Description Logics and Reasoning on Data Inconsistency Handling

C. Bourgaux, M. Thomazo

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline

Introduction

Inconsistency-tolerant semantics

Complexity issues

A practical approach for AR semantics

Some research problems

References

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

Handling Inconsistent Data

In real world data often contains errors

- human errors
- automatic extraction
- outdated information

Likely to be **inconsistent** with the ontology (today: focus on the case where the ontology is assumed reliable)

Standard semantics: everything is entailed from an inconsistent knowledge base !

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Handling Inconsistent Data

In real world data often contains errors

- human errors
- automatic extraction
- outdated information

Likely to be **inconsistent** with the ontology (today: focus on the case where the ontology is assumed reliable)

Standard semantics: everything is entailed from an inconsistent knowledge base !

It is not always possible to resolve the inconsistencies (lack of information, time, permission...)

Alternative semantics: meaningful answers to queries despite inconsistencies

Example

$\mathcal{T} = \{ \mathsf{AProf} \sqsubseteq \mathsf{Prof}, \mathsf{FProf} \sqsubseteq \mathsf{Prof}, \mathsf{AProf} \sqsubseteq \neg \mathsf{FProf} \}$ $\mathcal{A} = \{ \mathsf{AProf}(ann), \mathsf{FProf}(ann), \mathsf{Postdoc}(alex) \}$

Which assertions would it be reasonable to infer ?

Inconsistency-Tolerant Semantics

Many inconsistency-tolerant semantics have been proposed

A semantics S associates a set of answers to every KB and query

- if the KB is satisfiable, should return certain answers
- for unsatisfiable KBs, give different answers than classical semantics

Write $\langle \mathcal{T}, \mathcal{A} \rangle \models_{S} q(\vec{a})$ if \vec{a} is an answer to q w.r.t. $\langle \mathcal{T}, \mathcal{A} \rangle$ under semantics S

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consistency Properties

A \mathcal{T} -support of $q(\vec{a})$ is a subset $C \subseteq \mathcal{A}$ such that

- $\langle \mathcal{T}, C \rangle$ is satisfiable
- $\blacktriangleright \langle \mathcal{T}, C \rangle \models q(\vec{a})$

Semantics *S* satisfies the consistent support property if whenever $\langle T, A \rangle \models_S q(\vec{a})$, there exists a *T*-support $C \subseteq A$ of $q(\vec{a})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

consistent explanation/justification for the query result

Consistency Properties

A \mathcal{T} -support of $q(\vec{a})$ is a subset $C \subseteq \mathcal{A}$ such that

- $\langle \mathcal{T}, C \rangle$ is satisfiable
- $\blacktriangleright \langle \mathcal{T}, C \rangle \models q(\vec{a})$

Semantics *S* satisfies the consistent support property if whenever $\langle \mathcal{T}, \mathcal{A} \rangle \models_S q(\vec{a})$, there exists a \mathcal{T} -support $C \subseteq \mathcal{A}$ of $q(\vec{a})$

consistent explanation/justification for the query result

Semantics *S* satisfies the consistent results property if for every KB $\langle \mathcal{T}, \mathcal{A} \rangle$, there exists a model \mathcal{I} of \mathcal{T} such that $\langle \mathcal{T}, \mathcal{A} \rangle \models_S q(\vec{a})$ implies $\mathcal{I} \models q(\vec{a})$

- set of query results is jointly consistent with the ontology
- safe to combine query results

Comparing Semantics

Given two semantics S and S'

- ► S' is an under-approximation (or sound approximation) of S if $\langle \mathcal{T}, \mathcal{A} \rangle \models_{S'} q(\vec{a})$ implies $\langle \mathcal{T}, \mathcal{A} \rangle \models_{S} q(\vec{a})$
- S' is an over-approximation (or complete approximation) of S if ⟨T, A⟩ ⊨_S q(ā) implies ⟨T, A⟩ ⊨_{S'} q(ā)

Repairs

Many semantics are based upon the notion of repair: inclusion-maximal subset of the data consistent with the ontology

Possible worlds, different ways of achieving consistency while retaining as much of the original data as possible

TBox \mathcal{T}	ABox \mathcal{A}	$Repair \qquad \mathcal{R}_1$	$Repair \qquad \mathcal{R}_2$
$AProf \sqsubseteq Prof$	AProf(ann)	AProf(ann)	
$FProf\sqsubseteqProf$	FProf(<i>ann</i>)	× ,	FProf(ann)
$AProf \sqsubseteq \neg FProf$	Postdoc(<i>alex</i>)	Postdoc(<i>alex</i>)	Postdoc(alex)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Plausible Answers: AR Semantics

AR (ABox Repair) answers: hold no matter which repair is chosen

 $\langle \mathcal{T}, \mathcal{A} \rangle \models_{\mathcal{A}\mathcal{R}} q(\vec{a}) \Leftrightarrow \langle \mathcal{T}, \mathcal{R} \rangle \models q(\vec{a})$ for every repair \mathcal{R}

Surest Answers: IAR Semantics

IAR (Intersection AR) answers: hold in the repairs intersection

 $\langle \mathcal{T}, \mathcal{A} \rangle \models_{\mathit{IAR}} q(\vec{a}) \Leftrightarrow \langle \mathcal{T}, \mathcal{R}^{\cap} \rangle \models q(\vec{a}) \text{ with } \mathcal{R}^{\cap} \text{ repairs intersection}$

Possible Answers: Brave Semantics

Brave answers: hold in some repair

 $\langle \mathcal{T}, \mathcal{A} \rangle \models_{\textit{brave}} q(\vec{a}) \Leftrightarrow \langle \mathcal{T}, \mathcal{R} \rangle \models q(\vec{a}) \text{ for some } \mathcal{R}$

Which consistency properties are satisfied by AR, IAR, brave ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- consistent support property ?
- consistent results property ?

How do the three semantics compare ?

under/over-approximation

AR, IAR and Brave Semantics

AR is the most well-known and accepted semantics

- cautious reasoning used in many area (belief revision...)
- consistent query answering in databases
- but AR is usually intractable (CONP-complete in data complexity for DL-Lite and *EL*)
- IAR and brave are under- and over-approximations of AR
 - IAR most cautious: disregard all facts involved in some contradiction
 - brave least cautious: all answers supported by some consistent set of facts

IAR and brave are tractable for DL-Lite

► *k*-support semantics

- fine-grained under-approximation of AR
- ► $\langle \mathcal{T}, \mathcal{A} \rangle \models_{k-supp} q(\vec{a})$ iff there exist $C_1, \ldots, C_k \mathcal{T}$ -supports of $q(\vec{a})$ such that every repair contains at least one of the C_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ 1-support = IAR

$$\blacktriangleright \langle \mathcal{T}, \mathcal{A} \rangle \models_{k-\text{supp}} q(\vec{a}) \Rightarrow \langle \mathcal{T}, \mathcal{A} \rangle \models_{k+1-\text{supp}} q(\vec{a})$$

$$\blacktriangleright \quad \langle \mathcal{T}, \mathcal{A} \rangle \models_{\mathcal{A}\mathcal{R}} q(\vec{a}) \Leftrightarrow \exists k \geq 1, \langle \mathcal{T}, \mathcal{A} \rangle \models_{k-\textit{supp}} q(\vec{a})$$

k-support semantics

- fine-grained under-approximation of AR
- ⟨𝒯,𝒜⟩ ⊨_{k-supp} q(ā) iff there exist C₁,..., C_k 𝒯-supports of q(ā) such that every repair contains at least one of the C_i
- 1-support = IAR

$$\langle \mathcal{T}, \mathcal{A} \rangle \models_{k-supp} q(\vec{a}) \Rightarrow \langle \mathcal{T}, \mathcal{A} \rangle \models_{k+1-supp} q(\vec{a})$$

- $\blacktriangleright \quad \langle \mathcal{T}, \mathcal{A} \rangle \models_{\mathcal{A}\mathcal{R}} q(\vec{a}) \Leftrightarrow \exists k \geq 1, \langle \mathcal{T}, \mathcal{A} \rangle \models_{k-\textit{supp}} q(\vec{a})$
- k-defeater semantics
 - fine-grained over-approximation of AR
 - ⟨T, A⟩ ⊨_{k-def} q(ā) iff there does not exist a T-consistent S ⊆ A such that |S| ≤ k and ⟨T, S ∪ C⟩ ⊨ ⊥ for every minimal T-support C of q(ā)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

0-defeater = brave

$$\blacktriangleright \langle \mathcal{T}, \mathcal{A} \rangle \models_{k+1-def} q(\vec{a}) \Rightarrow \langle \mathcal{T}, \mathcal{A} \rangle \models_{k-def} q(\vec{a})$$

► for every KB, there exists *k* such that $\langle \mathcal{T}, \mathcal{A} \rangle \models_{AR} q(\vec{a}) \Leftrightarrow \langle \mathcal{T}, \mathcal{A} \rangle \models_{k-def} q(\vec{a})$

- ► ICR (Intersection Closed Repairs) semantics
 - under-approximation of AR and over-approximation of IAR
 - ▶ intersects the closures of the repairs (closure of R = set of assertions entailed from (T, R))

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

same as AR for queries without quantifier

- ► ICR (Intersection Closed Repairs) semantics
 - under-approximation of AR and over-approximation of IAR
 - ▶ intersects the closures of the repairs (closure of R = set of assertions entailed from (T, R))
 - same as AR for queries without quantifier

CAR and ICAR semantics

- define semantics that are (almost) syntax-independent
- apply closure operator on original ABox
- need alternative notion of closure for inconsistent KB: set of assertions with a *T*-support in *A*
- closed ABox repairs: maximally complete standard ABox repairs with facts from the closure of A
- ▶ apply AR (CAR) or IAR (ICAR) using closed ABox repairs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

do not satisfy consistent support !

$$\mathcal{T} = \{A \sqsubseteq B, C \sqsubseteq D, A \sqsubseteq \neg C\}, \ \mathcal{A} = \{A(a), C(a)\}, \\ q = B(x) \land D(x)$$

$$\begin{split} \mathcal{T} &= \{ \mathsf{AProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{FProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{Prof} \sqsubseteq \mathsf{PhD}, \, \mathsf{Postdoc} \sqsubseteq \mathsf{PhD}, \\ \mathsf{PhD} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach}^- \sqsubseteq \mathsf{Course}, \\ \mathsf{Prof} \sqsubseteq \exists \mathsf{WorkFor}, \mathsf{Student} \sqsubseteq \exists \mathsf{MemberOf}, \mathsf{WorkFor} \sqsubseteq \mathsf{MemberOf}, \\ \mathsf{AProf} \sqsubseteq \neg \mathsf{FProf}, \, \mathsf{Prof} \sqsubseteq \neg \mathsf{Postdoc}, \, \mathsf{Student} \sqsubseteq \neg \mathsf{Prof}, \\ \mathsf{Person} \sqsubseteq \neg \mathsf{Course}, \, \exists \mathsf{MemberOf}^- \sqsubseteq \neg \mathsf{Postdoc} \} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\begin{split} \mathcal{T} &= \{ \mathsf{AProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{FProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{Prof} \sqsubseteq \mathsf{PhD}, \, \mathsf{Postdoc} \sqsubseteq \mathsf{PhD}, \\ \mathsf{PhD} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach}^- \sqsubseteq \mathsf{Course}, \\ \mathsf{Prof} \sqsubseteq \exists \mathsf{WorkFor}, \mathsf{Student} \sqsubseteq \exists \mathsf{MemberOf}, \mathsf{WorkFor} \sqsubseteq \mathsf{MemberOf}, \\ \mathsf{AProf} \sqsubseteq \neg \mathsf{FProf}, \, \mathsf{Prof} \sqsubseteq \neg \mathsf{Postdoc}, \, \mathsf{Student} \sqsubseteq \neg \mathsf{Prof}, \\ \mathsf{Person} \sqsubseteq \neg \mathsf{Course}, \, \exists \mathsf{MemberOf}^- \sqsubseteq \neg \mathsf{Postdoc} \} \end{split}$$

$$\mathcal{A}_{a} = \{ \mathsf{AProf}(ann), \mathsf{FProf}(ann), \mathsf{Prof}(ann), \\ \mathsf{Teach}(ann, c_{a}), \mathsf{Teach}(ann, ann) \}$$

$$\begin{split} \mathcal{T} &= \{ \mathsf{AProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{FProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{Prof} \sqsubseteq \mathsf{PhD}, \, \mathsf{Postdoc} \sqsubseteq \mathsf{PhD}, \\ \mathsf{PhD} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach}^- \sqsubseteq \mathsf{Course}, \\ \mathsf{Prof} \sqsubseteq \exists \mathsf{WorkFor}, \mathsf{Student} \sqsubseteq \exists \mathsf{MemberOf}, \mathsf{WorkFor} \sqsubseteq \mathsf{MemberOf}, \\ \mathsf{AProf} \sqsubseteq \neg \mathsf{FProf}, \, \mathsf{Prof} \sqsubseteq \neg \mathsf{Postdoc}, \, \mathsf{Student} \sqsubseteq \neg \mathsf{Prof}, \\ \mathsf{Person} \sqsubseteq \neg \mathsf{Course}, \, \exists \mathsf{MemberOf}^- \sqsubseteq \neg \mathsf{Postdoc} \} \end{split}$$

$$\mathcal{A}_{b} = \{ \mathsf{AProf}(bob), \mathsf{FProf}(bob), \mathsf{Postdoc}(bob), \\ \mathsf{MemberOf}(bob, dpt), \mathsf{Teach}(bob, c_{b}) \}$$

$$\begin{split} \mathcal{T} &= \{ \mathsf{AProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{FProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{Prof} \sqsubseteq \mathsf{PhD}, \, \mathsf{Postdoc} \sqsubseteq \mathsf{PhD}, \\ \mathsf{PhD} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach}^- \sqsubseteq \mathsf{Course}, \\ \mathsf{Prof} \sqsubseteq \exists \mathsf{WorkFor}, \mathsf{Student} \sqsubseteq \exists \mathsf{MemberOf}, \mathsf{WorkFor} \sqsubseteq \mathsf{MemberOf}, \\ \mathsf{AProf} \sqsubseteq \neg \mathsf{FProf}, \, \mathsf{Prof} \sqsubseteq \neg \mathsf{Postdoc}, \, \mathsf{Student} \sqsubseteq \neg \mathsf{Prof}, \\ \mathsf{Person} \sqsubseteq \neg \mathsf{Course}, \, \exists \mathsf{MemberOf}^- \sqsubseteq \neg \mathsf{Postdoc} \} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\mathcal{A}_{c} = \{ \mathsf{AProf}(\mathit{carl}), \mathsf{Teach}(\mathit{carl}, \mathit{c_{c1}}), \mathsf{Teach}(\mathit{carl}, \mathit{c_{c2}}), \\ \mathsf{Teach}(\mathit{c_{c1}}, \mathit{c_{c2}}), \mathsf{Teach}(\mathit{c_{c2}}, \mathit{c_{c1}}) \}$$

$$\begin{split} \mathcal{T} &= \{ \mathsf{AProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{FProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{Prof} \sqsubseteq \mathsf{PhD}, \, \mathsf{Postdoc} \sqsubseteq \mathsf{PhD}, \\ \mathsf{PhD} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach}^- \sqsubseteq \mathsf{Course}, \\ \mathsf{Prof} \sqsubseteq \exists \mathsf{WorkFor}, \mathsf{Student} \sqsubseteq \exists \mathsf{MemberOf}, \mathsf{WorkFor} \sqsubseteq \mathsf{MemberOf}, \\ \mathsf{AProf} \sqsubseteq \neg \mathsf{FProf}, \, \mathsf{Prof} \sqsubseteq \neg \mathsf{Postdoc}, \, \mathsf{Student} \sqsubseteq \neg \mathsf{Prof}, \\ \mathsf{Person} \sqsubseteq \neg \mathsf{Course}, \, \exists \mathsf{MemberOf}^- \sqsubseteq \neg \mathsf{Postdoc} \} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$\mathcal{A}_d = \{ \mathsf{AProf}(dan), \mathsf{Teach}(dan, c_{d1}), \mathsf{Teach}(dan, c_{d2}), \\ \mathsf{AProf}(c_{d1}), \mathsf{AProf}(c_{d2}) \}$$

Some Complexity Results for DL-Lite The DL-Lite family and OWL 2 QL

OWL 2 QL : OWL 2 profile for efficient query answering

► Target large datasets: CQ answering is in AC0 in data complexity (AC0 ⊆ LOGSPACE ⊆ PTIME)

via query rewriting

▶ Based on the DL-Lite_{*R*} language of the DL-Lite family

DL-Lite_{core} : concept inclusions of the form $B \sqsubseteq C$ where

 $C := B \mid \neg B, \quad B := A \mid \exists S, \quad S := R \mid R^-$

with A an atomic concept and R an atomic role

We focus on DL-Lite_{\mathcal{R}}:

$$DL-Lite_{\mathcal{R}} = DL-Lite_{core} +$$
role inclusions $S \sqsubset Q$ with $Q := S \mid \neg S$

A D N A 目 N A E N A E N A B N A C N

Some Complexity Results for DL-Lite

Complexity results will apply to all languages that satisfy

- minimal \mathcal{T} -supports for $q(\vec{a})$ contain at most |q| assertions
- minimal \mathcal{T} -inconsistent subsets have bounded cardinality

in DL-Lite: bounded by 2

► CQ answering and satisfiability can be performed by FO rewriting (so in AC0 ⊆ PTIME in data complexity)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Complexity of AR in DL-Lite

CQ entailment under AR semantics is $\operatorname{coNP-complete}$ in data complexity

Upper bound: guess $\mathcal{R} \subseteq \mathcal{A}$ and verify that \mathcal{R} is a repair and $\langle \mathcal{T}, \mathcal{R} \rangle \not\models q(\vec{a})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $\langle \mathcal{T}, \mathcal{R} \rangle \not\models q(\vec{a})$ in AC0
- ▶ repair checking in PTIME?

Complexity of AR in DL-Lite

CQ entailment under AR semantics is $\operatorname{coNP-complete}$ in data complexity

Upper bound: guess $\mathcal{R} \subseteq \mathcal{A}$ and verify that \mathcal{R} is a repair and $\langle \mathcal{T}, \mathcal{R} \rangle \not\models q(\vec{a})$

• $\langle \mathcal{T}, \mathcal{R} \rangle \not\models q(\vec{a})$ in AC0

repair checking in PTIME?

Lower bound: by reduction from propositional unsatisfiability

► UNSAT: Given φ = C₁ ∧ · · · ∧ C_m conjunction of clauses over propositional variables x₁, . . . , x_k, decide whether φ is unsatisfiable

Complexity of IAR and Brave in DL-Lite

CQ entailment under IAR and brave semantics is in $\ensuremath{\mathrm{PTIME}}$ in data complexity

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Any idea of PTIME algorithms ?

Complexity of IAR and Brave in DL-Lite

CQ entailment under IAR and brave semantics is in $\ensuremath{\mathrm{PTIME}}$ in data complexity

Any idea of **PTIME** algorithms ?

Actually, CQ entailment under IAR and brave semantics is in AC0 in data complexity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Can use FO-rewriting to compute IAR and brave answers

FO Rewriting for IAR Semantics

Idea: modify UCQ-rewriting to ensure ABox assertions matching CQs are not involved in any contradictions

$$\begin{split} \mathcal{T} &= \{ \mathsf{AProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{FProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{Prof} \sqsubseteq \mathsf{PhD}, \, \mathsf{Postdoc} \sqsubseteq \mathsf{PhD}, \\ \mathsf{PhD} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach}^- \sqsubseteq \mathsf{Course}, \\ \mathsf{Prof} \sqsubseteq \exists \mathsf{WorkFor}, \mathsf{Student} \sqsubseteq \exists \mathsf{MemberOf}, \mathsf{WorkFor} \sqsubseteq \mathsf{MemberOf}, \\ \mathsf{AProf} \sqsubseteq \neg \mathsf{FProf}, \, \mathsf{Prof} \sqsubseteq \neg \mathsf{Postdoc}, \, \mathsf{Student} \sqsubseteq \neg \mathsf{Prof}, \\ \mathsf{Person} \sqsubseteq \neg \mathsf{Course}, \, \exists \mathsf{MemberOf}^- \sqsubseteq \neg \mathsf{Postdoc} \} \end{split}$$

$$q_1(x) = \mathsf{PhD}(x)$$

 $q_2(x) = \exists y \mathsf{MemberOf}(x, y)$

 $q_3(x) = \exists y \operatorname{Prof}(x) \land \operatorname{Teach}(x, y)$

FO Rewriting for Brave Semantics

Idea: modify UCQ-rewriting to ensure each CQ can only match $\mathcal{T}\text{-consistent subsets of ABox}$

$$\begin{split} \mathcal{T} &= \{ \mathsf{AProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{FProf} \sqsubseteq \mathsf{Prof}, \, \mathsf{Prof} \sqsubseteq \mathsf{PhD}, \, \mathsf{Postdoc} \sqsubseteq \mathsf{PhD}, \\ \mathsf{PhD} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach} \sqsubseteq \mathsf{Person}, \, \exists \mathsf{Teach}^- \sqsubseteq \mathsf{Course}, \\ \mathsf{Prof} \sqsubseteq \exists \mathsf{WorkFor}, \mathsf{Student} \sqsubseteq \exists \mathsf{MemberOf}, \mathsf{WorkFor} \sqsubseteq \mathsf{MemberOf}, \\ \mathsf{AProf} \sqsubseteq \neg \mathsf{FProf}, \, \mathsf{Prof} \sqsubseteq \neg \mathsf{Postdoc}, \, \mathsf{Student} \sqsubseteq \neg \mathsf{Prof}, \\ \mathsf{Person} \sqsubseteq \neg \mathsf{Course}, \, \exists \mathsf{MemberOf}^- \sqsubseteq \neg \mathsf{Postdoc} \} \end{split}$$

$$q_1(x) = \exists y \mathsf{PhD}(x) \land \mathsf{MemberOf}(x,y)$$

$$q_2(x) = \exists y \operatorname{Prof}(x) \wedge \operatorname{Teach}(x, y)$$

k-support and k-defeater semantics are also FO-rewritable. Any idea for the general shape of the rewritings ?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Complexity Picture for DL-Lite

	Data Complexity		Combined Complexity	
	CQs	IQs	CQs	IQs
classical	in AC0	in AC0	NP-co	in PTIME
AR	coNP -co	coNP -co	П ₂ ^P -со	coNP-co
IAR	in AC0	in AC0	NP-co	in PTIME
brave	in AC0	in AC0	NP-co	in PTIME
k-support	in AC0	in AC0	NP-co	in PTIME
k-defeater	in AC0	in AC0	NP-co	in PTIME
ICR	coNP-co	coNP -co	$\Delta_2^P[Olog(n)]$ -co	coNP-co
CAR	coNP-co	in AC0	Π_2^P -co	in PTIME
ICAR	in AC0	in AC0	NP-co	in PTIME

Note on AC0 cases:

- FO-rewritings, but rewritings may be huge and not efficiently evaluated over databases
- alternative PTIME algorithms based on supports and conflicts may be more efficient in practice

A Practical Approach for AR Semantics

- Precompute the conflicts : minimal subsets of the ABox inconsistent with the TBox (of size at most 2 in DL-Lite)
- Compute the minimal *T*-supports of the query
- Exploit tractable approximations:
 - IAR \Rightarrow AR and not brave \Rightarrow not AR
 - decide IAR/not brave using the \mathcal{T} -supports and conflicts
- For remaining cases (brave and not IAR): reduce AR entailment to SAT and use a SAT solver

•
$$\langle \mathcal{T}, \mathcal{A}
angle \models q$$
 iff $arphi$ is unsatisfiable

$$\varphi = \left(\bigwedge_{\substack{C \in \mathcal{T}\text{-supp} \\ \{\alpha,\beta\} \in conflicts}} \bigvee_{\substack{\alpha \in C, \\ \{\alpha,\beta\} \in conflicts}} x_{\beta}\right) \land \left(\bigwedge_{\substack{\{\alpha,\beta\} \in conflicts}} \neg x_{\alpha} \lor \neg x_{\beta}\right)$$

Examples of Research Problems

Alternative semantics or repairs

- taking into account qualitative/quantitative information on data quality: priority, probabilities...
- case where the TBox may not be correct: general repairs that modify the TBox, soft constraints...

Practical algorithms, implementations, experimental studies

languages with unbounded size of query supports and conflicts

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- impact of the data structure
- Explanations of query results
- Improving data quality, helping user to resolve inconsistencies
- Extending the framework: temporal data, fuzzy data...

Examples of Research Problems

Semantics based upon preferred repairs

Idea: some repairs are more likely than others

Defined preferred repairs based on

- cardinality
- priority levels
- weights

...

AR/IAR/brave/... semantics based upon most preferred repairs

Using preferred repairs generally (but not always) increases the computational complexity

- ロ ト - 4 回 ト - 4 □

Examples of Research Problems

Explanations

Idea: explain the user why a query is entailed (or not) under a given semantics

- AR semantics
 - ⟨T, A⟩ ⊨_{AR} q: minimal set {C₁,..., C_k} of minimal
 T-supports for q such that every repair contains at least one of the C_i
 - ▶ $\langle \mathcal{T}, \mathcal{A} \rangle \not\models_{AR} q$: minimal $\mathcal{B} \subseteq \mathcal{A}$ such that \mathcal{B} is \mathcal{T} -consistent and for every \mathcal{T} -support C of q, $\mathcal{B} \cup C$ is not \mathcal{T} -consistent

IAR semantics

- $\langle \mathcal{T}, \mathcal{A} \rangle \models_{IAR} q$: minimal \mathcal{T} -support included in every repair
- $\langle \mathcal{T}, \mathcal{A} \rangle \not\models_{IAR} q$: minimal $\mathcal{B} \subseteq \mathcal{A}$ such that for every \mathcal{T} -support C of q, there exists $\mathcal{B}' \subseteq \mathcal{B}$ such that \mathcal{B}' is \mathcal{T} -consistent and $\mathcal{B}' \cup C$ is not \mathcal{T} -consistent

Basic explanations that should be completed (with some TBox axioms/reasoning steps/conflicting assertions...)

References

 Bienvenu, Bourgaux (RW 2016): Inconsistency-Tolerant Querying of Description Logic Knowledge Bases (https://hal.inria.fr/hal-01633000/file/BieBou-RW16.pdf).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・