A Simpler Variant of Universally Composable Security for Standard Multi Party Computation

Chloé Hébant

Ecole Normale Supérieure

February 22, 2018
1 Introduction
- Definition
- Interest
- Difficulties

2 SUC Model
- Communication model and rules
- π SUC-securely computes \mathcal{F}
- SUC composition theorem

3 Conclusion
Protocol
Context

Protocol

Proof of security
Context

Protocol

Proof of security

Adversary model
→ who?
→ capabilities?
→ goals?
Context

Protocol

Proof of security

Adversary model
→ who?
→ capabilities?
→ goals?

Security model

Indistinguishability
→ Find-then-Guess
→ Real-or-Random

Simulation
→ Classical Simulation
→ Universal Composability
Context

Introduction

Definition

Protocol

Proof of security

Adversary model
→ who?
→ capabilities?
→ goals?

Security model

Indistinguishability
→ Find-then-Guess
→ Real-or-Random

Chloé Hébant (ENS)

Working Group: SUC Security

February 22, 2018
Context

- **Protocol**
 - Proof of security
 - Adversary model
 - who?
 - capabilities?
 - goals?
 - Security model
 - Indistinguishability
 - Find-then-Guess
 - Real-or-Random
 - Simulation
 - Classical Simulation
 - Universal Composability
Definition

Universal Composability model is a security model

- for Multi Party Computation
Definition

Universal Composability model is a security model

- for **Multi Party Computation**: n players P_i owning x_i, n-variable function f, Compute $f(x_1, \cdots, x_n) = (y_1, \cdots, y_n)$ s.t. each P_i learns y_i and nothing more
Universal Composability model is a security model

for **Multi Party Computation**: n players \mathcal{P}_i owning x_i, n-variable function f, Compute $f(x_1, \cdots, x_n) = (y_1, \cdots, y_n)$ s.t. each \mathcal{P}_i learns y_i and nothing more

based on a simulation between a **Real World** and an **Ideal World**
Definition

Universal Composability model is a security model

- for Multi Party Computation: \(n \) players \(P_i \) owning \(x_i \), \(n \)-variable function \(f \), Compute \(f(x_1, \ldots, x_n) = (y_1, \ldots, y_n) \) s.t. each \(P_i \) learns \(y_i \) and nothing more

- based on a simulation between a Real World and an Ideal World
 - **Real World**: protocol, players, adversary
 - **Ideal World**: ideal protocol, virtual players, ideal adversary
Definition

Universal Composability model is a security model

- for **Multi Party Computation**: n players \mathcal{P}_i owning x_i, n-variable function f, Compute $f(x_1, \cdots, x_n) = (y_1, \cdots, y_n)$ s.t. each \mathcal{P}_i learns y_i and nothing more

- based on a simulation between a **Real World** and an **Ideal World**
 - **Real World**: protocol, players, adversary
 - **Ideal World**: ideal functionality, virtual players, ideal adversary
Definition

Universal Composability model is a security model

- for **Multi Party Computation**: \(n \) players \(P_i \) owning \(x_i \), \(n \)-variable function \(f \), Compute \(f(x_1, \cdots, x_n) = (y_1, \cdots, y_n) \) s.t. each \(P_i \) learns \(y_i \) and nothing more

- based on a simulation between a **Real World** and an **Ideal World**
 - **Real World**: protocol, players, adversary
 - **Ideal World**: ideal functionality, virtual players, simulation of the adversary
Definition

Universal Composability model is a security model

- for **Multi Party Computation**: \(n \) players \(P_i \) owning \(x_i \), \(n \)-variable function \(f \), Compute \(f(x_1, \cdots, x_n) = (y_1, \cdots, y_n) \) s.t. each \(P_i \) learns \(y_i \) and nothing more

- based on a simulation between a **Real World** and an **Ideal World**
 - **Real World**: protocol, players, adversary
 - **Ideal World**: ideal functionality, virtual players, simulation of the adversary

Ensure that an environment \(\mathcal{Z} \) can’t distinguish between both worlds
Definition

Figure 1: Ideal World
Definition

Construction of UC protocols:
- Define the ideal Functionality \mathcal{F}
- Construct a protocol Π that realises \mathcal{F}
- Make the proof: construct a simulator S

Figure 1: Ideal World
Interest 1: A can choose a distribution for the inputs

In the UC model, no description of:

- what are the possible actions of the adversary
- the order of the requests
- the number of requests
Interest 1: \(\mathcal{A} \) can choose a distribution for the inputs

In the UC model, no description of:
- what are the possible actions of the adversary
- the order of the requests
- the number of requests

The execution is taken as a whole: \(\mathcal{Z} \) chooses the inputs of \(\mathcal{P}_i \) and \(\mathcal{A} \)
Interest 1: \(A \) can choose a distribution for the inputs

In the UC model, no description of:

- what are the possible actions of the adversary
- the order of the requests
- the number of requests

The execution is taken as a whole: \(\mathcal{E} \) chooses the inputs of \(\mathcal{P}_i \) and \(A \)

\(\Rightarrow \) Model attacks where the inputs are not uniform
Interest 2: The composition theorem

Most important interest:

If a protocol is UC secure then it is secure for concurrent executions
Interest 2: The composition theorem

Most important interest:

If a protocol is UC secure then it is secure for concurrent executions

Example 1: UC-commitments \rightarrow ZK

Example 2:

UC-secure authenticated key exchange $+$ secure symmetric encryption \rightarrow Secure channels
Interest 2: The composition theorem

Most important interest:

If a protocol is UC secure then it is secure for concurrent executions

Example 1: UC-commitments \rightarrow ZK

Example 2:

UC-secure authenticated key exchange + secure symmetric encryption \rightarrow Secure channels

\Rightarrow Because of these 2 points, the **UC model is more secure** than the Find-then-Guess or Real-or-Random models
Difficulties

Difficulty to define the ideal functionality

Ideal Functionality for Secure Message Transfer
Difficulties to define the ideal functionality

Ideal Functionality for Secure Message Transfer

F_{STM}^l proceeds as follows:
parameterized by leakage function $l : \{0, 1\}^* \rightarrow \{0, 1\}^*$,

Upon receiving an input $(\text{Send}, \text{sid}, m)$ from S, verify that $\text{sid} = (S, R, \text{sid}')$ for some R, else ignore the input. Next, send $(\text{Sent}, \text{sid}, l(m), m)$ to R.

text = private content
Difficulties to define the ideal functionality

Ideal Functionality for Secure Message Transfer

$\mathcal{F}_{\text{STM}}^{l}$ proceeds as follows:

parameterized by leakage function $l : \{0, 1\}^* \rightarrow \{0, 1\}^*$,

Upon receiving an input $(\text{Send}, \text{sid}, m)$ from S, verify that $\text{sid} = (S, R, \text{sid}')$ for some R, else ignore the input. Next, send $(\text{Sent}, \text{sid}, l(m), m)$ to R.

$text = \text{private content}$

For example: leaking $l(m) = \text{length}(m)$ is important because no cryptosystem can fully hide the size of the information being encrypted
Difficulties in proofs

In UC model, proofs more complex than in game based security:

- no rewind, need extractable inputs \Rightarrow protocol more complex
- no end when the adversary wins \Rightarrow proofs more complex
1 Introduction
 - Definition
 - Interest
 - Difficulties

2 SUC Model
 - Communication model and rules
 - π SUC-securely computes \mathcal{F}
 - SUC composition theorem

3 Conclusion
Communication model and rules

Figure 2: SUC communication model
Communication model and rules

Figure 2: SUC communication model
Communication model and rules

Figure 2: SUC communication model
Router sends all messages to \mathcal{A} and delivers them when instructed by \mathcal{A}

- Messages are of the format (sender, receiver; content)
- Router only sends public header of messages to and from \mathcal{F} to \mathcal{A} (so \mathcal{A} does not see the private content)
- \mathcal{A} notifies the router when to deliver messages but has no influence beyond that
Definition

Let π be a protocol for up to m parties and let F be an ideal functionality.

We say that π **SUC-securely computes** F if for every PPT real model adversary A there exists a PPT ideal-model adversary S such that for every PPT balanced environment Z and every constant $d \in \mathbb{N}$, there exists a negligible function $\mu(\cdot)$ such that for every $n \in \mathbb{N}$ and every $z \in \{0, 1\}^*$ of length at most n^d,

$$|\Pr[\text{SUC-IDEAL}_{F,S,Z}(n, z) = 1] - \Pr[\text{SUC-REAL}_{\pi,A,Z}(n, z) = 1]| \leq \mu(n)$$
Theorem

Let \(\pi \) be a protocol for the \(\mathcal{F} \)-hybrid model. Let \(\rho \) be a protocol that SUC-securely computes \(\mathcal{F} \) in the \(\mathcal{G} \)-hybrid model.

Then, for every PPT real model adversary \(A \) there exists a PPT ideal-model adversary \(S \) such that for every PPT environment \(Z \) there exists a negligible function \(\mu(\cdot) \) such that for every \(z \in \{0, 1\}^* \) and every \(n \in \mathbb{N} \),

\[
\left| \Pr[SUC-HYBRID^{\mathcal{G}}_{\pi \rho, S, Z}(n, z) = 1] - \Pr[SUC-HYBRID^{\mathcal{F}}_{\pi, A, Z}(n, z) = 1] \right| \leq \mu(n)
\]
SUC composition theorem

Corollary

Let π be a protocol that SUC-securely computes a functionality \mathcal{H} in the \mathcal{F}-hybrid model. If protocol ρ SUC-securely computes \mathcal{F} in the \mathcal{G}-hybrid (resp. real) model, then $\pi\rho$ SUC-securely computes \mathcal{H} in the \mathcal{G}-hybrid (resp. real) model.

By a drawing:
Corollary

Let π be a protocol that SUC-securely computes a functionality \mathcal{H} in the \mathcal{F}-hybrid model. If protocol ρ SUC-securely computes \mathcal{F} in the \mathcal{G}-hybrid (resp. real) model, then $\pi \circ \rho$ SUC-securely computes \mathcal{H} in the \mathcal{G}-hybrid (resp. real) model.

By a drawing:

\[\mathcal{H} \quad \mathcal{F} \quad \mathcal{F} \quad \pi \]
SUC composition theorem

Corollary

Let π be a protocol that SUC-securely computes a functionality \mathcal{H} in the \mathcal{F}-hybrid model. If protocol ρ SUC-securely computes \mathcal{F} in the \mathcal{G}-hybrid (resp. real) model, then $\pi \rho$ SUC-securely computes \mathcal{H} in the \mathcal{G}-hybrid (resp. real) model.

By a drawing:
Corollary

Let π be a protocol that SUC-securely computes a functionality \mathcal{H} in the \mathcal{F}-hybrid model. If protocol ρ SUC-securely computes \mathcal{F} in the \mathcal{G}-hybrid (resp. real) model, then π^{ρ} SUC-securely computes \mathcal{H} in the \mathcal{G}-hybrid (resp. real) model.

By a drawing:

\[\mathcal{H} \quad \mathcal{F} \quad + \quad \mathcal{F} \quad \mathcal{G} \quad \Rightarrow \quad \mathcal{H} \quad \mathcal{G} \quad \mathcal{G} \]

\[\pi \quad \rho \quad \pi^{\rho} \]
1 Introduction
 - Definition
 - Interest
 - Difficulties

2 SUC Model
 - Communication model and rules
 - π SUC-securely computes \mathcal{F}
 - SUC composition theorem

3 Conclusion
In SUC, more rigid network model:

- build-in authenticated channel
- no subroutines
- set of parties a priori fixed

⇒ No digital signatures in SUC because no a priori polynomial bound on the number of interactions (= number of signatures)
Conclusion

UC: Security model based on simulation to obtain Composition Theorem

Composition Theorem: If a protocol is UC secure then it is secure for concurrent executions

SUC: Simpler formalism for some protocols such that SUC-secure \Rightarrow UC secure

\Rightarrow Simpler proofs without loss of security guarantees
References

- CCL15 - A Simpler Variant of UC Security for Standard Multiparty Computation
- Che09 - Etude de protocoles cryptographiques à base de mots de passe
- Can01 - Universally Composable Security: A New Paradigm for Cryptographic Protocols