Correction of Exercise Sheet Description Logics

Correction of Exercise 1: Modelisation

1.	PhD students are students and researchers. PhDStudent \square Researcher : in \mathcal{ALC}
2.	Professors are not PhD students. $Professor \sqsubseteq \neg PhDStudent : \ \mathrm{in} \ \mathcal{ALC}$
3.	PhD students are employed by some university. PhDStudent $\sqsubseteq \exists employedBy.University: in \mathcal{ALC}$
4.	Those who are employed by some university are researchers, professors, administrative staff workers or technical staff workers. $\exists employed By. University \sqsubseteq Researcher \sqcup Professor \sqcup AdminStaff \sqcup TechnicalStaff : \mathrm{in} \ \mathcal{ALC}$
5.	Teachers are exactly the persons that teach some course. Teacher \equiv Person \sqcap \exists teach.Course : in \mathcal{ALC}
6.	Professors teach at least two courses. Professor $\sqsubseteq \geq 2$ teach.Course : not in \mathcal{ALC} (number restriction)
7.	PhD students are supervised by a researcher. PhDStudent $\sqsubseteq \exists supervise^-$. Researcher: not in \mathcal{ALC} (inverse role)
8.	PhD students teach only tutorials or hands-on-sessions. PhDStudent $\sqsubseteq \forall teach.(Tutorial \sqcup HandsOnSession) : in \mathcal{ALC}$
9.	Administrative staff workers do not supervise PhD students. AdminStaff $\sqsubseteq \forall supervise. (\neg PhDStudent) : in \mathcal{ALC}$
10.	Researchers are members of a department which is part of a university. Researcher $\sqsubseteq \exists memberOf.(Department \sqcap \exists partOf.University) : \mathrm{in} \ \mathcal{ALC}$
11.	Students that are not PhD students are not employed by a university. Student $\sqcap \neg PhDStudent \sqsubseteq \neg (\exists employedBy.University) : \mathrm{in} \ \mathcal{ALC}$
12.	Things that are taught are courses. $\top \sqsubseteq \forall teach.Course : \mathrm{in} \ \mathcal{ALC} \ (\mathrm{equivalent} \ \mathrm{to} \ \exists teach^\top \sqsubseteq Course \ \mathrm{which} \ \mathrm{is} \ \mathrm{not} \ \mathrm{in} \ \mathcal{ALC})$
13.	Courses are attended by at most 50 students. Course $\sqsubseteq \leq 50$ attend ⁻ .Student: not in \mathcal{ALC} (number restriction, inverse role)
14.	Courses taught by Ana are not hands-on-sessions. Course $\sqcap \exists teach^ \{\mathit{ana}\} \sqsubseteq \neg HandsOnSession : not in \mathcal{ALC} (nomimals, inverse role)$
15.	Ana is a researcher. Researcher (ana)
16.	John is a PhD student who teaches logic and is supervised by Ana.

PhDStudent(john), teach(john, logic), supervise(ana, john)

Can you express that PhD students are employed by the same university that the one the department they are member of is part of?

No. Best try: PhDStudent $\sqsubseteq \exists$ employedBy.(University \sqcap (\exists partOf $^-$.(Department \sqcap \exists memberOf $^-$.PhDStudent))) but no way to say that the PhD student is the same.

Correction of Exercise 2: Interpretations

- 1. $(A \sqcap \exists S.C)^{\mathcal{I}} = \{b\}$
- 3. $(\forall R.C)^{\mathcal{I}} = \{b, c, d\}$
- 5. $(A \sqcap \neg \exists R. \top)^{\mathcal{I}} = \{b\}$
- 2. $(B \sqcup (C \sqcap \exists S^{-}.\top))^{\mathcal{I}} = \{b, c\}$ 4. $(\forall S.C)^{\mathcal{I}} = \{b, c, d\}$
- 6. $(\exists R. \exists S. \top)^{\mathcal{I}} = \{a\}$

- 1. No: $\mathcal{I} \not\models A \sqsubseteq B \sqcup C$ because $\{a,b\} \not\subseteq \{b,c,d\}$
- 2. Yes: $\mathcal{I} \models A \sqsubseteq \exists S. \top$ because $\{a, b\} \subseteq \{a, b\}$
- 3. Yes: $\mathcal{I} \models \exists S^-.B \sqsubseteq C$ because $\{c\} \subseteq \{c,d\}$
- 4. Yes: $\mathcal{I} \models A \sqsubseteq \neg C$ because $\{a, b\} \subseteq \{a, b\}$

Correction of Exercise 3: Basic reasoning

- 1. No. Consider the following interpretation \mathcal{I} on domain $\Delta^{\mathcal{I}} = \{a\}$: $A^{\mathcal{I}} = \{a\}$, $B^{\mathcal{I}} = \emptyset$, $C^{\mathcal{I}} = \emptyset$, $R^{\mathcal{I}} = \emptyset$. \mathcal{I} is a model of \mathcal{T} and $A^{\mathcal{I}} \not\subseteq C^{\mathcal{I}}$ so $\mathcal{T} \not\models A \sqsubseteq C$.
- 2. Yes. Let \mathcal{I} be a model of \mathcal{T} and e be an element of $\Delta^{\mathcal{I}}$ such that $e \in (A \sqcap \exists R.\top)^{\mathcal{I}} = A^{\mathcal{I}} \cap (\exists R.\top)^{\mathcal{I}}$. Since $e \in (\exists R. \top)^{\mathcal{I}}$, there exists $d \in \Delta^{\mathcal{I}}$ such that $(e, d) \in R^{\mathcal{I}}$. Since \mathcal{I} is a model of \mathcal{T} , $\mathcal{I} \models A \sqsubseteq \forall R. B$, so $e \in A^{\mathcal{I}}$ and $(e,d) \in R^{\mathcal{I}}$ implies that $d \in B^{\mathcal{I}}$. Hence $e \in (\exists R.B)^{\mathcal{I}}$. Since $\mathcal{I} \models \exists R.B \sqsubseteq C$, it follows that $e \in C^{\mathcal{I}}$. Finally, since $\mathcal{I} \models B \sqsubseteq \neg C$, $B^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ so $e \notin B^{\mathcal{I}}$. We have shown that for every model \mathcal{I} of \mathcal{T} , $(A \sqcap \exists R.\top)^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \setminus B^{\mathcal{I}}$, i.e. $\mathcal{I} \models A \sqcap \exists R.\top \sqsubseteq \neg B$. This is exactly the definition of $\mathcal{T} \models A \sqcap \exists R. \top \sqsubseteq \neg B.$
- 3. No. Assume for a contradiction that there exists a model \mathcal{I} of \mathcal{T} such that $(B \sqcap \exists R.B)^{\mathcal{I}}$ is non-empty and let $e \in (B \sqcap \exists R.B)^{\mathcal{I}}$. Since $\mathcal{I} \models \exists R.B \sqsubseteq C$ and $e \in (\exists R.B)^{\mathcal{I}}$, then $e \in C^{\mathcal{I}}$. It follows that e belongs to $B^{\mathcal{I}}$ and to $C^{\mathcal{I}}$, so $B^{\mathcal{I}} \not\subseteq \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$, which contradicts $\mathcal{T} \models B \sqsubseteq \neg C$.
- 4. Yes. Consider the model \mathcal{I} of \mathcal{T} given in the correction of question 1. $(A \sqcap \forall R.C)^{\mathcal{I}} = \{a\}$ is non-empty.
- 5. Yes. We just need to extend the interpretation given in the correction of question 1 by setting $a^{\mathcal{I}} = a$ to obtain a model of $\langle \mathcal{T}, \mathcal{A}_1 \rangle$.
- 6. Yes. Consider the following interpretation \mathcal{I} on domain $\Delta^{\mathcal{I}} = \{a, b\}$: $a^{\mathcal{I}} = a, b^{\mathcal{I}} = b, A^{\mathcal{I}} = \{a\}$, $B^{\mathcal{I}} = \{b\}, C^{\mathcal{I}} = \{a\}, R^{\mathcal{I}} = \{(a,b)\}. \mathcal{I} \text{ is a model of } \langle \mathcal{T}, \mathcal{A}_2 \rangle.$
- 7. No. Assume for a contradiction that $\langle \mathcal{T}, \mathcal{A}_3 \rangle$ has a model \mathcal{I} . We must have $a^{\mathcal{I}} \in A^{\mathcal{I}}$ and $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$ so since $\mathcal{I} \models A \sqsubseteq \forall R.B$, it follows that $b \in B^{\mathcal{I}}$. However, we also must have $b \in C^{\mathcal{I}}$, which contradicts $\mathcal{I} \models B \sqsubseteq \neg C$.
- 8. No. The model of $\langle \mathcal{T}, \mathcal{A}_1 \rangle$ given in question 5 does not satisfy C(a).
- 9. Yes. Let \mathcal{I} be a model of $\langle \mathcal{T}, \mathcal{A}_2 \rangle$. Since $\mathcal{I} \models A(a)$ and $\mathcal{I} \models R(a, b)$, then $a^{\mathcal{I}} \in A^{\mathcal{I}}$ and $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$. Since $\mathcal{I} \models A \sqsubseteq \forall R.B$, it follows that $b \in B^{\mathcal{I}}$. Hence $a^{\mathcal{I}} \in (\exists R.B)^{\mathcal{I}}$, so since $\mathcal{I} \models \exists R.B \sqsubseteq C$, $a^{\mathcal{I}} \in C^{\mathcal{I}}$. We have shown that for every model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A}_2 \rangle$, $a^{\mathcal{I}} \in C^{\mathcal{I}}$. This is exactly the definition of $\langle \mathcal{T}, \mathcal{A}_2 \rangle \models C(a).$
- 10. Yes. Since $\langle \mathcal{T}, \mathcal{A}_3 \rangle$ has no model, it is true that $a^{\mathcal{I}} \in C^{\mathcal{I}}$ in every model of $\langle \mathcal{T}, \mathcal{A}_3 \rangle$. An unsatisfiable knowledge base entails every logical axiom.

Correction of Exercise 4: DL fragments

Minimal fragments of \mathcal{ALC} : $\{\sqcap, \neg, \exists\}, \{\sqcap, \neg, \forall\}, \{\sqcup, \neg, \exists\}, \{\sqcup, \neg, \forall\}.$

Proof for the $\{\sqcap, \neg, \exists\}$ fragment:

Let C be an \mathcal{ALC} concept. We first show by induction on the structure of C that there exists C' in the $\{\sqcap,\neg,\exists\}$ fragment that is equivalent to C.

Base case: If C is an atomic concept, then C is in the $\{\sqcap, \neg, \exists\}$ fragment.

- If $C = C_1 \sqcap C_2$, and C_1 , C_2 are \mathcal{ALC} concepts equivalent to C_1' and C_2' in the $\{\sqcap, \neg, \exists\}$ fragment, then C is equivalent to $C' = C_1' \sqcap C_2'$ which belongs to the fragment.
- If $C = C_1 \sqcup C_2$, and C_1 , C_2 are \mathcal{ALC} concepts equivalent to C_1' and C_2' in the $\{\sqcap, \neg, \exists\}$ fragment, then C is equivalent to $C' = \neg(\neg C_1' \sqcap \neg C_2')$ which belongs to the fragment.
- If $C = \neg C_1$ and C_1 is an \mathcal{ALC} concept equivalent to C'_1 in the $\{\Box, \neg, \exists\}$ fragment, then C is equivalent to $C' = \neg C'_1$ which belongs to the fragment.
- If $C = \exists R.C_1$ and C_1 is an \mathcal{ALC} concept equivalent to C'_1 in the $\{\sqcap, \neg, \exists\}$ fragment, then C is equivalent to $C' = \exists R.C'_1$ which belongs to the fragment.
- If $C = \forall R.C_1$ and C_1 is an \mathcal{ALC} concept equivalent to C'_1 in the $\{\sqcap, \neg, \exists\}$ fragment, then C is equivalent to $C' = \neg(\exists R.\neg C'_1)$ which belongs to the fragment.

We now show that every sub-fragment of the $\{\sqcap, \neg, \exists\}$ fragment does not capture \mathcal{ALC} . Let A and B be atomic concepts.

- $A \sqcap B$ cannot be expressed on $\{\neg, \exists\}$
- $\neg A$ cannot be expressed on $\{ \sqcap, \exists \}$
- $\exists R.A$ cannot be expressed on $\{\sqcap, \neg\}$

Correction of Exercise 5: Translation to FOL

- 1. $\forall x \ (\exists y \ (R(x,y) \land \exists z \ S(y,z)) \Rightarrow B(x) \lor C(x))$
- 2. $\forall x \ (A(x) \land \neg B(x) \Rightarrow \forall y \ (R(x,y) \Rightarrow C(y)))$
- 3. $\forall x \ (\exists y \ (R(y,x) \land A(y)) \Rightarrow \neg C(x))$
- 4. $\forall x \ (A(x) \lor \exists y \ (R(x,y) \land B(y)) \Rightarrow \exists z \ S(x,z))$

Correction of Exercise 6: Negation normal form

$$\begin{aligned} &\operatorname{nnf}(\neg(\neg A \sqcup \forall R.(\neg(B\sqcap\neg C)))) = &\operatorname{nnf}(\neg(\neg A)\sqcap\operatorname{nnf}(\neg(\forall R.(\neg(B\sqcap\neg C))))) \\ &= &\operatorname{nnf}(A)\sqcap\exists R.\operatorname{nnf}(\neg(\neg(B\sqcap\neg C)))) \\ &= &A\sqcap\exists R.\operatorname{nnf}(B\sqcap\neg C) \\ &= &A\sqcap\exists R.(\operatorname{nnf}(B)\sqcap\operatorname{nnf}(\neg C)) \\ &= &A\sqcap\exists R.(B\sqcap\neg C) \\ \\ &2. &\operatorname{nnf}(\neg(\exists R.(\neg\exists S.A))\sqcap\neg(\forall R.B)) = &\operatorname{nnf}(\neg(\exists R.(\neg\exists S.A)))\sqcap\operatorname{nnf}(\neg(\forall R.B)) \\ &= &\forall R.\operatorname{nnf}(\neg(\neg\exists S.A))\sqcap\exists R.\operatorname{nnf}(\neg B) \\ &= &\forall R.\exists S.\operatorname{nnf}(A)\sqcap\exists R.(\neg B) \\ &= &\forall R.\exists S.A\sqcap\exists R.(\neg B) \end{aligned}$$

Correction of Exercise 7: Tableau algorithm for concept satisfiability

1. $\exists R. \exists S. A \sqcap \forall R. \forall S. \neg A$ is not satisfiable. Indeed, every ABox generated by the tableau algorithm contains a clash:

$$(\exists R. \exists S. A \sqcap \forall R. \forall S. \neg A)(a_0) \\ (\exists R. \exists S. A)(a_0) \\ (\forall R. \forall S. \neg A)(a_0) \\ \\ R(a_0, a_1) \\ (\exists S. A)(a_1) \\ \\ (\forall S. \neg A)(a_1) \\ \\ \\ S(a_1, a_2) \\ \\ \\ A(a_2) \\ \\ \\ \neg A(a_2) \\ \\ \mathbf{x}$$

2. $\exists R.B \sqcap \forall R. \forall R.A \sqcap \forall R. \neg A$ is satisfiable. The interpretation \mathcal{I} defined by $B^{\mathcal{I}} = \{a_1\}, A^{\mathcal{I}} = \emptyset$ and $R^{\mathcal{I}} = \{(a_0, a_1)\}$ is such that $(\exists R.B \sqcap \forall R. \forall R.A \sqcap \forall R. \neg A)^{\mathcal{I}}$ is non-empty.

$$(\exists R.B \sqcap \forall R. \forall R.A \sqcap \forall R. \neg A)(a_0)$$

$$(\exists R.B)(a_0)$$

$$(\forall R. \forall R.A \sqcap \forall R. \neg A)(a_0)$$

$$(\forall R. \forall R.A)(a_0)$$

$$(\forall R. \neg A)(a_0)$$

$$= (\forall R. \neg A)(a_0)$$

$$= R(a_0, a_1)$$

$$= B(a_1)$$

$$= \forall R.A(a_1)$$

$$= \neg A(a_1)$$

Correction of Exercise 8: Tableau algorithm for KB satisfiability

To decide whether $\mathcal{T} \models A \sqsubseteq C$ with the tableau algorithm, we need to check whether $\{A \sqcap \neg C\}$ is satisfiable w.r.t. \mathcal{T} , i.e., whether $\langle \mathcal{T}, \{(A \sqcap \neg C)(a)\} \rangle$ is satisfiable.

 $\langle \mathcal{T}, \{(A \sqcap \neg C)(a)\} \rangle$ is satisfiable so $\mathcal{T} \not\models A \sqsubseteq C$. A model of \mathcal{T} that shows it is:

$$\Delta^{\mathcal{I}} = \{a, a_1\}$$

$$A^{\mathcal{I}} = \{a, a_1\}$$

$$B^{\mathcal{I}} = \{a_1\}$$

$$C^{\mathcal{I}} = \emptyset$$

$$R^{\mathcal{I}} = \{(a, a_1), (a_1, a_1)\}$$

Correction of Exercise 9: Tableau algorithm for KB satisfiability - Optimization

$$\mathcal{T} = \{ A \sqsubseteq \forall R.B, \ B \sqsubseteq \neg F, \ E \sqsubseteq G, \ A \sqsubseteq D \sqcup E, \ D \sqsubseteq \exists R.F, \ \exists R.\neg B \sqsubseteq G \}.$$

All axioms in \mathcal{T} are inclusions with atomic left- or right-hand side.

- For inclusions $A \sqsubseteq D$ with atomic left-hand side, replace the TBox-rule by TBox-atomic-left-rule: if $A(a) \in \mathcal{A}$, a is not blocked, $A \sqsubseteq D \in \mathcal{T}$ (A atomic), and $D(a) \notin \mathcal{A}$, replace \mathcal{A} with $\mathcal{A} \cup \{D(a)\}$.
- For inclusions $D \sqsubseteq A$ with atomic right-hand side, replace the TBox-rule by TBox-atomic-right-rule: if $\neg A(a) \in \mathcal{A}$, a is not blocked, $D \sqsubseteq A \in \mathcal{T}$ (A atomic), and $\neg D(a) \notin \mathcal{A}$, replace \mathcal{A} with $\mathcal{A} \cup \{\neg D(a)\}$.

Correction of Exercise 10: Negation normal form algorithm

Let C be an \mathcal{ALC} concept. We show by structural induction that

- 1. $\mathsf{nnf}(C)$ is in NNF;
- 2. for every interpretation \mathcal{I} , $C^{\mathcal{I}} = \mathsf{nnf}(C)^{\mathcal{I}}$;
- 3. $\mathsf{nnf}(\neg C)$ is in NNF;
- 4. for every interpretation \mathcal{I} , $\mathsf{nnf}(\neg C)^{\mathcal{I}} = (\neg C)^{\mathcal{I}}$.

In the base case, C is an atomic concept A or is of the form $\neg A$ for an atomic concept A. In this case, $\mathsf{nnf}(C) = C$ is in NNF, and for every interpretation \mathcal{I} , $C^{\mathcal{I}} = \mathsf{nnf}(C)^{\mathcal{I}}$ holds trivially. Moreover, if C = A, $\mathsf{nnf}(\neg C) = \neg A$ and if $C = \neg A$, $\mathsf{nnf}(\neg C) = \mathsf{nnf}(\neg(\neg A)) = \mathsf{nnf}(A) = A$ so in both cases, $\mathsf{nnf}(\neg C)$ is in NNF and for every interpretation \mathcal{I} , $\mathsf{nnf}(\neg C)^{\mathcal{I}} = (\neg C)^{\mathcal{I}}$.

- If C is of the form $C_1 \sqcap C_2$ with C_1 and C_2 two \mathcal{ALC} concepts such that $\mathsf{nnf}(C_1)$, $\mathsf{nnf}(C_2)$, $\mathsf{nnf}(\neg C_1)$, and $\mathsf{nnf}(\neg C_2)$ are in NNF and for every interpretation \mathcal{I} , $C_i^{\mathcal{I}} = \mathsf{nnf}(C_i)^{\mathcal{I}}$ and $\mathsf{nnf}(\neg C_i)^{\mathcal{I}} = (\neg C_i)^{\mathcal{I}}$ $(1 \leq i \leq 2)$, then
 - 1. $\mathsf{nnf}(C) = \mathsf{nnf}(C_1 \sqcap C_2) = \mathsf{nnf}(C_1) \sqcap \mathsf{nnf}(C_2)$ is in NNF (since negation appears only in front of atomic concepts in $\mathsf{nnf}(C_1)$ and $\mathsf{nnf}(C_2)$);
 - 2. for every interpretation \mathcal{I} , $\mathsf{nnf}(C)^{\mathcal{I}} = (\mathsf{nnf}(C_1) \sqcap \mathsf{nnf}(C_2))^{\mathcal{I}} = \mathsf{nnf}(C_1)^{\mathcal{I}} \cap \mathsf{nnf}(C_2)^{\mathcal{I}} = C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}} = (C_1 \sqcap C_2)^{\mathcal{I}} = C^{\mathcal{I}}$;
 - 3. $\mathsf{nnf}(\neg C) = \mathsf{nnf}(\neg (C_1 \sqcap C_2)) = \mathsf{nnf}(\neg C_1) \sqcup \mathsf{nnf}(\neg C_2)$ is in NNF (since negation appears only in front of atomic concepts in $\mathsf{nnf}(\neg C_1)$ and $\mathsf{nnf}(\neg C_2)$);
 - $\begin{array}{ll} 4. \ \ \text{for every interpretation} \ \mathcal{I}, \ \mathsf{nnf}(\neg C)^{\mathcal{I}} = (\mathsf{nnf}(\neg C_1) \sqcup \mathsf{nnf}(\neg C_2))^{\mathcal{I}} = \mathsf{nnf}(\neg C_1)^{\mathcal{I}} \cup \mathsf{nnf}(\neg C_2)^{\mathcal{I}} = \\ (\neg C_1^{\mathcal{I}}) \cup (\neg C_2^{\mathcal{I}}) = (\Delta^{\mathcal{I}} \setminus C_1^{\mathcal{I}}) \cup (\Delta^{\mathcal{I}} \setminus C_2^{\mathcal{I}}) = \Delta^{\mathcal{I}} \setminus (C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}) = (\neg (C_1 \cap C_2))^{\mathcal{I}} = (\neg C)^{\mathcal{I}}. \end{array}$
- The case where C is of the form $C_1 \sqcup C_2$ is similar.
- If C is of the form $\exists R.C'$ with C' an \mathcal{ALC} concept such that $\mathsf{nnf}(C')$ and $\mathsf{nnf}(\neg C')$ are in NNF and for every interpretation \mathcal{I} , $C'^{\mathcal{I}} = \mathsf{nnf}(C')^{\mathcal{I}}$ and $\mathsf{nnf}(\neg C')^{\mathcal{I}} = (\neg C')^{\mathcal{I}}$, then
 - 1. $\mathsf{nnf}(C) = \mathsf{nnf}(\exists R.C') = \exists R.\mathsf{nnf}(C')$ is in NNF (since negation appears only in front of atomic concepts in $\mathsf{nnf}(C')$);
 - 2. for every interpretation \mathcal{I} , $\mathsf{nnf}(C)^{\mathcal{I}} = (\exists R.\mathsf{nnf}(C'))^{\mathcal{I}} = \{u \mid (u,v) \in R^{\mathcal{I}}, v \in \mathsf{nnf}(C')^{\mathcal{I}}\} = \{u \mid (u,v) \in R^{\mathcal{I}}, v \in \mathsf{C}'^{\mathcal{I}}\} = (\exists R.C')^{\mathcal{I}} = C^{\mathcal{I}};$
 - 3. $\mathsf{nnf}(\neg C) = \mathsf{nnf}(\neg(\exists R.C')) = \forall R.(\mathsf{nnf}(\neg C'))$ is in NNF (since negation appears only in front of atomic concepts in $\mathsf{nnf}(\neg C')$);
 - 4. for every interpretation \mathcal{I} , $\mathsf{nnf}(\neg C)^{\mathcal{I}} = (\forall R.(\mathsf{nnf}(\neg C')))^{\mathcal{I}} = \{u \mid (u,v) \in R^{\mathcal{I}} \implies v \in \mathsf{nnf}(\neg C')^{\mathcal{I}}\} = \{u \mid (u,v) \in R^{\mathcal{I}} \implies v \in (\neg C')^{\mathcal{I}}\} = (\neg (\exists R.C'))^{\mathcal{I}} = (\neg C)^{\mathcal{I}}.$
- The case where C is of the form $\forall R.C'$ is similar.
- If C is of the form $\neg C'$ with C' an \mathcal{ALC} concept, such that $\mathsf{nnf}(C')$ is in NNF and for every interpretation \mathcal{I} , $C'^{\mathcal{I}} = \mathsf{nnf}(C')^{\mathcal{I}}$ and $\mathsf{nnf}(\neg C')^{\mathcal{I}} = (\neg C')^{\mathcal{I}}$, then
 - 1. $\mathsf{nnf}(C) = \mathsf{nnf}(\neg C')$ is in NNF by assumption;
 - 2. for every interpretation \mathcal{I} , $\mathsf{nnf}(C)^{\mathcal{I}} = \mathsf{nnf}(\neg C')^{\mathcal{I}} = (\neg C')^{\mathcal{I}} = C^{\mathcal{I}}$;
 - 3. $\mathsf{nnf}(\neg C) = \mathsf{nnf}(\neg(\neg C')) = \mathsf{nnf}(C')$ is in NNF by assumption;
 - 4. for every interpretation \mathcal{I} , $\mathsf{nnf}(\neg C)^{\mathcal{I}} = \mathsf{nnf}(C')^{\mathcal{I}} = C'^{\mathcal{I}} = (\neg C)^{\mathcal{I}}$.

Hence, for every \mathcal{ALC} concept C, $\mathsf{nnf}(C)$ is in NNF and for every interpretation \mathcal{I} , $C^{\mathcal{I}} = \mathsf{nnf}(C)^{\mathcal{I}}$.

Correction of Exercise 11: Adapting tableau algorithm for another DL

Take as input $\langle \mathcal{T}, \mathcal{A} \rangle$ where \mathcal{T} is a TBox that contains only role inclusions of the form $R \sqsubseteq S$ or $R \sqsubseteq \neg S$.

- Start with $A_c = A$.
- At each stage, apply to A_c one of the following rules that extends A_c with new assertions:
 - If $R(a,b) \in \mathcal{A}_c$, $R \sqsubseteq S \in \mathcal{T}$, and $S(a,b) \notin \mathcal{A}_c$, adds S(a,b) to \mathcal{A}_c .
 - If $R(a,b) \in \mathcal{A}_c$, $R \sqsubseteq \neg S \in \mathcal{T}$, and $\neg S(a,b) \notin \mathcal{A}_c$, adds $\neg S(a,b)$ to \mathcal{A}_c .
- Stop applying rules when either:
 - 1. A_c contains a clash, that is, a pair $\{R(a,b), \neg R(a,b)\}.$
 - 2. \mathcal{A}_c is clash-free and complete, meaning that no rule can be applied to \mathcal{A}_c .
- Return "yes" if A_c is clash-free, "no" otherwise.

The algorithm adds exactly one assertion of the form S(a,b) or $\neg S(a,b)$ at each step and the number of such assertions is bounded by $2 \times r \times i^2$ where r is the number of role names in \mathcal{T} and i is the number of individual names in \mathcal{A} . Hence, \mathcal{A}_c will contain a clash or be complete before $2 \times r \times i^2$ steps and the algorithm terminates.

If the algorithm return "yes", we define \mathcal{I} by $\Delta^{\mathcal{I}} = \{a \mid a \text{ individual in } \mathcal{A}\}, A^{\mathcal{I}} = \{a \mid A(a) \in \mathcal{A}\}$ for every concept name A, $R^{\mathcal{I}} = \{(a,b) \mid R(a,b) \in \mathcal{A}_c\}$ for every role name R. It is clear that \mathcal{I} is a model of \mathcal{A} . We show that it is a model of \mathcal{T} :

- Let $R \sqsubseteq S \in \mathcal{T}$ and $(a,b) \in R^{\mathcal{I}}$. By construction of \mathcal{I} , $R(a,b) \in \mathcal{A}_c$. Since \mathcal{A}_c is complete, $S(a,b) \in \mathcal{A}_c$ (otherwise the rule that adds it is applicable). It follows that $(a,b) \in S^{\mathcal{I}}$. Hence $\mathcal{I} \models R \sqsubseteq S$.
- Let $R \sqsubseteq S \in \mathcal{T}$ and $(a,b) \in R^{\mathcal{I}}$. By construction of \mathcal{I} , $R(a,b) \in \mathcal{A}_c$. Since \mathcal{A}_c is complete, $\neg S(a,b) \in \mathcal{A}_c$ (otherwise the rule that adds it is applicable). Since \mathcal{A}_c is clash-free, $S(a,b) \notin \mathcal{A}_c$. It follows that $(a,b) \notin S^{\mathcal{I}}$. Hence $\mathcal{I} \models R \sqsubseteq \neg S$.

It follows that $\mathcal{I} \models \langle \mathcal{T}, \mathcal{A} \rangle$, i.e., $\langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable. Hence the algorithm is sound.

To show completeness, we show that the rules preserve the satisfiability of $\langle \mathcal{T}, \mathcal{A}_c \rangle$. Assume that $\langle \mathcal{T}, \mathcal{A}_c \rangle$ is satisfiable.

- If $\langle \mathcal{T}, \mathcal{A}_c \cup \{S(a,b)\} \rangle$ is obtained by applying the first rule, there is $R(a,b) \in \mathcal{A}_c$ and $R \sqsubseteq S \in \mathcal{T}$. Since $\langle \mathcal{T}, \mathcal{A}_c \rangle$ is satisfiable, there is a model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A}_c \rangle$. Since $\mathcal{I} \models R(a,b)$, then $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$, so since $\mathcal{I} \models R \sqsubseteq S$, then $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in S^{\mathcal{I}}$. Hence $\mathcal{I} \models \langle \mathcal{T}, \mathcal{A}_c \cup \{S(a,b)\} \rangle$, i.e., $\langle \mathcal{T}, \mathcal{A}_c \cup \{S(a,b)\} \rangle$ is satisfiable.
- If $\langle \mathcal{T}, \mathcal{A}_c \cup \{\neg S(a,b)\} \rangle$ is obtained by applying the first rule, there is $R(a,b) \in \mathcal{A}_c$ and $R \sqsubseteq \neg S \in \mathcal{T}$. Since $\langle \mathcal{T}, \mathcal{A}_c \rangle$ is satisfiable, there is a model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A}_c \rangle$. Since $\mathcal{I} \models R(a,b)$, then $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$, so since $\mathcal{I} \models R \sqsubseteq \neg S$, then $(a^{\mathcal{I}}, b^{\mathcal{I}}) \notin S^{\mathcal{I}}$. Hence $\mathcal{I} \models \langle \mathcal{T}, \mathcal{A}_c \cup \{\neg S(a,b)\} \rangle$, i.e., $\langle \mathcal{T}, \mathcal{A}_c \cup \{\neg S(a,b)\} \rangle$ is satisfiable.

If $\langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable, since applying the rules preserve satisfiability, the ABox obtained when the algorithm terminates is clash-free, and the algorithm returns "yes". Hence the algorithm is complete.

Correction of Exercise 12: Normal form of \mathcal{EL} TBoxes

Normalize the following \mathcal{EL} TBox.

$$\mathcal{T} = \{ A \sqsubseteq \exists R. \exists S.C, \quad A \sqcap \exists R. \exists S.C \sqsubseteq B \sqcap C, \quad \exists R. \top \sqcap B \sqsubseteq \exists S. \exists R.D \}$$

The normalization step generates the following axioms:

- $A \sqsubseteq \exists R.A_1$
- $A_1 \sqsubseteq \exists S.C$
- $A \sqcap \exists R. \exists S.C \sqsubseteq A_2$
- $A_2 \sqsubseteq B \sqcap C$
- $A \sqcap A_3 \sqsubseteq A_2$
- $\exists R. \exists S. C \sqsubseteq A_3$
- $\exists R.A_4 \sqsubseteq A_3$
- $\exists S.C \sqsubseteq A_4$

- $A_2 \sqsubseteq B$
- $A_2 \sqsubseteq C$
- $\exists R. \top \sqcap B \sqsubseteq A_5$
- $A_5 \sqsubseteq \exists S. \exists R.D$
- $\exists R. \top \sqsubseteq A_6$
- $A_6 \sqcap B \sqsubseteq A_5$
- $A_5 \sqsubseteq \exists S.A_7$
- $A_7 \sqsubseteq \exists R.D$

out of which only the axioms being in normal form are kept:

- $A \sqsubseteq \exists R.A_1$
- $\exists R. A_4 \sqsubseteq A_3$ $A_2 \sqsubseteq C$
- $A_5 \sqsubseteq \exists S.A_7$

- $A_1 \sqsubseteq \exists S.C$ $\exists S.C \sqsubseteq A_4$ $\exists R.\top \sqsubseteq A_6$ $A_7 \sqsubseteq \exists R.D$

- $A \sqcap A_3 \sqsubseteq A_2$ $A_2 \sqsubseteq B$ $A_6 \sqcap B \sqsubseteq A_5$

Correction of Exercise 13: Compact canonical model

$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \quad B \sqsubseteq \exists R.D, \quad C \sqsubseteq \exists S.C, \quad A \sqcap C \sqsubseteq D, \quad B \sqcap C \sqsubseteq D, \quad \exists R.\top \sqsubseteq C \}$$

$$\mathcal{A} = \{ A(a), \quad R(b,a) \}$$

It follows that \mathcal{T} entails the following atomic concept inclusions (besides those that belong to \mathcal{T} and the trivial ones of the form $X \sqsubseteq X$): $A \sqsubseteq C$, $A \sqsubseteq D$, $B \sqsubseteq C$, $B \sqsubseteq D$, and the following assertions (besides those that belong to A): C(a), D(a) and C(b).

Correction of Exercise 14: Saturation algorithm

$$\mathcal{T} = \{ A \sqsubseteq B, \quad \exists R. \top \sqsubseteq D, \quad H \sqsubseteq \exists P.A, \quad D \sqsubseteq M, \\ B \sqsubseteq \exists R.E, \quad D \sqcap M \sqsubseteq H, \quad A \sqsubseteq \exists S.B, \quad \exists S.M \sqsubseteq G \} \\ \mathcal{A} = \{ D(a), \quad S(a,b), \quad R(b,a) \}$$

1. We start by classifying \mathcal{T} :

We next find all assertions entailed by $\langle \mathcal{T}, \mathcal{A} \rangle$:

2. Compact canonical model:

Correction of Exercise 15: Properties of conservative extensions

1. If \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 and \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 , then \mathcal{T}_3 is a conservative extension of \mathcal{T}_1 .

Let \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 be three TBoxes such that \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 and \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 .

- Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , then the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_2 . Since \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 , then the signature of \mathcal{T}_2 is included in the signature of \mathcal{T}_3 . Hence the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_3 .
- Let \mathcal{I} be a model of \mathcal{T}_3 . Since \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 , then \mathcal{I} is a model of \mathcal{T}_2 . Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , it follows that \mathcal{I} is a model of \mathcal{T}_1 . Hence every model of \mathcal{T}_3 is a model of \mathcal{T}_1 .
- Let \mathcal{I}_1 be a model of \mathcal{T}_1 . Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , then there is a model \mathcal{I}_2 of \mathcal{T}_2 such that

- $-\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$
- $-A^{\mathcal{I}_1}=A^{\mathcal{I}_2}$ for every atomic concept in the signature of \mathcal{T}_1
- $-R^{\mathcal{I}_1}=R^{\mathcal{I}_2}$ for every role in the signature of \mathcal{T}_1

Since \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 and \mathcal{I}_2 is a model of \mathcal{T}_2 , then there exists a model \mathcal{I}_3 of \mathcal{T}_3 such that

- $-\Delta^{\mathcal{I}_2} = \Delta^{\mathcal{I}_3}$
- $-A^{\mathcal{I}_2}=A^{\mathcal{I}_3}$ for every atomic concept in the signature of \mathcal{T}_2
- $-R^{\mathcal{I}_2}=R^{\mathcal{I}_3}$ for every role in the signature of \mathcal{T}_2

Since the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_2 , it follows that \mathcal{I}_3 is a model of \mathcal{T}_3 such that

- $-\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_3}$
- $-A^{\mathcal{I}_1}=A^{\mathcal{I}_3}$ for every atomic concept in the signature of \mathcal{T}_1
- $-R^{\mathcal{I}_1}=R^{\mathcal{I}_3}$ for every role in the signature of \mathcal{T}_1

Hence \mathcal{T}_3 is a conservative extension of \mathcal{T}_1 .

2. If \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 and C and D are concepts containing only concept and role names from \mathcal{T}_1 , then it holds that $\mathcal{T}_1 \models C \sqsubseteq D$ if and only if $\mathcal{T}_2 \models C \sqsubseteq D$.

Let \mathcal{T}_2 be a conservative extension of \mathcal{T}_1 .

- Assume that $\mathcal{T}_1 \models C \sqsubseteq D$. Let \mathcal{I} be a model of \mathcal{T}_2 . Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , then \mathcal{I} is a model of \mathcal{T}_1 . Hence, since $\mathcal{T}_1 \models C \sqsubseteq D$, $\mathcal{I} \models C \sqsubseteq D$. Since this holds for every model of \mathcal{T}_2 , it follows that $\mathcal{T}_2 \models C \sqsubseteq D$.
- Conversely, assume that $\mathcal{T}_2 \models C \sqsubseteq D$. Let \mathcal{I}_1 be a model of \mathcal{T}_1 . Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , there exists a model \mathcal{I}_2 of \mathcal{T}_2 such that
 - $\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$
 - $A^{\mathcal{I}_1} = A^{\mathcal{I}_2}$ for every atomic concept in the signature of \mathcal{T}_1
 - $-R^{\mathcal{I}_1}=R^{\mathcal{I}_2}$ for every role in the signature of \mathcal{T}_1

We show by structural induction that for every \mathcal{EL} concept E such that E contains only concept and role names from \mathcal{T}_1 , $E^{\mathcal{I}_1} = E^{\mathcal{I}_2}$.

- Base case: E is an atomic concept in the signature of \mathcal{T}_1 so $E^{\mathcal{I}_1} = E^{\mathcal{I}_2}$.
- Induction step:
 - * Case $E = \neg F$, F contains only concept and role names from \mathcal{T}_1 and we assume by induction that $F^{\mathcal{I}_1} = F^{\mathcal{I}_2}$. Thus $E^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \setminus F^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2} \setminus F^{\mathcal{I}_2} = E^{\mathcal{I}_2}$.
 - * Case $E = F_1 \sqcap F_2$, F_1 and F_2 contain only concept and role names from \mathcal{T}_1 and we assume by induction that $F_1^{\mathcal{I}_1} = F_1^{\mathcal{I}_2}$ and $F_2^{\mathcal{I}_1} = F_2^{\mathcal{I}_2}$. Thus $E^{\mathcal{I}_1} = F_1^{\mathcal{I}_1} \cap F_2^{\mathcal{I}_1} = F_1^{\mathcal{I}_2} \cap F_2^{\mathcal{I}_2} = E^{\mathcal{I}_2}$.
 - * Case $E = \exists R.F$ with R in the signature of \mathcal{T}_1 , F contains only concept and role names from \mathcal{T}_1 and we assume by induction that $F^{\mathcal{I}_1} = F^{\mathcal{I}_2}$. It holds that $R^{\mathcal{I}_1} = R^{\mathcal{I}_2}$ so $E^{\mathcal{I}_1} = \{u \mid (u,v) \in R^{\mathcal{I}_1}, v \in F^{\mathcal{I}_1}\} = \{u \mid (u,v) \in R^{\mathcal{I}_2}, v \in F^{\mathcal{I}_2}\} = E^{\mathcal{I}_2}$.

Since $\mathcal{T}_2 \models C \sqsubseteq D$, then $C^{\mathcal{I}_2} \subseteq D^{\mathcal{I}_2}$. Since C and D are concepts containing only concept and role names from \mathcal{T}_1 , it follows that $C^{\mathcal{I}_1} \subseteq D^{\mathcal{I}_1}$, i.e., $\mathcal{I}_1 \models C \sqsubseteq D$. Since this holds for every model of \mathcal{T}_1 , it follows that $\mathcal{T}_1 \models C \sqsubseteq D$.

3. If \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , then for every ABox \mathcal{A} and assertion α that use only atomic concepts and roles from \mathcal{T}_1 , $\langle \mathcal{T}_1, \mathcal{A} \rangle \models \alpha$ iff $\langle \mathcal{T}_2, \mathcal{A} \rangle \models \alpha$.

Let \mathcal{T}_2 be a conservative extension of \mathcal{T}_1 and \mathcal{A} and α be an ABox and an assertion that use only atomic concepts and roles from \mathcal{T}_1 .

• Assume that $\langle \mathcal{T}_1, \mathcal{A} \rangle \models \alpha$. Let \mathcal{I} be a model of $\langle \mathcal{T}_2, \mathcal{A} \rangle$. Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 and \mathcal{I} is a model of \mathcal{T}_2 , then \mathcal{I} is a model of \mathcal{T}_1 . Since $\langle \mathcal{T}_1, \mathcal{A} \rangle \models \alpha$ and \mathcal{I} is a model of \mathcal{A} and \mathcal{T}_1 , then $\mathcal{I} \models \alpha$. Since this holds for every model of $\langle \mathcal{T}_2, \mathcal{A} \rangle$, it follows that $\langle \mathcal{T}_2, \mathcal{A} \rangle \models \alpha$.

- Conversely, assume that $\langle \mathcal{T}_2, \mathcal{A} \rangle \models \alpha$. Let \mathcal{I}_1 be a model of $\langle \mathcal{T}_1, \mathcal{A} \rangle$. Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 and \mathcal{I}_1 is a model of \mathcal{T}_1 , there exists a model \mathcal{I}_2 of \mathcal{T}_2 such that
 - $-\Delta^{\mathcal{I}_1}=\Delta^{\mathcal{I}_2}$
 - $-A^{\mathcal{I}_1}=A^{\mathcal{I}_2}$ for every atomic concept in the signature of \mathcal{T}_1
 - $-R^{\mathcal{I}_1}=R^{\mathcal{I}_2}$ for every role in the signature of \mathcal{T}_1

Since $\mathcal{I}_1 \models \mathcal{A}$ and concepts and roles used in \mathcal{A} are in the signature of \mathcal{T}_1 , then $\mathcal{I}_2 \models \mathcal{A}$. It follows that \mathcal{I}_2 is a model of $\langle \mathcal{T}_2, \mathcal{A} \rangle$, so $\mathcal{I}_2 \models \alpha$. Since α is of the form A(a) or R(a, b) with A, R in the signature of \mathcal{T}_1 , it follows that $\mathcal{I}_1 \models \alpha$. Since this holds for every model of $\langle \mathcal{T}_1, \mathcal{A} \rangle$, it follows that $\langle \mathcal{T}_1, \mathcal{A} \rangle \models \alpha$.

Correction of Exercise 16: Conservative extensions

$$\mathcal{T}_2 = \mathcal{T}_1 \cup \{ A \sqsubseteq C, \ D \sqsubseteq B \}$$

- 1. \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 :
 - Since $\mathcal{T}_1 \subseteq \mathcal{T}_2$, the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_2 .
 - Since $\mathcal{T}_1 \subseteq \mathcal{T}_2$, every model of \mathcal{T}_2 is a model of \mathcal{T}_1 .
 - Let \mathcal{I}_1 be a model of \mathcal{T}_1 . We define an interpretation \mathcal{I}_2 by
 - $-\Delta^{\mathcal{I}_2} = \Delta^{\mathcal{I}_1}$
 - $-E^{\mathcal{I}_2}=E^{\mathcal{I}_1}$ for every atomic concept in the signature of \mathcal{T}_1
 - $R^{\mathcal{I}_2} = R^{\mathcal{I}_1}$ for every role in the signature of \mathcal{T}_1
 - $-A^{\mathcal{I}_2} = C^{\mathcal{I}_1}$
 - $-B^{\mathcal{I}_2} = D^{\mathcal{I}_1}$

 \mathcal{I}_2 is a model of \mathcal{T}_1 since it coincides with \mathcal{I}_1 on the signature of \mathcal{T}_1 and $\mathcal{I}_2 \models A \sqsubseteq C$ and $\mathcal{I}_2 \models D \sqsubseteq B$ by construction of \mathcal{I}_2 . Hence \mathcal{I}_2 is a model of \mathcal{T}_2 .

- 2. $\mathcal{T}_2 \cup \{A \sqsubseteq B\}$ is a conservative extension of \mathcal{T}_1 : The proof is similar to the previous question except that we define $B^{\mathcal{I}_2} = D^{\mathcal{I}_1} \cup C^{\mathcal{I}_1}$: It still holds that $\mathcal{I}_2 \models A \sqsubseteq C$ and $\mathcal{I}_2 \models D \sqsubseteq B$ (since $D^{\mathcal{I}_1} \subseteq D^{\mathcal{I}_1} \cup C^{\mathcal{I}_1}$) and $\mathcal{I}_2 \models A \sqsubseteq B$ since $C^{\mathcal{I}_1} \subseteq D^{\mathcal{I}_1} \cup C^{\mathcal{I}_1}$.
- 3. If $\mathcal{T}_1 \not\models D \sqsubseteq C$, then $\mathcal{T}_2 \cup \{B \sqsubseteq A\}$ is not a conservative extension of \mathcal{T}_1 because $\mathcal{T}_2 \cup \{B \sqsubseteq A\} \models D \sqsubseteq C$.