contribute about one-half of the total free en-
ergy of the reaction, while the other amino-acids influence in binding constant
by up to one order of magnitude or even have no detectable e�ect.
Simultaneously, a BCR contains a variety of possible binding sites and each
antibody binding site defines a paratope: about 50 variable amino-acids make
up the potential binding area of a BCR. In agreement with the above, only
around 15 among these 50 amino-acids physically contact a particular epi-
tope: these define the structural paratope. Consequently, antibodies have a
large number of potential paratopes as the 50 or so variable amino-acids com-
posing the binding region define many putative groups of 15 amino-acids.
Substitutions both in and away from the binding site can change the spatial
conformation of the binding region and a�ect the binding reaction. The con-
sequence of mutation at a particular site depends on the original amino-acid
and the amino-acid used for substitution ([19], Chapter 4).
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4.3 From DNA to amino-acids: choosing the best viewpoint

Mutations observed on the binding site of B-cells during the GC process are
the result of genetic mutations produced by SHM on the portion of DNA en-
coding for the BCR V region. In the current section we discuss a model of
genetic mutations and its e�ects on the amino-acid string, under the assump-
tion of having two amino-acid classes. We show that the framework we set up
in previous sections can adapt to model the e�ects of SHM over BCRs and
study the variation of the a�nity with the presented antigen.

The genetic code is a sequence of four nucleotides, guanine (G), adenine (A)
(called purines), thymine (T) and cytosine (C) (pyrimidines), joined together.
They make three-letter words: the codons. Each codon corresponds to a specific
amino-acid or to a stop signal, which interrupts the building of the protein
during translation. As the number of possible combinations of 4 nucleotides
in 3-length words is 64, and there exists 20 amino-acids in naturally derived
proteins, more than a single codon codes for the same amino-acid [51]. Table
4 shows the correspondence between codons and amino-acids.

Table 4: The correlation between codons and amino-acids: most of the amino-
acids derives from more than a single codon.

T C A G

T

TTT Phe (F) TCT Ser (S) TAT Tyr (Y) TGT Cys (C) T
TTC Phe (F) TCC Ser (S) TAC Tyr (Y) TGC Cys (C) C
TTA Leu (L) TCA Ser (S) TAA Stop TGA Stop A
TTG Leu (L) TCG Ser (S) TAG Stop TGG Trp (W) G

C

CTT Leu (L) CCT Pro (P) CAT His (H) CGT Arg (R) T
CTC Leu (L) CCC Pro (P) CAC His (H) CGC Arg (R) C
CTA Leu (L) CCA Pro (P) CAA Gln (Q) CGA Arg (R) A
CTG Leu (L) CCG Pro (P) CAG Gln (Q) CGG Arg (R) G

A

ATT Ile (I) ACT Thr (T) AAT Asn (N) AGT Ser (S) T
ATC Ile (I) ACC Thr (T) AAC Asn (N) AGC Ser (S) C
ATA Ile (I) ACA Thr (T) AAA Lys (K) AGA Arg (R) A
ATG Met (M) ACG Thr (T) AAG Lys (K) AGG Arg (R) G

G

GTT Val (V) GCT Ala (A) GAT Asp (D) GGT Gly (G) T
GTC Val (V) GCC Ala (A) GAC Asp (D) GGC Gly (G) C
GTA Val (V) GCA Ala (A) GAA Glu (E) GGA Gly (G) A
GTG Val (V) GCG Ala (A) GAG Glu (E) GGG Gly (G) G

Di�erent kind of genetic mutations can a�ect the DNA sequence of a gene.
They can be regrouped in three main categories: base substitutions, inser-
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tion and deletions. A single base substitution is a switch of a nucleotide with
another. This is the simplest kind of mutation and it can turn out to be mis-
sense, nonsense or silent, once we observe the resulting new protein. We said
that a mutation is missense if the result of the genetic mutation is a di�erent
amino-acid in the protein. The mutation is nonsense when the genetic muta-
tion results in a stop codon instead of an amino-acid. Finally, a silent mutation
is a mutation with no e�ect on the amino-acid string, i.e. the mutated sequence
codes for an amino-acid with identical binding properties. We talk about inser-
tion (resp. deletion) when one or more nucleotides are added (resp. removed)
at some place within the DNA code. These last kinds of mutations can both be
frameshift mutations, which are given by the insertion or deletion of a number
of bases that is not a multiple of 3, altering the reading frame of the gene.
SHM introduces mostly single nucleotide exchanges, together with small dele-
tions and duplications, i.e. the insertion of extra copies of a portion of genetic
material already present within the DNA code [23,11]. Among these point
mutations, transitions (i.e. substitution of a purine nucleotide with another
purine one, or a pyrimidine with a pyrimidine) dominate over transversions
(substitution of a purine with a pyrimidine or conversely). About half of the
mutations (53%) have been estimated to be silent, about 28% nonsense, and
only about 19% of all mutations have been estimated to be missense and then
have an e�ect on a�nity, which can either be of an improving nature, or of
worsening and even lead to the formation of autoreactive clones [49,26,35].

The 20 existing amino-acids are typically classified in charged amino-acids,
polar (non-charged) amino-acids and hydrophobic amino-acids, depending on
their chemical characteristics. As we already discussed in Section 4.2 the bond-
ing between BCR and antigen is made thanks to non-covalent bonding, in
particular ionic bonds and hydrogen bonds. Ionic bonds are the result of the
interactions between two amino-acids oppositely charged: arginine (R) and
lysine (K) are positively charged, while aspartic acid (D) and glutamic acid
(E) are negatively charged. As long as hydrogen bonds are concerned, also
polar amino-acids can participate. In particular arginine (R), lysine (K) and
tryptophan (W) have hydrogen donor atoms in their side chains; aspartic acid
(D) and glutamic acid (E) have hydrogen acceptor atoms in their side chain
while asparagine (N), glutamine (Q), histidine (H), serine (S), threonine (T)
and tyrosine (Y) have both hydrogen donor and acceptor atoms in their side
chains.

Stop codons also have an important role. Indeed, during translation (the
last step necessary to build a protein starting from the DNA molecule) amino-
acids continue to be added until a stop codon is reached. There exists two
types of mutations involving stop codons, named nonsense and nonstop re-
spectively. The first one corresponds to the substitution of an amino-acid with
a stop codon, while the second one is the opposite case. In both cases the re-
sulting protein has an abnormal length, which often causes a loss of function.
Moreover, errors given by both nonsense and nonstop mutations are linked to
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over 10% of human genetic diseases [8].

Concerning mutation in activated B-cells, SHM is driven by an enzyme
called activation-induced cytidine deaminase (AID) which is expressed specif-
ically in this case. This protein can bind to single-stranded DNA only. Thus
it seems to target only genes being transcribed (for which the transcription
phenomenon separates temporarily double stranded DNA into small portions
of two single stranded DNA sequences) [28]. AID converts Cytosine (C) in
Uracil (U) by deamination. This substitution occurs at higher rates in hot
spots motives like DGY W/WRCH where (G : C is the mutable position and
D œ {A,G,T}, H œ {A,C,T}, R œ {A,G}, W œ {A,T} and Y œ {C,T}, and
the underlined letters are the loci of mutations) [47]. Then, two mechanisms
tend to repair lesions in the DNA caused by these substitutions of C by U
[10] :
a) either mismatch repair : substitution for the damaged zone by another

sequence of nucleotides thanks to proteins MSH 2/6. The U base is read
as T leading to a transition from a C : G pair to T : A.

b) or base excision repair : U is excised by a successive actions of uracil-
DNA glycolase (UNG) and apurinic/apyrimidinic endonuclease (APE1).
The DNA contains then a nick, after replication of a random nucleotide
is inserted in order to fill the vacant space leading to transversions and
transitions.

From the mathematical point of view this is equivalent to define the switch
with a random nucleotide depending on the motives present in the chain. The
probability concerning the choice of this nucleotide to be inserted shall not be
uniform due to the presence of mismatch and excision repairs [10]. This is not
taken into account in the model we developed.

We can therefore make the following three main assumptions to model the
SHM process acting on the BCR V region:

Modeling assumption 1 SHM introduces only single point mutations in the
DNA strand, missense or silent. Therefore we do not take into account nonsense
mutations, in order to avoid an interruption of the mutation process due to
the introduction of a stop codon. The choice of the base used for substitution
is made randomly, without considering that we have mostly A ¡ T and T ¡ C
substitutions.

Modeling assumption 2 We consider only electrostatic and hydrogen bonds as
responsible for the bonding between BCR and antigen. We suppose we have
two amino-acid classes represented as 0 and 1 respectively: we denote by 1
those amino-acids which have hydrogen donor atoms in their side chains (or
which are positively charged) and by 0 those amino-acids which have hydrogen
acceptor atoms in their side chains (or which are negatively charged). We
arbitrary chose to assign 0 or 1 to amino-acids which can act as an acid or a
base in hydrogen bonds. As an exemple, as serine can form hydrogen bonds
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with arginine and threonine, one can assign 0 to serine and 1 to threonine
(arginine is represented by 1 as it is positively charged). While translating the
amino-acid chain into a binary chain, we omit all hydrophobic amino-acids,
as they do not participate in electrostatic or hydrogen bonds. Their position
corresponds to an empty case, which does not contribute to the a�nity between
B-cell and antigen. This is clearly an important simplification we make in order
to build this mathematical model. We will further discuss this choice in Section
4.4.

Modeling assumption 3 We consider a linear contact between two amino-acid
strings, without taking into account the geometrical configuration of both the
BCR and the antigen.

The process starts from a DNA chain coding for a BCR, X

dna
0

; from which
we can obtain the corresponding amino-acid chain, X

aa
0

(Table 4) and, conse-
quently, its binary expression, X

bin
0

.

Exemple 1

– X

dna
0

= (GTT, GAG, CTA, GTG, GAA, AGT, GGA, GCC, GAA, GTA, AAA,
AAG, CCA, GGT, AGT, AGT, GTT, AAA, GTC, AGT, TGT, AAA, GCA)

– X

aa
0

= (V, Q, L, V, E, S, G, A, E, V, K, K, P, G, S, S, V, K, V, S, C, K, A)

– X

bin
0

= (≠,1,≠,≠,0,0,≠,≠,0,≠,1,1,≠,≠,0,0,≠,1,≠,0,0,1,≠)

Notation 1 Given a vector X, we denote by |X| its length (counting also the
empty cases, if there are some). Equivalently, given a set S, we denote by |S|
its size

We can formalize the translation of the nucleotides chain into the amino-
acids chain as follows.

Definition 15 Let N and A be two sets of letters with size respectively |N | =
k

1

and |A| = k
2

. Let l be an integer positive number so that kl
1

Ø k
2

. Then
we define fk1,k2,l : N l æ A, which associate at least an l-length sequence of
letters belonging to N to a letter in A.

In our specific case, following definition 15, N := {G, A, T, C} is the set
of nucleotides, while A is the set containing all possible amino-acids, together
with the stop signal. Therefore k

1

= 4 and k
2

= 21. Moreover we know that
l = 3 and the function f

4,21,3 is detailed in Table 4.

Remark 15 We can easily observe that l = min
Ó

n œ N |k
1

n Ø k
2

Ô
. Indeed,

having 4 nucleotides available to build a DNA strand, we need to read them
at least by 3-length blocks in order to be able to synthesize all 20 amino-acids.
Moreover, choosing this value for the parameter l avoids to have too many
sequences of nucleotides coding for the same amino-acid.
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At the beginning of the process also the antigen string in its three repre-
sentations is given: x

dna, x

aa and x

bin, with |Xdna| = |xdna| =: 3N . Antigen
representing strings remain unchanged. At each time step a single point mu-
tation (missense or silent) is introduced in the DNA chain coding for the
BCR. So, if X

dna
t is the DNA code at time t, we randomly choose an index

i œ {1, . . . ,3N}, a letter a œ N and we place (Xdna
t+1

)i := a. If the new codon
is a stop codon, then we choose aÕ œ N \{a} and we put (Xdna

t+1

)i := aÕ, and
so on.
In order to test the a�nity, we consider the binary expression of both the
BCR and the antigen, which we take in its complementary form, i.e. x

Õbin :=
(1 ≠ xbin

1

, . . . ,1 ≠ xbin
|xbin|). This leads us back to the definition of a�nity we

made in Section 2: 0 matches with 0 and 1 with 1.
Assumptions 1-3 imply that for all t Ø 0, |Xbin

t | = |xbin| = N . As we consider
a linear contact between X

bin
t and x

Õbin, at the positions where either X

bin
t

or x

Õbin has an hydrophobic amino-acid, we suppose that no match is possi-
ble. Therefore we can extend Definition 4 of the Hamming distance in a very
natural way to this more general case:

Definition 16 We denote by Hy(Xbin
t ) (resp. Hy(xÕbin)) the set of the in-

dices corresponding to hydrophobic amino-acids in X

bin
t (resp. in x

Õbin). There-
fore the Hamming distance between X

bin
t and x

Õbin is given by:

h(Xbin
t ,xÕbin) =

ÿ

iœ{1,...,N}
i/œHy(X

bin
t )fiHy(x

Õbin
)

”i + |Hy(Xbin
t )fiHy(xÕbin)|

where ”i =

Y
]

[
1 if (Xbin

t )i ”= (xÕbin)i

0 otherwise

Then, for all t Ø 0:

|Hy(Xbin
t )fiHy(xÕbin)| Æ h

1
X

bin
t ,xÕbin

2
Æ N

We consider that the optimal clone is reached when:

aff
1

X

bin
t ,xÕbin

2
:= N ≠ |Hy(xÕbin)|

The e�ects of nucleotides exchanges on the binary expression of BCRs can
be multiple:
No detectable e�ect : this is the result of either a silent mutation or a mis-

sense mutation which substitutes an amino-acid with another one belonging
to the same amino-acid class.

Class-switch , derived from a missense mutation which leads to the substitu-
tion of an amino-acid with another one belonging to the other amino-acid
class.
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We can further complexify this model by replacing Assumption 1 with the
following one:
Modeling assumption 4 SHM introduces mostly single point mutations in the
DNA, missense or silent. With weak probability, deletions or insertions can
occur. For the sake of simplicity, we suppose that a deletion (resp. an insertion)
consist in the elimination (resp. the addition) of a non-stop codon. Moreover,
in order to avoid the problem of a variation of the length of BCR representing
strings, when a deletion occur, those bits situated on the right of the deleted
one shift to the left, and a random extra codon is added at the right bottom.
Conversely, if an insertion occurs, the right bottom bit is deleted.

Even if these mutation events are rare, they have remarkable e�ects over
the structure of the underlying graph. Indeed a deletion or an insertion entails
a great jump in the a�nity function by producing a shift of a portion of the
BCR representing string. This is not the case if we consider only single point
mutations. Therefore, under Assumption 4 the graph we obtain is much more
complex and allows long range random connections.

4.3.1 Numerical simulations

In order to evaluate how deletions and insertions a�ect the mean number
of mutation steps to reach the desired B-cell trait, we make some numerical
simulations. We compare a model in which only single point mutations are
allowed to another one in which also deletions and insertions can occur. We
refer to Assumption 4 to define these mutational events.

Figure 4: Variation of the Hamming distance through x

Õbin, comparing the
model of single point mutations to the one which includes also deletions and
insertions (50% of all mutation events). In both cases N = 10. Deletions and
insertions lead to a quick change in the Hamming distance. Between time 10
and 20, we can observe four deletions or insertions.

Figure 4 shows the e�ects of deletions and insertions over the a�nity. In
order to do these simulations, we arbitrary fixe a BCR and an antigen with
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given a�nity. We do not consider those base substitutions leading to no de-
tectable e�ect, i.e. at each time step we can observe a variation of the a�nity
function. In Figure 4 we can clearly locate at what time an insertion or a
deletion has occurred, because this coincides with a jump of the Hamming
distance between BCR and antigen.

One can ask how these random long range connections a�ect the average
time to reach the antigen target string. Simulations show that one needs a more
long time to reach x

Õbin if the probability of making such mutations increases.
The results obtained through 10000 simulations are collected in Table 5.

Table 5: Average number of mutations needed to reach x

Õbin, for N = 10 and
starting from a Hamming distance 7. In x

Õbin, only 2 amino-acids are hy-
drophobic, so by Definition 16, the optimal a�nity one can reach is 8. We
compare three models: in the first one no deletions nor insertions are allowed.
In the second model 10% of all mutations are deletions or insertions, 50% in
the last one. We denote by \·{x

Õbin}n
the average value obtained over n simula-

tions and by ‚‡n its corresponding estimated standard deviation. Simulations
show that \·{x

Õbin}n
increases when the pourcentage of deletions or insertions

grows, and so does the corresponding variation.

% deletions/insertions |xÕbin| h(Xbin
0

,xÕbin) n \·{x

Õbin}n

‚‡nÔ
n

0 10 7 10000 8824.93 86.80

10 10 7 10000 9091.12 92.01

50 10 7 10000 10075.89 100.59

We can discuss which viewpoint is the most suitable to study mutations
and their e�ects over the interactions between BCR and antigen. It is really
hard to define a clear correspondence between genetic mutations and the evo-
lution of the a�nity, even while considering a simple linear contact between
molecules (hence without observing the changes in the geometrical structure
of the protein). Indeed, in order to test the a�nity between BCR and anti-
gen we constantly need to project the DNA string on the smaller state-space
containing the binary representations of B-cell traits. If we directly consider
mutations on the binary strings, then the process we obtain is faster, as we do
not observe missense mutations, and the evaluation of the a�nity is immediate.

The comprehension of the nature of genetic mutations and their conse-
quences on the new generated protein, suggested us to make Assumptions 1-3
to formalize the model. In particular, we found reasonable to look directly to
the amino-acid chains and their binary representation, which allows to study
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the a�nity between BCR and antigen using the Hamming distance. There-
fore, under these hypotheses the general mathematical framework described
in Section 2 can be applied to study how di�erent kind of missense mutations
a�ects the dynamics of AAM. As we show in Sections 2-3, this already brings
interesting and complexes mathematical problems.

4.4 Limitations and extensions

In this paper we propose and study mutational processes on N -length binary
strings, which can be variously applied to evolutionary contexts. As far as
the application to the SHM process is concerned, we can make some remarks
about our assumptions, which can bring us to enrich and complexify the model
through a more coherent representation of the true biological process.
First of all we decided to consider only two amino-acid classes. From one side
this assumption is justified as charged and polar amino-acids are e�ectively
the most responsible in creating bonds that determine the antigen-antibody
interaction. Therefore they strongly influence the a�nity between BCR and
antigen. Nevertheless, by making this simplification we omit all hydrophobic
amino-acids from the string, and that is not without consequences. The elim-
ination of hydrophobic amino-acids from the string significantly changes the
structure of the chain, therefore the ability for charged and polar amino-acids
to be in contact with each-others. Moreover, the e�ects of genetic mutations
on the new generated protein could be even more complex than the ones we
considered in this paper. Finally, by taking into account also hydrophobic
amino-acids, we would be able to consider hydrophobic bonds, which also in-
fluences the antigen-antibody interaction. Therefore it seems more appropriate
to consider three amino-acids classes, and define an a�nity function so that
positively charged amino-acids match with negatively charged, and hydropho-
bic amino-acids match with hydrophobics.
As far as the nature of mutations is concerned, we essentially described muta-
tional processes given by combinations of single point mutations mechanisms.
During SHM nucleotide exchanges are the most frequent among all possible
mutations. Despite this, also some deletions and insertions occur. This has
two main consequences. Firstly that means that the length of the BCR rep-
resenting string could actually change during the process, while we consider
it as fixed and equal to the length of the antigen. We can maybe overcome
this problem by saying that the chain represented in our model corresponds
to the portion of BCR in contact with the antigen, and this is almost fixed
(Section 4.2). Moreover these mutations can imply substantial changes into
the amino-acid chain, hence they can bring a great jump of the a�nity to the
presented antigen. Therefore, even if these are rare mutational events, they
may have an important e�ect in AAM and consequently it could be interest-
ing to takes also insertions and deletions into account. All these observations
lead interesting mathematical questions. Of course we can also envisage devel-
opments in other directions. For example by considering the creation of bonds
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among amino-acids of the BCR (resp. the antigen) itself, which determines the
geometrical structure of the protein and consequently the portion of the BCR
and the antigen that can actually be in contact.

We propose some numerical simulations to evaluate the consequences over
the hitting time of both the addiction of extra amino-acids classes and the
possibility of having a BCR string longer than the antigen one.

A. S. Perelson and G. Weisbuch in [44] proposed a model with 3 amino-
acid classes: hydrophobic, hydrophilic positively charged and hydrophilic ne-
gatively charged. Hydrophobic amino-acids match with hydrophobic and hy-
drophilic positively charged with hydrophilic negatively charged. We simulated
the expected time to reach a given configuration comparing the model with
2 amino-acid classes and the one with 3 amino-acid classes, and considering
single switch-type mutations. We take two random 10-length strings having
maximal distance between each-others. We extended Definition 4 of Hamming
distance to the state-space {0,1,2}N in a natural way, keeping the same nota-
tion: ’ x = (x

1

, . . . ,xN ), y = (y
1

, . . . ,yN ) œ {0,1,2}N , their Hamming distance
is given by:

h(x,y) =
Nÿ

i=1

”i where ”i =

Y
]

[
1 if xi ”= yi

0 otherwise
(25)

Therefore the a�nity is defined as in Definition 3. We simulated for both cases
a single switch-type mutational model (Definition 5 for 2 amino-acid classes
and Definition 17 below for 3 amino-acid classes), testing the time we need to
reach the target vertex.

Definition 17 Let Xn œ {0,1,2}N be the BCR at step n. Let i œ {1, . . . ,N}
be a randomly chosen index, and a œ {0,1,2} \ {Xn,i} a randomly chosen
number. Then Xn+1

:= (Xn,1, . . . ,Xn,i≠1

,a,Xn,i+1

, . . . ,Xn,N ).

Table 6 shows the results we obtained over 10000 simulations.

Table 6: Average expected times to cover a Hamming distance h(X
0

,x) =
10 = N , comparing the model with 2 amino-acid classes and the one with 3
amino-acid classes. Here we denote by ‰·{x}n

the average value obtained over
n simulations and by ‚‡n its corresponding estimated standard deviation.

Amino-acid classes N h(X0,x) n ‰·{x}n
‚‡nÔ

n

2 10 10 10000 1213.2108 12.0138

3 10 10 10000 62160.8263 635.0458
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We already knew from theoretical analysis that the order of magnitude
for the hitting time of the basic mutational model is 2N for N big enough.
Simulations clearly show that when we consider 3 amino-acid classes, the or-
der of magnitude of the hitting time of a single switch-type mutational model
significantly increases, and is of the order of 3N , as proved by Proposition 4.
Moreover we observe that the variance corresponding to the second model is
significantly bigger as well.

It is clear that if we consider more amino-acid classes, it takes much longer
to reach a precise element of the new state-space. Nevertheless, one can under-
stand that if we keep the same distance function as defined in Equation (25),
than we are actually asking for a higher degree of precision while building the
B-cell trait. Therefore, we can not directly compare hitting times correspond-
ing to a model with a greater number of amino-acid classes and keeping the
same a�nity function as the one used with only two amino-acid classes. If
one want to obtain a comparable result by using more than two amino-acid
classes, one has to use a weaker definition of a�nity.
Definition 18 Let S be a set of letters, |S| = s > 2. Let us partition S into
two subsets: S := S

1

ÛS
2

. ’ x, y œ SN , their distance is given by:

hS1,S2(x,y) =
Nÿ

i=1

”i where ”i =

Y
]

[
1 if xi œ S

1

, yi œ S
2

or conversely

0 otherwise

Consequently, their a�nity is given by:

aff(x,y) = N ≠hS1,S2(x,y)
By using this new a�nity function we can actually compare the hitting

times and the order of magnitude is clearly the same.

Let us now go back to Assumption 2 and to the structure of the string
given in Section 4.3 (in particular, hydrophobic amino-acids are represented
by empty cases). Contrary to what stated in Assumption 4, we suppose that
the BCR length can be modified by insertions and deletions. Consequently,
also a modification of the distance function is needed. We arbitrary fixe a BCR
and an antigen with given a�nity. We do not consider those base substitutions
leading to no detectable e�ect, i.e. at each time step we can observe a variation
of the a�nity function. We suppose that 90% of all mutation events are single
point mutations, 10% deletions or insertions. If we are in this case and |Xbin

t | >

|xÕbin|, then with probability 1/2 a deletion occurs and with probability 1/2 an
insertion occur. Otherwise, it will be necessarily an insertion (this is to avoid
to obtain |Xbin

t | = 0). As long as the a�nity is concerned, if |Xbin
t | > |xÕbin|,

|Xbin
t | := n

1

, |xÕbin| := n
2

, then their distance is the smaller possible one, i.e.:

h(Xbin
t ,xÕbin) = min

1ÆiÆn1≠n2+1

Ó
h(Xi,x

Õbin) |Xi :=
1

Xbin
t,i ,Xbin

t,i+1

, . . . ,Xbin
t,i+n2≠1

2Ô
,

h as in Definition 16.
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Table 7: Average number of mutations needed to reach x

Õbin, for N = 7 and
starting from a Hamming distance 5. In x

Õbin, only 2 amino-acids are hy-
drophobic, so by Definition 16, the optimal Hamming distance one can reach
is 2. We compare a model in which no deletions nor insertions are allowed
and a model in which 10% of all mutations are deletions or insertions. We
denote by \·{x

Õbin}n
the average value obtained over n simulations and by ‚‡n

its corresponding estimated standard deviation.

% deletions/insertions |xÕbin| h(Xbin
0

,xÕbin) n \·{x

Õbin}n

‚‡nÔ
n

0 7 5 5000 374.28 5.38

10 7 5 5000 251.48 3.54

In this case, and thanks to the definition of Hamming distance as the min-
imal one, we clearly have more chances to obtain a good B-cell trait. This is
confirmed by the results collected in Table 7. When deletions and insertions
can occur, even with very weak probability, and if we allowed the BCR length
to be greater than the antigen one, then the expected number of mutations
needed to built the optimal BCR is more than 30% smaller.

5 Conclusion

In this paper, we have introduced a mathematical framework to study the
impact of various mutation rules on the exploration of the space of traits in an
evolutionary model. In particular, we have connected mutation rules to char-
acteristic time-scales, such as hitting-times, through the study of associated
graph structures. As a leading example, which was the original motivation for
this study, we have considered applications of these results to the modeling of
somatic hypermutations in the germinal center. The models considered so far
do not include division and selection, which would lead to studying branching
random walks on graphs, a topic of ongoing research.
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