Description Logics and Reasoning on Data Inconsistency Handling

C. Bourgaux, M. Thomazo
Outline

Introduction

Inconsistency-tolerant semantics

Complexity issues

A practical approach for AR semantics

Some research problems

References
Handling Inconsistent Data

In real world data often contains errors

- human errors
- automatic extraction
- outdated information

Likely to be inconsistent with the ontology (today: focus on the case where the ontology is assumed reliable)

Standard semantics: everything is entailed from an inconsistent knowledge base !
Handling Inconsistent Data

In real world data often contains errors

- human errors
- automatic extraction
- outdated information

Likely to be inconsistent with the ontology (today: focus on the case where the ontology is assumed reliable)

Standard semantics: everything is entailed from an inconsistent knowledge base!

It is not always possible to resolve the inconsistencies (lack of information, time, permission...)

Alternative semantics: meaningful answers to queries despite inconsistencies
Example

\[\mathcal{T} = \{ \text{APProf} \sqsubseteq \text{Prof}, \text{FProf} \sqsubseteq \text{Prof}, \text{APProf} \sqsubseteq -\text{FProf} \} \]

\[\mathcal{A} = \{ \text{APProf}(ann), \text{FProf}(ann), \text{Postdoc}(alex) \} \]

Which assertions would it be reasonable to infer?
Many inconsistency-tolerant semantics have been proposed.

A semantics S associates a set of answers to every KB and query:
- if the KB is satisfiable, should return certain answers
- for unsatisfiable KBs, give different answers than classical semantics

Write $\langle T, A \rangle \models_S q(\vec{a})$ if \vec{a} is an answer to q w.r.t. $\langle T, A \rangle$ under semantics S.
Consistency Properties

A \mathcal{T}-support of $q(\bar{a})$ is a subset $C \subseteq A$ such that

- $\langle \mathcal{T}, C \rangle$ is satisfiable
- $\langle \mathcal{T}, C \rangle \models q(\bar{a})$

Semantics S satisfies the consistent support property if whenever $\langle \mathcal{T}, A \rangle \models_S q(\bar{a})$, there exists a \mathcal{T}-support $C \subseteq A$ of $q(\bar{a})$

- consistent explanation/justification for the query result

Semantics S satisfies the consistent results property if for every KB $\langle \mathcal{T}, A \rangle$, there exists a model I of \mathcal{T} such that $\langle \mathcal{T}, A \rangle \models_S q(\bar{a})$ implies $I \models q(\bar{a})$

- set of query results is jointly consistent with the ontology
- safe to combine query results
A T-support of $q(\vec{a})$ is a subset $C \subseteq A$ such that

- $\langle T, C \rangle$ is satisfiable
- $\langle T, C \rangle \models q(\vec{a})$

Semantics S satisfies the consistent support property if whenever $\langle T, A \rangle \models_S q(\vec{a})$, there exists a T-support $C \subseteq A$ of $q(\vec{a})$

- consistent explanation/justification for the query result

Semantics S satisfies the consistent results property if for every KB $\langle T, A \rangle$, there exists a model I of T such that $\langle T, A \rangle \models_S q(\vec{a})$ implies $I \models q(\vec{a})$

- set of query results is jointly consistent with the ontology
- safe to combine query results
Comparing Semantics

Given two semantics S and S'

- S' is an under-approximation (or sound approximation) of S if
 $\langle T, A \rangle \models_{S'} q(\bar{a})$ implies $\langle T, A \rangle \models_S q(\bar{a})$

- S' is an over-approximation (or complete approximation) of S if
 $\langle T, A \rangle \models_S q(\bar{a})$ implies $\langle T, A \rangle \models_{S'} q(\bar{a})$
Many semantics are based upon the notion of repair: inclusion-
maximal subset of the data consistent with the ontology

Possible worlds, different ways of achieving consistency while
retaining as much of the original data as possible

<table>
<thead>
<tr>
<th>TBox</th>
<th></th>
<th>ABox</th>
<th></th>
<th>Repair</th>
<th></th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>AProf ⊑ Prof</td>
<td></td>
<td>AProf(ann)</td>
<td></td>
<td>AProf(ann)</td>
<td></td>
<td>FProf(ann)</td>
</tr>
<tr>
<td>FProf ⊑ Prof</td>
<td></td>
<td>FProf(ann)</td>
<td></td>
<td>Postdoc(alex)</td>
<td></td>
<td>Postdoc(alex)</td>
</tr>
<tr>
<td>AProf ⊑ ¬FProf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plausible Answers: AR Semantics

AR (ABox Repair) answers: hold no matter which repair is chosen

\[\langle T, A \rangle \models_{AR} q(\vec{a}) \iff \langle T, R \rangle \models q(\vec{a}) \text{ for every repair } R \]

\[
\begin{array}{|l|l|}
\hline
\text{TBox} & \mathcal{T} \\
\hline
\text{AProf} \sqsubseteq \text{Prof} & \\
\text{FProf} \sqsubseteq \text{Prof} & \\
\text{AProf} \sqsubseteq \neg \text{FProf} & \\
\hline
\end{array}
\]

\[
\begin{array}{|l|l|}
\hline
\text{ABox} & \mathcal{A} \\
\hline
\text{AProf}(\text{ann}) & \\
\text{FProf}(\text{ann}) & \\
\text{Postdoc}(\text{alex}) & \\
\hline
\end{array}
\]

\[
\begin{array}{|l|l|}
\hline
\text{Repair} & \mathcal{R}_1 \\
\hline
\text{AProf}(\text{ann}) & \\
\text{Postdoc}(\text{alex}) & \\
\hline
\end{array}
\]

\[
\begin{array}{|l|l|}
\hline
\text{Repair} & \mathcal{R}_2 \\
\hline
\text{FProf}(\text{ann}) & \\
\text{Postdoc}(\text{alex}) & \\
\hline
\end{array}
\]

\[
\begin{array}{|l|l|}
\hline
\text{Consequences}(\mathcal{R}_1) & \\
\hline
\end{array}
\]

\[
\begin{array}{|l|l|}
\hline
\text{Consequences}(\mathcal{R}_2) & \\
\hline
\end{array}
\]
Surest Answers: IAR Semantics

IAR (Intersection AR) answers: hold in the repairs intersection

$$\langle \mathcal{T}, \mathcal{A} \rangle \models_{IAR} q(\bar{a}) \iff \langle \mathcal{T}, \mathcal{R}^\cap \rangle \models q(\bar{a})$$ with $$\mathcal{R}^\cap$$ repairs intersection
Possible Answers: Brave Semantics

Brave answers: hold in some repair

\[\langle T, A \rangle \models_{\text{brave}} q(\vec{a}) \iff \langle T, R \rangle \models q(\vec{a}) \text{ for some } R \]

- **TBox**
 - T
 - AProf \sqsubseteq Prof
 - FProf \sqsubseteq Prof
 - AProf $\sqsubseteq \neg$FProf

- **ABox**
 - A
 - AProf(ann)
 - FProf(ann)
 - Postdoc(alex)

- **Repair**
 - R
 - Repair R_1
 - AProf(ann)
 - Postdoc(alex)
 - Repair R_2
 - FProf(ann)
 - Postdoc(alex)

- **Consequences**
 - Consequences(R_1)
 - Consequences(R_2)
Which consistency properties are satisfied by AR, IAR, brave?

- consistent support property?
- consistent results property?

How do the three semantics compare?

- under/over-approximation
AR, IAR and Brave Semantics

- AR is the most well-known and accepted semantics
 - cautious reasoning used in many area (belief revision...)
 - consistent query answering in databases
- but AR is usually intractable (\textsc{coNP}-complete in data complexity for DL-Lite and \(\mathcal{EL}\))
- IAR and brave are under- and over-approximations of AR
 - IAR most cautious: disregard all facts involved in some contradiction
 - brave least cautious: all answers supported by some consistent set of facts
- IAR and brave are tractable for DL-Lite
Some Other Inconsistency-Tolerant Semantics

- **k-support semantics**
 - fine-grained under-approximation of AR
 - $\langle \mathcal{T}, \mathcal{A} \rangle \models_{k-supp} q(\bar{a})$ iff there exist C_1, \ldots, C_k \mathcal{T}-supports of $q(\bar{a})$ such that every repair contains at least one of the C_i
 - 1-support = IAR
 - $\langle \mathcal{T}, \mathcal{A} \rangle \models_{k-supp} q(\bar{a}) \Rightarrow \langle \mathcal{T}, \mathcal{A} \rangle \models_{k+1-supp} q(\bar{a})$
 - $\langle \mathcal{T}, \mathcal{A} \rangle \models_{AR} q(\bar{a}) \iff \exists k \geq 1, \langle \mathcal{T}, \mathcal{A} \rangle \models_{k-supp} q(\bar{a})$
Some Other Inconsistency-Tolerant Semantics

- **k-support semantics**
 - fine-grained under-approximation of AR
 - \(\langle T, A \rangle \models_{k-supp} q(\bar{a}) \) iff there exist \(C_1, \ldots, C_k \) \(T \)-supports of \(q(\bar{a}) \) such that every repair contains at least one of the \(C_i \)
 - 1-support = IAR
 - \(\langle T, A \rangle \models_{k-supp} q(\bar{a}) \Rightarrow \langle T, A \rangle \models_{k+1-supp} q(\bar{a}) \)
 - \(\langle T, A \rangle \models_{AR} q(\bar{a}) \Leftrightarrow \exists k \geq 1, \langle T, A \rangle \models_{k-supp} q(\bar{a}) \)

- **k-defeater semantics**
 - fine-grained over-approximation of AR
 - \(\langle T, A \rangle \models_{k-def} q(\bar{a}) \) iff there does not exist a \(T \)-consistent \(S \subseteq A \) such that \(|S| \leq k \) and \(\langle T, S \cup C \rangle \models \bot \) for every minimal \(T \)-support \(C \) of \(q(\bar{a}) \)
 - 0-defeater = brave
 - \(\langle T, A \rangle \models_{k+1-def} q(\bar{a}) \Rightarrow \langle T, A \rangle \models_{k-def} q(\bar{a}) \)
 - for every KB, there exists \(k \) such that \(\langle T, A \rangle \models_{AR} q(\bar{a}) \Leftrightarrow \langle T, A \rangle \models_{k-def} q(\bar{a}) \)
Some Other Inconsistency-Tolerant Semantics

- ICR (Intersection Closed Repairs) semantics
 - under-approximation of AR and over-approximation of IAR
 - intersects the closures of the repairs \((\text{closure of } \mathcal{R} = \text{set of assertions entailed from } \langle \mathcal{T}, \mathcal{R} \rangle)\)
 - same as AR for queries without quantifier
Some Other Inconsistency-Tolerant Semantics

- **ICR (Intersection Closed Repairs) semantics**
 - under-approximation of AR and over-approximation of IAR
 - intersects the closures of the repairs (closure of $\mathcal{R} = \text{set of assertions entailed from } \langle \mathcal{T}, \mathcal{R} \rangle$)
 - same as AR for queries without quantifier

- **CAR and ICAR semantics**
 - define semantics that are (almost) syntax-independent
 - apply closure operator on original ABox
 - need alternative notion of closure for inconsistent KB: set of assertions with a \mathcal{T}-support in \mathcal{A}
 - closed ABox repairs: maximally complete standard ABox repairs with facts from the closure of \mathcal{A}
 - apply AR (CAR) or IAR (ICAR) using closed ABox repairs
 - do not satisfy consistent support!

$$\mathcal{T} = \{ A \sqsubseteq B, C \sqsubseteq D, A \sqsubseteq \neg C \}, \quad \mathcal{A} = \{ A(a), C(a) \}, \quad q = B(x) \land D(x)$$
Exercise: AR, IAR, brave, k-supp, k-def, ICR?

$T = \{ \text{AP} \subseteq \text{Prof}, \text{F} \subseteq \text{Prof}, \text{Prof} \subseteq \text{PhD}, \text{Postdoc} \subseteq \text{PhD}, \text{PhD} \subseteq \text{Person}, \exists \text{Teach} \subseteq \text{Person}, \exists \text{Teach}^{-} \subseteq \text{Course}, \text{Prof} \subseteq \exists \text{WorkFor}, \text{Student} \subseteq \exists \text{MemberOf}, \text{WorkFor} \subseteq \text{MemberOf}, \text{AP} \subseteq \neg \text{F}, \text{Prof} \subseteq \neg \text{Postdoc}, \text{Student} \subseteq \neg \text{Prof}, \text{Person} \subseteq \neg \text{Course}, \exists \text{MemberOf}^{-} \subseteq \neg \text{Postdoc} \}$
Exercise: AR, IAR, brave, k-supp, k-def, ICR ?

$T = \{ \text{AProf} \sqsubseteq \text{Prof}, \text{FProf} \sqsubseteq \text{Prof}, \text{Prof} \sqsubseteq \text{PhD}, \text{Postdoc} \sqsubseteq \text{PhD}, \text{PhD} \sqsubseteq \text{Person}, \exists \text{Teach} \sqsubseteq \text{Person}, \exists \text{Teach}^- \sqsubseteq \text{Course}, \text{Prof} \sqsubseteq \exists \text{WorkFor}, \text{Student} \sqsubseteq \exists \text{MemberOf}, \text{WorkFor} \sqsubseteq \exists \text{MemberOf}, \text{AProf} \sqsubseteq \neg \text{FProf}, \text{Prof} \sqsubseteq \neg \text{Postdoc}, \text{Student} \sqsubseteq \neg \text{Prof}, \text{Person} \sqsubseteq \neg \text{Course}, \exists \text{MemberOf}^- \sqsubseteq \neg \text{Postdoc} \}$

$A_a = \{ \text{AProf}(\text{ann}), \text{FProf}(\text{ann}), \text{Prof}(\text{ann}), \text{Teach}(\text{ann}, c_a), \text{Teach}(\text{ann}, \text{ann}) \}$

$q(x) = \exists yz \text{PhD}(x) \land \text{MemberOf}(x, y) \land \text{Teach}(x, z)$
Exercise: AR, IAR, brave, k-supp, k-def, ICR?

$\mathcal{T} = \{\text{AProf} \sqsubseteq \text{Prof}, \text{FProf} \sqsubseteq \text{Prof}, \text{Prof} \sqsubseteq \text{PhD}, \text{Postdoc} \sqsubseteq \text{PhD}, \text{PhD} \sqsubseteq \text{Person}, \exists \text{Teach} \sqsubseteq \text{Person}, \exists \text{Teach}^- \sqsubseteq \text{Course}, \text{Prof} \sqsubseteq \exists \text{WorkFor}, \text{Student} \sqsubseteq \exists \text{MemberOf}, \text{WorkFor} \sqsubseteq \exists \text{MemberOf}, \text{AProf} \sqsubseteq \neg \text{FProf}, \text{Prof} \sqsubseteq \neg \text{Postdoc}, \text{Student} \sqsubseteq \neg \text{Prof}, \text{Person} \sqsubseteq \neg \text{Course}, \exists \text{MemberOf}^- \sqsubseteq \neg \text{Postdoc}\}$

$\mathcal{A}_b = \{\text{AProf}(bob), \text{FProf}(bob), \text{Postdoc}(bob), \text{MemberOf}(bob, dpt), \text{Teach}(bob, c_b)\}$

$q(x) = \exists y z \text{PhD}(x) \land \text{MemberOf}(x, y) \land \text{Teach}(x, z)$
Exercise: AR, IAR, brave, k-supp, k-def, ICR?

$\mathcal{T} = \{ \text{AP} \sqsubseteq \text{Prof}, \text{FP} \sqsubseteq \text{Prof}, \text{Prof} \sqsubseteq \text{PhD}, \text{Postdoc} \sqsubseteq \text{PhD}, \text{PhD} \sqsubseteq \text{Person}, \exists \text{Teach} \sqsubseteq \text{Person}, \exists \text{Teach}^- \sqsubseteq \text{Course}, \text{Prof} \sqsubseteq \exists \text{WorkFor}, \text{Student} \sqsubseteq \exists \text{MemberOf}, \text{WorkFor} \sqsubseteq \exists \text{MemberOf}, \text{AP} \sqsubseteq \neg \text{FP}, \text{Prof} \sqsubseteq \neg \text{Postdoc}, \text{Student} \sqsubseteq \neg \text{Prof}, \text{Person} \sqsubseteq \neg \text{Course}, \exists \text{MemberOf}^- \sqsubseteq \neg \text{Postdoc} \}$

$\mathcal{A}_c = \{ \text{AP}(\text{carl}), \text{Teach}(\text{carl}, c_{c1}), \text{Teach}(\text{carl}, c_{c2}), \text{Teach}(c_{c1}, c_{c2}), \text{Teach}(c_{c2}, c_{c1}) \}$

$q(x) = \exists y z \text{PhD}(x) \land \text{MemberOf}(x, y) \land \text{Teach}(x, z)$
Exercise: AR, IAR, brave, \(k\)-supp, \(k\)-def, ICR ?

\[\mathcal{T} = \{ \text{APref} \sqsubseteq \text{Prof}, \text{FProf} \sqsubseteq \text{Prof}, \text{Prof} \sqsubseteq \text{PhD}, \text{Postdoc} \sqsubseteq \text{PhD}, \]
\[\text{PhD} \sqsubseteq \text{Person}, \exists \text{Teach} \sqsubseteq \text{Person}, \exists \text{Teach}^{-} \sqsubseteq \text{Course}, \]
\[\text{Prof} \sqsubseteq \exists \text{WorkFor}, \text{Student} \sqsubseteq \exists \text{MemberOf}, \text{WorkFor} \sqsubseteq \text{MemberOf}, \]
\[\text{APref} \sqsubseteq \neg \text{FProf}, \text{Prof} \sqsubseteq \neg \text{Postdoc}, \text{Student} \sqsubseteq \neg \text{Prof}, \]
\[\text{Person} \sqsubseteq \neg \text{Course}, \exists \text{MemberOf}^{-} \sqsubseteq \neg \text{Postdoc} \} \]

\[\mathcal{A}_d = \{ \text{APref}(\text{dan}), \text{Teach}(\text{dan}, c_{d1}), \text{Teach}(\text{dan}, c_{d2}), \]
\[\text{APref}(c_{d1}), \text{APref}(c_{d2}) \} \]

\[q(x) = \exists y z \text{PhD}(x) \land \text{MemberOf}(x, y) \land \text{Teach}(x, z) \]
Some Complexity Results for DL-Lite
The DL-Lite family and OWL 2 QL

- OWL 2 QL: OWL 2 profile for efficient query answering
- Target large datasets: CQ answering is in AC0 in data complexity (AC0 ⊆ \(\text{LogSpace} \subseteq \text{PTime} \))
 - via query rewriting
- Based on the DL-Lite\(_{\mathcal{R}}\) language of the DL-Lite family

DL-Lite\(_{\mathcal{R}}\): concept inclusions of the form \(B \sqsubseteq C \) where

\[
C := B \mid \neg B, \quad B := A \mid \exists S, \quad S := R \mid R^-
\]

with \(A \) an atomic concept and \(R \) an atomic role

We focus on DL-Lite\(_{\mathcal{R}}\):

- \(\text{DL-Lite}_{\mathcal{R}} = \text{DL-Lite}_{\mathcal{R}} + \) role inclusions \(S \sqsubseteq Q \) with \(Q := S \mid \neg S \)
Some Complexity Results for DL-Lite

Complexity results will apply to all languages that satisfy

- minimal \mathcal{T}-supports for $q(\vec{a})$ contain at most $|q|$ assertions
- minimal \mathcal{T}-inconsistent subsets have bounded cardinality
 - in DL-Lite: bounded by 2
- CQ answering and satisfiability can be performed by FO rewriting (so in $\text{AC0} \subseteq \text{PTIME}$ in data complexity)
Complexity of AR in DL-Lite

CQ entailment under AR semantics is \textbf{coNP-complete} in data complexity

Upper bound: guess $\mathcal{R} \subseteq \mathcal{A}$ and verify that \mathcal{R} is a repair and $\langle \mathcal{T}, \mathcal{R} \rangle \not\models q(\bar{a})$

- $\langle \mathcal{T}, \mathcal{R} \rangle \not\models q(\bar{a})$ in AC0
- repair checking in \textbf{PTIME}?
Complexity of AR in DL-Lite

CQ entailment under AR semantics is \textit{coNP}-complete in data complexity

Upper bound: guess $\mathcal{R} \subseteq \mathcal{A}$ and verify that \mathcal{R} is a repair and $\langle \mathcal{T}, \mathcal{R} \rangle \not|= q(\bar{a})$

$\langle \mathcal{T}, \mathcal{R} \rangle \not|= q(\bar{a})$ in AC0

 repair checking in PTIME?

Lower bound: by reduction from propositional unsatisfiability

$\langle \mathcal{T}, \mathcal{A} \rangle$ and query $q(\bar{a})$ such that φ is unsatisfiable iff $\langle \mathcal{T}, \mathcal{A} \rangle |=_{AR} q(\bar{a})$

$\mathcal{T} = \{ \exists P^- \sqsubseteq \neg \exists N^-, \exists P \sqsubseteq \neg \exists U^-, \exists N \sqsubseteq \neg \exists U^-, \exists U \sqsubseteq \mathcal{A} \}$

$\mathcal{A} = \{ P(c_j, x_i) \mid x_i \in C_j \} \cup \{ N(c_j, x_i) \mid \neg x_i \in C_j \} \cup \{ U(a, c_j) \mid 1 \leq j \leq m \}$

$q = A(a)$
Complexity of IAR and Brave in DL-Lite

CQ entailment under IAR and brave semantics is in PTIME in data complexity

Any idea of PTIME algorithms?
Complexity of IAR and Brave in DL-Lite

CQ entailment under IAR and brave semantics is in PTime in data complexity

Any idea of PTime algorithms?

Actually, CQ entailment under IAR and brave semantics is in AC0 in data complexity

Can use FO-rewriting to compute IAR and brave answers
FO Rewriting for IAR Semantics

Idea: modify UCQ-rewriting to ensure ABox assertions matching CQs are not involved in any contradictions

\[T = \{ \text{AP} \sqsubseteq \text{Prof}, \text{F} \sqsubseteq \text{Prof}, \text{Prof} \sqsubseteq \text{PhD}, \text{Postdoc} \sqsubseteq \text{PhD}, \text{PhD} \sqsubseteq \text{Person}, \exists \text{Teach} \sqsubseteq \text{Person}, \exists \text{Teach}^- \sqsubseteq \text{Course}, \text{Prof} \sqsubseteq \exists \text{WorkFor}, \text{Student} \sqsubseteq \exists \text{MemberOf}, \text{WorkFor} \sqsubseteq \text{MemberOf}, \text{AP} \sqsubseteq \neg \text{F}, \text{Prof} \sqsubseteq \neg \text{Postdoc}, \text{Student} \sqsubseteq \neg \text{Prof}, \text{Person} \sqsubseteq \neg \text{Course}, \exists \text{MemberOf}^- \sqsubseteq \neg \text{Postdoc} \} \]

\[q_1(x) = \text{PhD}(x) \]

\[q_2(x) = \exists y \text{MemberOf}(x, y) \]

\[q_3(x) = \exists y \text{Prof}(x) \land \text{Teach}(x, y) \]
FO Rewriting for Brave Semantics

Idea: modify UCQ-rewriting to ensure each CQ can only match \mathcal{T}-consistent subsets of ABox

$\mathcal{T} = \{ \text{AProf} \sqsubseteq \text{Prof}, \text{FProf} \sqsubseteq \text{Prof}, \text{Prof} \sqsubseteq \text{PhD}, \text{Postdoc} \sqsubseteq \text{PhD}, \text{PhD} \sqsubseteq \text{Person}, \exists \text{Teach} \sqsubseteq \text{Person}, \exists \text{Teach}$\text{^{-}} \sqsubseteq \text{Course}, \\
\text{Prof} \sqsubseteq \exists \text{WorkFor}, \text{Student} \sqsubseteq \exists \text{MemberOf}, \text{WorkFor} \sqsubseteq \text{MemberOf}, \\
\text{AProf} \sqsubseteq \neg \text{FProf}, \text{Prof} \sqsubseteq \neg \text{Postdoc}, \text{Student} \sqsubseteq \neg \text{Prof}, \\
\text{Person} \sqsubseteq \neg \text{Course}, \exists \text{MemberOf} \text{^{-}} \sqsubseteq \neg \text{Postdoc} \}$

$q_1(x) = \exists y \text{PhD}(x) \land \text{MemberOf}(x, y)$

$q_2(x) = \exists y \text{Prof}(x) \land \text{Teach}(x, y)$
More FO Rewritings

k-support and k-defeater semantics are also FO-rewritable. Any idea for the general shape of the rewritings?
Complexity Picture for DL-Lite

<table>
<thead>
<tr>
<th></th>
<th>Data Complexity</th>
<th>Combined Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CQs</td>
<td>IQs</td>
</tr>
<tr>
<td>classical</td>
<td>in AC0</td>
<td>in AC0</td>
</tr>
<tr>
<td>AR</td>
<td>coNP-co</td>
<td>coNP-co</td>
</tr>
<tr>
<td>IAR</td>
<td>in AC0</td>
<td>in AC0</td>
</tr>
<tr>
<td>brave</td>
<td>in AC0</td>
<td>in AC0</td>
</tr>
<tr>
<td>k-support</td>
<td>in AC0</td>
<td>in AC0</td>
</tr>
<tr>
<td>k-defeater</td>
<td>in AC0</td>
<td>in AC0</td>
</tr>
<tr>
<td>ICR</td>
<td>coNP-co</td>
<td>coNP-co</td>
</tr>
<tr>
<td>CAR</td>
<td>coNP-co</td>
<td>in AC0</td>
</tr>
<tr>
<td>ICAR</td>
<td>in AC0</td>
<td>in AC0</td>
</tr>
</tbody>
</table>

Note on AC0 cases:

- FO-rewritings, but rewritings may be huge and not efficiently evaluated over databases
- alternative \(\text{PTime} \) algorithms based on supports and conflicts may be more efficient in practice
A Practical Approach for AR Semantics

- Precompute the conflicts: minimal subsets of the ABox inconsistent with the TBox (of size at most 2 in DL-Lite)
- Compute the minimal \mathcal{T}-supports of the query
- Exploit tractable approximations:
 - IAR \Rightarrow AR and not brave \Rightarrow not AR
 - decide IAR/not brave using the \mathcal{T}-supports and conflicts
- For remaining cases (brave and not IAR): reduce AR entailment to SAT and use a SAT solver
 - $\langle \mathcal{T}, \mathcal{A} \rangle \models q$ iff φ is unsatisfiable

$$\varphi = \bigwedge_{C \in \mathcal{T}\text{-supp}} \bigvee_{\alpha \in C, \{\alpha, \beta\} \in \text{conflicts}} x_\beta \land \bigwedge_{\{\alpha, \beta\} \in \text{conflicts}} \neg x_\alpha \lor \neg x_\beta$$
Examples of Research Problems

- Alternative semantics or repairs
 - taking into account qualitative/quantitative information on data quality: priority, probabilities...
 - case where the TBox may not be correct: general repairs that modify the TBox, soft constraints...
- Practical algorithms, implementations, experimental studies
 - languages with unbounded size of query supports and conflicts
 - impact of the data structure
- Explanations of query results
- Improving data quality, helping user to resolve inconsistencies
- Extending the framework: temporal data, fuzzy data...
Examples of Research Problems
Semantics based upon preferred repairs

Idea: some repairs are more likely than others

Defined preferred repairs based on

- cardinality
- priority levels
- weights
- ...

AR/IAR/brave/... semantics based upon most preferred repairs

Using preferred repairs generally (but not always) increases the computational complexity
Examples of Research Problems

Explanations

Idea: explain the user why a query is entailed (or not) under a given semantics

▶ AR semantics

▶ \(\langle T, A \rangle \models_{AR} q \): minimal set \(\{C_1, \ldots, C_k\} \) of minimal \(T \)-supports for \(q \) such that every repair contains at least one of the \(C_i \)

▶ \(\langle T, A \rangle \not\models_{AR} q \): minimal \(B \subseteq A \) such that \(B \) is \(T \)-consistent and for every \(T \)-support \(C \) of \(q \), \(B \cup C \) is not \(T \)-consistent

▶ IAR semantics

▶ \(\langle T, A \rangle \models_{IAR} q \): minimal \(T \)-support included in every repair

▶ \(\langle T, A \rangle \not\models_{IAR} q \): minimal \(B \subseteq A \) such that for every \(T \)-support \(C \) of \(q \), there exists \(B' \subseteq B \) such that \(B' \) is \(T \)-consistent and \(B' \cup C \) is not \(T \)-consistent

Basic explanations that should be completed (with some TBox axioms/reasoning steps/conflicting assertions...)