Hash function based on the SIS problem

HEBANT Chloé

University of Limoges

Summer 2016
Introduction

1. Hash function

2. One-way collision-resistant Ajtai function

3. SIS problem
 - Some observations about the SIS problem

4. Hardness proof

5. Hash function construction
 - Merkle-Damgård construction
 - HAIFA construction
Hash function

With a function f which have the properties:

- one-way
- collision-resistant
- compression

Iterating f trying to maintain:

- pre-image resistance
- second pre-image resistance
- collision resistance
Definition

- **Pre-image resistance:**
 Given \(y = H(x) \) it is hard to find \(x' \) such that \(H(x') = y \)

- **Second pre-image resistance:**
 Given \(x \) it is hard to find \(x' \) such that \(H(x) = H(x') \)

- **Collision resistance:**
 It is hard to find \(x, x' \) such that \(H(x) = H(x') \)
One-way collision-resistant Ajtai function

Some observations about the SIS problem

Hardness proof

Hash function construction
 - Merkle-Damgård construction
 - HAIFA construction
One-way collision-resistant Ajtai function

Let a matrix \(A \in \mathbb{Z}_q^{n \times m} \)

Let

\[
 f_A : \{0, \pm 1\}^m \rightarrow \mathbb{Z}_q^n \\
z \mapsto Az
\]

Theorem

\(f_A \) is a compression function if \(m \geq n \log q \)
1 Hash function

2 One-way collision-resistant Ajtai function

3 SIS problem
 - Some observations about the SIS problem

4 Hardness proof

5 Hash function construction
 - Merkle-Damgård construction
 - HAIFA construction
Definition

Definition (SIS problem)

- Given m uniformly random vectors $a_i \in \mathbb{Z}_q^n$
- Find $z \neq 0 \in \{0, \pm 1\}^m$ such that:

$$f_A(z) := Az = \sum_i a_i \cdot z_i = 0 \in \mathbb{Z}_q^n$$
Definition

Definition (SIS problem)

- Given \(m \) uniformly random vectors \(a_i \in \mathbb{Z}_q^n \)
- Find \(z \neq 0 \in \{0, \pm 1\}^m \) such that:

\[
f_A(z) := Az = \sum_i a_i \cdot z_i = 0 \in \mathbb{Z}_q^n
\]

Theorem

Assuming the hardness of the SIS problem, \(f_A \) is one-way and collision-resistant
Definition

Definition (SIS problem)

- Given \(m \) uniformly random vectors \(a_i \in \mathbb{Z}_q^n \)
- Find \(z \neq 0 \in \{0, \pm 1\}^m \) such that:

\[
f_A(z) := A z = \sum_i a_i \cdot z_i = 0 \in \mathbb{Z}_q^n
\]

Theorem

Assuming the hardness of the SIS problem, \(f_A \) is one-way and collision-resistant

Remark

Thanks to Ajtai and his hardness proof, it’s all Minicrypt that we can construct based on the SIS problem.
Some observations

Definition (General SIS problem)

- Given m uniformly random vectors $a_i \in \mathbb{Z}_q^n$
- Find $z \neq 0 \in \mathbb{Z}_q^m$ of norm $\|z\| \leq \beta$ such that:

$$f_A(z) := Az = \sum_i a_i \cdot z_i = 0 \in \mathbb{Z}_q^n$$
Some observations

Definition (General SIS problem)

- Given \(m \) uniformly random vectors \(a_i \in \mathbb{Z}_q^n \)
- Find \(z \neq 0 \in \mathbb{Z}^m \) of norm \(||z|| \leq \beta \) such that:

\[
f_A(z) := Az = \sum_i a_i \cdot z_i = 0 \in \mathbb{Z}_q^n
\]

Remark

- Without the constraint on \(||z|| \), it is easy to find a solution:
 Gaussian elimination
- Must take \(\beta < q \):
 otherwise \(z = (q, 0, \cdots, 0) \in \mathbb{Z}^m \) is a trivial solution
Hermite normal form

Small but important optimization:

- Decompose $A = [A_1 \mid A_2]$ where $A_1 \in \mathbb{Z}_q^{n \times n}$ is invertible as a matrix over \mathbb{Z}_q.
- Let $B = A_1^{-1} \cdot A = [I_n \mid \bar{A}]$ where $\bar{A} = A_1^{-1} \cdot A_2$

Theorem

A and B have exactly the same set of (short) SIS solutions
1 Hash function

2 One-way collision-resistant Ajtai function

3 SIS problem
 - Some observations about the SIS problem

4 Hardness proof

5 Hash function construction
 - Merkle-Damgård construction
 - HAIFA construction
Reduction: average-case \rightarrow worst-case

- $p_i \in \mathcal{L}^n$
- $g_i = p_i + e_i \in \mathbb{R}^n$ where $e_i \sim D_s(x) = \left(\frac{1}{s}\right)^n e^{-\pi \frac{\|x\|^2}{s^2}}$
1 Hash function

2 One-way collision-resistant Ajtai function

3 SIS problem
 - Some observations about the SIS problem

4 Hardness proof

5 Hash function construction
 - Merkle-Damgård construction
 - HAIFA construction
Merkle-Damgård construction

Definition
Method of building collision-resistant cryptographic hash functions from collision-resistant one-way

Theorem (Security proof)
Collision in $H \Rightarrow$ collision in f
Merkle-Damgård construction

Definition

Method of building collision-resistant cryptographic hash functions from collision-resistant one-way

\[IV \xrightarrow{f} m_1 \xrightarrow{f} m_2 \xrightarrow{f} \ldots m_n \xrightarrow{f} H(m) \]

Theorem (Security proof)

Collision in \(H \) \(\Rightarrow \) collision in \(f \)

Remark

This is used for MD5, SHA1, SHA2
Several undesirable properties

- **Length extension**
 Given $H(x)$ of an unknown input x,
 it’s easy to find the value of $H(\text{pad}(x)||y)$
 \Rightarrow possible to find hashes of inputs related to x even though x remains unknown
Several undesirable properties

- **Length extension**
 Given $H(x)$ of an unknown input x, it’s easy to find the value of $H(\text{pad}(x)||y)$, ⇒ possible to find hashes of inputs related to x even though x remains unknown

- **Second pre-image**
 Hyp: the security proof also apply to second pre-image attacks
 But: this is not true for long messages
Several undesirable properties (2)

- **Fix-points**: \(h = f(h, M) \)

- **Multicollisions**: many messages with the same hash
 2004: (Joux) When iterative hash functions are used, finding multicollisions is almost as easy as finding a single collision

Remark

Joux also prove: The concatenation of hash function is as secure against pre-image attacks as the strongest of all the hash functions
HAIFA has attractive properties:

- simplicity
- maintaining the collision resistance of the compression function
- increasing the security against second pre-image attacks
- prevention of easy-to-use fix points of the compression function
HAIFA construction

- $#bits = \text{the number of bits hashed so far}$
- $IV_m = f(IV, m, 0, 0)$ where m is the hash output size
- Padding scheme: pad a single bit of 1 and as many 0 bits to have the good size. Final length of:
 - M: congruent to $(n - (t + r)) \mod n$
 - length of M: t
 - m: r
HAIFA vs Merkle-Damgård

- **#bits**: prevent the easy exploitation of fix-points

Even if an attacker finds a fix-point $h = f(h, M, #bits, salt)$ he cannot concatenate it to itself because #bits has changed.
HAIFA vs Merkle-Damgård

- **#bits**: prevent the easy exploitation of fix-points

 Even if an attacker finds a fix-point $h = f(h, M, #bits, salt)$ he cannot concatenate it to itself because #bits has changed

- **salt**:
 - all attacks are on-line \rightarrow no precomputation
 - increasing the security of digital signature
HAIFA vs Merkle-Damgård

- **#bits**: prevent the easy exploitation of fix-points

 Even if an attacker finds a fix-point $h = f(h, M, \#bits, salt)$ he cannot concatenate it to itself because $\#bits$ has changed

- **salt**:
 - all attacks are on-line \rightarrow no precomputation
 - increasing the security of digital signature

- **Multicollisions**: this attacks works against all iterative hashing schemes, independent of their structure

 BUT: an attacker cannot precompute these multicollisions before the choosing of the salt value