We show that $A \subseteq B$ if and only if $A \cap \neg B$ is not satisfiable. If $A \subseteq B$, then in any model I of the TBox, it holds that the $A^I \subseteq B^I$. Hence $A^I \cap (\Delta^I \setminus B^I) = \emptyset$. As $(A \cap \neg B)^I = A^I \cap (\Delta^I \setminus B^I)$, the interpretation of $A \cap \neg B$ is empty in any model of the TBox, hence $A \cap \neg B$ is not satisfiable.

Conversely, if A is not a subconcept of B there exists a model I of the TBox in which there exists $e \in A^I$ such that $e \notin B^I$. Hence, $e \notin \neg B^I$, and by definition of conjunction, $e \in (A \land \neg B)^I$. We have exhibited a model in which $(A \land \neg B)$ has a non empty interpretation, and $A \land \neg B$ is thus satisfiable.

Thus, in order to decide whether A is a subconcept of B, one can check whether $A \land \neg B$ is satisfiable. As satisfiability in \mathcal{EL} is trivial (every concept is satisfiable) and subsumption is not, there cannot be a reduction from subsumption to satisfiability.

Exercise 2: Negation Normal Form

We prove the result by induction on the concepts.

- Base case: the concepts are atomic names, negation of atomic names, \top or \bot: these concepts are already in NNF, $\neg \top$ is equivalent to \bot, and $\neg \bot$ is equivalent to \top
- The concept is the conjunction of two (smaller) concepts: $C_1 \land C_2$: by induction, there exists C'_1 in NNF equivalent to C_1, and C'_2 in NNF equivalent to C_2: hence $C'_1 \land C'_2$ is in NNF and equivalent to $C_1 \land C_2$
- Same reasoning apply for disjunction, universal and existential restriction;
- If a concept is of the shape $\neg C$, we distinguish according to the shape of C:
 - if C is an atomic name, \top, or \bot, this has already been taken care of in the base case;
 - if C is a conjunction, say $C_1 \land C_2$, then $\neg C$ is equivalent to $\neg C_1 \lor \neg C_2$, and we transform both subconcepts by induction;
 - similarly, if $\neg(C_1 \lor C_2)$ is equivalent to $\neg C_1 \land \neg C_2$, $\neg \forall R.C$ is equivalent to $\exists R.\neg C$, and $\neg \exists R.C$ is equivalent to $\forall R.\neg C$.

Exercise 3: Tableau Algorithm

1. We apply the tableau algorithm to $\exists R.(A \cap B) \cap \forall R.(C \cup \neg A) \cap \forall R.(\neg C \cap \exists R.A)$

 1. $S_0 = \{ \exists R.(A \cap B) \cap \forall R.(C \cup \neg A) \cap \forall R.(\neg C \cap \exists R.A) (a) \}$
 2. $S_0^1 = S_0 \cup \{ \exists R.(A \cap B) (a), \forall R.(C \cup \neg A) (a), \forall R.(\neg C \cap \exists R.A) (a) \}$ by application of the \cap-rule;
 3. $S_0^2 = S_0^1 \cup \{ R(a,b), (A \cap B)(b) \}$ by application of the \exists-rule;
 4. $S_0^3 = S_0^2 \cup \{ A(b), B(b) \}$ by application of the \cap-rule;
 5. $S_0^4 = S_0^3 \cup \{ (C \cup \neg (A))(b) \}$ by application of the \forall-rule;
 6. $S_0^5 = S_0^4 \cup \{ C(b) \}$ by application of the \cup-rule; note that a second ABox should be created, namely $S_0^4 \cup \{ \neg A(b) \}$. However, this ABox containing a clash, we safely ignore it;
The only remaining ABox contains a clash: the concept is not satisfiable.

2. We apply the tableau algorithm to $\exists R.(A \sqcap B) \sqcap \forall R.(-A \sqcup C) \sqcap \forall R.(-B \sqcup -C)$

1. $S_0 = \{A \sqcap -C(a)\}$
2. $S_1^0 = S_0 \cup \{A(a), -C(a)\}$ by application of the \sqcap-rule
3. $S_2^0 = S_1^0 \cup \{-A \sqcup \exists R.(A \sqcup -B)(a)\}$ by application of the TBox-rule, for the first axiom on a;
4. $S_3^0 = S_2^0 \cup \exists R.(A \sqcup -B)(a)$ by application of the \sqcup-rule (the other ABox contains a clash);
5. $S_4^0 = S_3^0 \cup \{R(a, b), A \sqcup -B(b)\}$ by application of the \exists-rule;
6. $S_5^0 = S_4^0 \cup \{\forall R.B \sqcup C(a)\}$ by application of the TBox-rule, for the second axiom on a;
7. $S_6^0 = S_5^0 \cup \forall R.B(a)$ by application of the \sqcup-rule (the other ABox contain a clash);
8. $S_7^0 = S_6^0 \cup \{B(b)\}$ by application of the \forall-rule;
9. $S_8^0 = S_7^0 \cup \{A(b)\}$, by application of the \sqcup-rule, on the atom added in S_4^0 (the other ABox contains a clash)
10. $S_9^0 = S_8^0 \cup \forall R.-C \sqcup C(a)$ by application of the TBox-rule for the third axiom on a;
11. $S_10^0 = S_9^0 \cup \forall R.-C(a)$ by application of the \sqcup-rule (the other ABox contains a clash)
12. $S_11^0 = S_7^0 \cup \{-C(b)\}$ by application of the \forall-rule
13. $S_12^0 = S_11^0 \cup \{-A \sqcup \exists R.(A \sqcup -B)(b)\}$ by application of the TBox-rule, for the first axiom on b;
14. $S_13^0 = S_12^0 \cup \exists R.(A \sqcup -B)(b)$ by application of the \sqcup-rule (the other ABox contains a clash);
15. $S_14^0 = S_13^0 \cup \{R(b, c), A \sqcup -B(c)\}$ by application of the \exists-rule; note that c is blocked by b
16. $S_15^0 = S_14^0 \cup \forall R.B \sqcup C(b)$ by application of the TBox-rule, for the second axiom on b;
17. $S_16^0 = S_15^0 \cup \forall R.B(b)$ by application of the \sqcup-rule (the other ABox contain a clash);
18. $S_17^0 = S_16^0 \cup \{B(c)\}$ by application of the \forall-rule;
19. $S_18^0 = S_17^0 \cup \forall R.-C \sqcup C(b)$ by application of the TBox-rule for the third axiom on b;
20. $S_0^{19} = S_0^{18} \cup \{\forall R.\neg C(b)\}$ by application of the \cup-rule (the other ABox contains a lash);

21. $S_0^{20} = S_0^{19} \cup \{\neg C(c)\}$, by application of the \forall-rule.

At this step, S_0^{20} is complete (as c is blocked by b), and clash-free. Hence, $A \sqcap \neg C$ is satisfiable and thus A is not subsumed by C.

An example of model witnessing this non subsumption is an infinite chain of individuals a_i, such that $R(a_i, a_{i+1})$ holds (and no other R atoms exist), $A(a_i)$ holds for any i, and $B(a_i)$ holds for any i.

Exercise 4: Conservative Extensions

For the first property, we have to consider each rule of the normalization algorithm. Let us consider the first rule:

$$\hat{C} \sqsubseteq \hat{D} \rightarrow \hat{C} \sqsubseteq A, A \sqsubseteq \hat{D}$$

and let us consider T_2 obtained from T_1 by applying this rule.

- applying it add the symbol A to the signature, hence the signature of T_1 is included in the signature of T_2
- as all the axioms of T_1 except the one on which the rule has been applied belong to T_2, they are all satisfied in any model of T_2. As the model fulfills that $\hat{C} \sqsubseteq A$ and that $A \sqsubseteq \hat{D}$, it holds that $\hat{C} \sqsubseteq \hat{D}$, hence this axiom as well is satisfied in any model of T_2, which shows that any model of T_2 is a model of T_1.
- starting from a model I_1 of T_1, the only thing that remains to define is an interpretation for A. Any interpretation A^{T_2} such that $\hat{C}^{I_1} \subseteq A^{T_2} \subseteq \hat{D}^{I_2}$ would work, and one can among other choose $A^{T_2} = \hat{C}^{I_1}$.

The other rules can be treated similarly.

For the second property, let us consider T_1, T_2 and T_3 such that T_2 is a conversative extension of T_1 and T_3 is a conservative extension of T_2. Let us show that T_3 is a conservative extension of T_1:

- the signature of T_1 is included in the signature of T_2 which is included in the signature of T_3, hence the signature of T_1 is included in the signature of T_3
- any model of T_3 is a model of T_2, and is hence a model of T_1
- any model of T_1 can be extented in a model of T_2 (by interpreting the concepts/relations that are not already interpreted in T_1), which can itself be extended in a model of T_3 (by interpreting the concepts/relations that are not already interpreted in T_2).

Hence T_3 is a conservative extension of T_1.

For the last property, let us assume that $T_1 \models C \subseteq D$. As any model of T_2 is a model of T_1, it holds that in any model I of T_2, $C^I \subseteq D^I$. Hence $T_2 \models C \subseteq D$. Conversely, if $T_2 \models C \subseteq D$, then let us consider an arbitrary model I_1 of T_1. There exists I_2 such that is a model of T_2 which coincide with I_1 on the original concepts/roles, hence $C^{I_2} = D^{I_2} \subseteq D^{I_1}$, and thus $T_1 \models C \subseteq D$, which concludes the proof.

Exercise 5: Subsumption Algorithm

Consider the following TBox:

- $A \sqsubseteq \exists R.\exists S.C$
- $A \sqcap \exists R.\exists S.C \sqsubseteq B \sqcap C$
- $\exists R.\top \sqcap B \sqsubseteq \exists S.\exists R.D$
For any pair of concepts \((A, B)\) on the TBox vocabulary, the algorithm first normalizes the TBox, then applies the classification rules. The normalization step generates the following axioms:

- \(A \sqsubseteq \exists R.A_1\)
- \(A_1 \sqsubseteq \exists S.C\)
- \(A \sqcap \exists R.\exists S.C \sqsubseteq A_2\)
- \(A_2 \sqsubseteq B \sqcap C\)
- \(A \sqcap A_3 \sqsubseteq A_2\)
- \(\exists R.\exists S.C \sqsubseteq A_3\)
- \(\exists R.A_4 \sqsubseteq A_3\)
- \(\exists S.C \sqsubseteq A_4\)
- \(A_2 \sqsubseteq B\)
- \(A_2 \sqsubseteq C\)
- \(\exists R.\top \sqcap B \sqsubseteq A_5\)
- \(A_5 \sqsubseteq \exists S.\exists R.D\)
- \(\exists R.\top \sqsubseteq A_6\)
- \(A_6 \sqcap B \sqsubseteq A_5\)
- \(A_5 \sqsubseteq \exists S.A_7\)
- \(A_7 \sqsubseteq \exists R.D\)

out of which only the axioms being sequents are kept. The second step saturate this normalized TBox by applying the classification rules. One can easily check that during this saturation, all the classification rules are used.