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Lightweight Description Logics

» Reasoning in ALC and all its extensions is ExpTIME-hard

» EXPTIME-hardness already holds for FLg, the ALC fragment
without —, LI and 3, whose concepts are built according to the
following grammar: C:=T |A| CNC|VR.C

» Some applications require very large ontologies and/or data

» SNOMED CT (medical ontology) > 350 000 concepts
» NCI (National Cancer Institute Thesaurus) ~ 20 000 concepts
» GO (Gene Ontology) ~ 30 000 concepts

» Many of them do not require universal restrictions (VR.C) but
rather existential restrictions (IR.C)

» Since the mid 2000’s, increasing interest in lightweight DLs

» reasoning in polynomial time
> expressivity sufficient for many applications
» allow for existential restrictions



Lightweight Description Logics

> Two main families of lightweight DLs

» the £L family
> designed to allow efficient reasoning with large ontologies
> core of the OWL 2 EL profile

» the DL-Lite family
P designed for ontology-mediated query answering
> core of the OWL 2 QL profile
> cf. course on query rewriting



The £L Family

EL concepts are built according to the following grammar:
C=T|A|CnNC|3R.C

and an £L Tbox contains only concept inclusions ¢ C G

» Fragment of ALC without —, LI and V
P> Possible extensions that remain tractable
> E£L,: 1 to express disjoint concepts
> ££9: domain and range restrictions
» dom(R)C C (=3R.T C C, already in plain ££)
» ran(R) C C (=3R™.T C C, not expressible in plain ££)
» E£LO: nominals {o}
> (complex) role inclusions Ry o -+ 0 Ry C Ryy1
(includes transitivity (trans R) = Ro R C R)

» OWL 2 EL profile includes all these extensions

» Adding any of the constructors —, L, V, R~ makes reasoning
ExpTIME-hard



Reasoning in £L

Focus on plain ££: the TBox contains concept inclusions C; C G
with C:=T|A|CNC|3R.C

> Satisfiability is trivial
> I=({e}, ") a" =e AT ={e}, R* = {(e,€)}
» Subsumption/classification or instance checking are not!

P cannot be reduced to satisfiability
» focus on these reasoning tasks



Reasoning in £L

Subsumption: Given an ££ TBox T and two £L concepts C and
D, decide whether 7 = CC D
> We will assume that C and D are atomic concepts
» if C, D are £L£ complex concepts,

TECCDIfTU{ACC,DCB}EALCB

where A, B are fresh concept names

Classification: Given an ££ TBox 7, find all atomic concepts A, B
suchthat 7T =AC B

Instance checking: Given an £L£ KB (T, .A) and an £L concept C,
decide for every individual a from A whether (T, A) = C(a)
> We will assume that C is an atomic concept
> (T, A) E C(a) iff (TU{CC A}, A) = A(a)



Normal Form of £L£ TBoxes

An £L TBox is in normal form if it contains only concept
inclusions of one of the following forms:

ACB AiNAACB ACJRB JRALCBEB

where A, A1, A2 and B are atomic concepts or T
» For every £L£ TBox T, we can construct in polynomial time 7’
in normal form (possibly using new concept names) such that
» for every C C D which uses only concept names from 7,

TECCDIffT"=ECED
» for every ABox A and assertion « that uses atomic concepts

from (T, A), (T, A) E aiff (T A) Ea«
We will assume that TBoxes are in normal form



Normalization of ££ TBoxes

Normalization algorithm

Exhaustively apply the following normalization rules to T

NRy cch — CCA ACD

NRGY cnbcB -  DCA CHACB

NRZ??  énbpCcB - CCA ANDLCB

NR JrR.CC B — CCA 3JRALCB

NRS, BC3ré -  AC (¢, BC3IRA

NR, BCDNE — BCD, BCE
where

» C,D,E are arbitrary £L£ concepts
> C.Dare &L concepts that are neither atomic concepts nor T
> B is an atomic concept

> A is a fresh atomic concept



Normalization of ££ TBoxes

Example
NR, cch — CCA ACD
NR%! cnbcB - DCA CnACB
NR%? ¢npcB = CCA ANDCB
NRS JR.CCB — CCA 3JRACB
NRS BC 3R.C — ACC, BCIRA
NRF, BCDMNE  — BC D, BCE

Normalize 7 = {3R.CM D C 3S.3R.C}



Normalization of ££ TBoxes

Example
NR, cch — CCA ACD
NR%! cnbcB - DCA CnACB
NR%? ¢npcB = CCA ANDCB
NRS JR.CCB — CCA 3JRACB
NRS BC 3R.C — ACC, BCIRA
NRF, BCDMNE  — BC D, BCE

Normalize 7 = {3R.CM D C 3S.3R.C}

AR.CNDE3ISIRC — IJRCMNDLCA, A LC3ISIRC (NRo)
JR.CNDC A — JR.CC A, ANDCA  (NRY)
A C3SIRC — A1 C35.A;, AsC3IR.C (NRY)

Normalized TBox:
T'={3R.CC Ay, A,MDLC Ay, Ay C3S.A3, A3sC 3R.C}



Normalization of ££ TBoxes

Termination and complexity

For every input ££ TBox 7, the normalization algorithm
terminates in linear time w.r.t. the size of 7.

» Proof based on abnormality degree of 7
» Abnormal occurrence of a concept C within 7
» C C D, where C, D are neither atomic concepts nor T
» ( is neither an atomic concept nor T, and is under a
conjunction or an existential restriction
» (C is under a conjunction operator on the right hand side
» Abnormality degree of 7: number of abnormal occurrences

» a TBox with abnormality degree 0 is in normal form
» the abnormality degree is bounded by the size of T

» Claim: Each rule decreases the abnormality degree of T



Normalization of ££ TBoxes

Termination and complexity — Proof of the claim

» If 7' is obtained from 7 by applying NRg
» 7'=T\{CCDIU{CCA AC D}
P decreases the abnormality degree by 1

> removes abnormal occurrence C C D of C
P> does not modify other abnormal occurrences



Normalization of ££ TBoxes

Termination and complexity — Proof of the claim

» If 7' is obtained from 7 by applying NRg
» 7'=T\{CCDIU{CCA AC D}
P decreases the abnormality degree by 1
> removes abnormal occurrence € C Dof &
P> does not modify other abnormal occurrences
> If 77 is obtained from 7 by applying NR%!
> T'=T\{CNDEB}U{DC A, CNALC B}
» decreases the abnormality degree by 1

> removes abnormal occurrence C 1D of D
» does not modify the number of other abnormal occurrences
(€MD is an abnormal occurence of C iff CM A is one)



Normalization of ££ TBoxes

Termination and complexity — Proof of the claim

» If 7' is obtained from 7 by applying NRg
» 7'=T\{CCDIU{CCA AC D}
P decreases the abnormality degree by 1
> removes abnormal occurrence € C Dof &
P> does not modify other abnormal occurrences
> If 77 is obtained from 7 by applying NR%!
> T'=T\{CNDEB}U{DC A, CNALC B}
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» removes abnormal occurrence IR.C of C
P> does not modify other abnormal occurrences



Normalization of ££ TBoxes

Termination and complexity — Proof of the claim

» If 7' is obtained from 7 by applying NRg
» 7'=T\{CCDIU{CCA AC D}
P decreases the abnormality degree by 1
> removes abnormal occurrence € C Dof &
P> does not modify other abnormal occurrences
> If 77 is obtained from 7 by applying NR%!
> T'=T\{CNDEB}U{DC A, CNALC B}
» decreases the abnormality degree by 1

> removes abnormal occurrence C 1D of D
» does not modify the number of other abnormal occurrences
(€MD is an abnormal occurence of C iff CM A is one)

» If 7' is obtained from 7 by applying NRS
» 7' =T\{BC3RCyu{AC {, BCIRA}
P decreases the abnormality degree by 1

» removes abnormal occurrence IR.C of C
P> does not modify other abnormal occurrences

> NR5% NRS, NR{;: left as practice



Conservative Extensions
7> is a conservative extension of 77 if:
» the signature of 77 is included in the signature of 75

» every model of 75 is a model of 77

» for every model Z; of 71, there exists a model Z, of 7> with:
> ATt = AT
> AL = AT for every atomic concept in the signature of 77
» RT: = R%: for every role in the signature of T;



Conservative Extensions
7> is a conservative extension of 77 if:
» the signature of 77 is included in the signature of 75

» every model of 75 is a model of 77

» for every model Z; of 71, there exists a model Z, of 7> with:
» AL — AIZ
> AL = AT for every atomic concept in the signature of 77
» RT: = R%: for every role in the signature of T;

Properties of conservative extensions

» Transitivity: If 75 is a conservative extension of 71, and 73 is
a conservative extension of 75, then 73 is a conservative
extension of 7Ty

> If 75 is a conservative extension of 73
» if C and D are concepts containing only concept and role
names from 71, then it holds that 71 = C C D if and only if
T,=CCD
> for every ABox A and assertion « that use only atomic

concepts and roles from 71, (71, A) E « iff (T2, A) = «



Normalization of ££ TBoxes

Soundness and completeness

» 7 and 7' need not be equivalent due to the introduction of
new atomic concepts by the normalization rules

» Claim: 7' is a conservative extension of T

Show that if 75 is obtained from 71 by applying one of the
normalization rules, then 7> is a conservative extension of 77.
The claim follows by transitivity.

» If 7, is obtained from 77 by applying NRg
» =T \{CCD}U{CCA ACD}
» every model of 75 is a model of T;
» for every model Z; of Ty, define 7,

> A2 = AT1 RT2 = RT1 for every role
> B2 = B1 for every atomic concept different from A
» AIQ — éIl

>» LET

» Other rules left as practice



Compact Canonical Model

» To decide entailment of an axiom or assertion in DL, we
normally need to consider all the models of the KB

» In EL, for every KB K = (T, A), there exists a finite model
Cic which can be used to check whether an assertion or an
inclusion between two atomic concepts is entailed

» Ci is the compact canonical model of £ = (T, A)



Compact Canonical Model

Construction of Cx

Let £ = (T,.A) with T an ££ TBox in normal form

> Start with Zy defined by
AT ={a | aindividual from A} U {e4 | A atomic concept} U {eT}
AP —{a| A(a) € A} U {ea}
R% ={(a,b) | R(a, b) € A}
a’® =a for every individual from A

» 7,.1 is obtained from Z, by applying one of the following rules
(note that C can be an atomic concept A, A; M Az or 3R.A)

Ri:if CCBeT,xe C% and x ¢ B, then BT = BT U {x}
Ry:if ACL3R.B € T,x € A% and (x,eg) ¢ R™", then R = RT" U {(x, eg)}

» When we reach Zj such that no more rules apply, set Cxx = Zx



Compact Canonical Model

Example

T={AC3R.B,IRCC D, ANDC C, CC 3R.C}

A={A(a), R(a,b), B(b), C(b)}

A
€A
A

a

R ec

C

b
B,C

€B

€D

€T



Compact Canonical Model

Example

T={AC3R.B,IR.CC D, ANDC C, CC 3R.C}
A ={A(a), R(a,b), B(b), C(b)}

A B
€A . e
R ///,

€T



Compact Canonical Model

Example

T={AC3R.B,IR.CC D, ANDC C, CC 3R.C}
A ={A(a), R(a,b), B(b), C(b)}

A R B
€A ---------- = (5723
R /’//,

€T



Compact Canonical Model

Example
T={AC3R.B, 3R.CC D, ANDC C, CC3R.C}
A ={A(a), R(a,b), B(b), C(b)}
A R B
€A ---------- = (5723
R//’//,,
AD
.
R ec €p
C D

@
(@ Wy

€T



Compact Canonical Model

Example

T={AC3R.B,IR.CC D, ANDC C, CC 3R.C}
A ={A(a), R(a,b), B(b), C(b)}

A R B
€A ---------- = (5723
R//’//,,
ADC -
.
R ec €p
C D

@
(@ Wy

€T



Compact Canonical Model

Example

T={AC3R.B,IR.CC D, ANDC C, CC 3R.C}
A ={A(a), R(a,b), B(b), C(b)}

A R B
€A ---------- = (5723
R
ADC -
aj"
LR
R ec ep
C D

€T



Compact Canonical Model

Example

T={AC3R.B,IR.CC D, ANDC C, CC 3R.C}
A ={A(a), R(a,b), B(b), C(b)}

A R B
€A ---------- = (5723
R
ADC -
a:"
R
R Tec ep
7 C D
"R

€T



Compact Canonical Model

Example
T={AC3R.B,IR.CC D, ANDC C, CC 3R.C}
A ={A(a), R(a,b), B(b), C(b)}

A R B
eA——————————:; (5723
R/,/”/
ADC -
a:"
R
R ec R ep
I D
-"'R

€T



Compact Canonical Model

Example
T={AC3R.B, IRCC D, ANDC C, CC 3R.C}
A ={A(a), R(a,b), B(b), C(b)}

A R B
eA——————————:; (5723
R/,/”/
ADC -
a:"
R
R ec 'R ep
I D
-"'R

€T



Compact Canonical Model

Example
T={AC3R.B, IRCC D, ANDC C, CC 3R.C}
A ={A(a), R(a,b), B(b), C(b)}

A R B
eA——————————:; (5723
R/,/”/
ADC -
a:"
\\\\R
R ec 'R ep
- C, D~ D
-"'R

€T



Compact Canonical Model

Example
T={AC3R.B,IRCC D, ANDC C, CC 3R.C}
A ={A(a), R(a,b), B(b), C(b)}

A R B
eA——————————:; (5723
R/,/”/
ADC -
a:"
R
R ec 'R ep
- C, D~ D
-"'R

€T



Compact Canonical Model
Properties of Cx
» Cx can be constructed in polynomial time
» ACX s linear in the size of K
» each rule application adds an element or pair of elements of
ACK to the interpretation of an atomic concept or role from K



Compact Canonical Model
Properties of Cx
» Cx can be constructed in polynomial time
» ACX s linear in the size of K
» each rule application adds an element or pair of elements of
ACK to the interpretation of an atomic concept or role from K
» Ci is a model of IC
> IhEAsoCr = A
> for every CC B €T, C°< C B¢~ (otherwise R; would apply)
> for every AC IR.B € T and x € A®%, (x, eg) € RC<
(otherwise Ry would apply), and since eg € B°<, x € IR.B*
» henceCx ET



Compact Canonical Model
Properties of Cx
» Cx can be constructed in polynomial time
» ACX s linear in the size of K
» each rule application adds an element or pair of elements of
ACK to the interpretation of an atomic concept or role from K
» Ci is a model of IC
> IhEAsoCr = A
> for every CC B €T, C°< C B¢~ (otherwise R; would apply)
> for every AC IR.B € T and x € A®%, (x, eg) € RC<
(otherwise Ry would apply), and since eg € B°<, x € IR.B*
» henceCx ET
> for every concept inclusion between atomic concepts A C B,
K = ALC Biff Cc = B(ea)
> if C|=AC B, Cx = AL B sosince eq € A%, C |= B(ea)
» Claim 1: if Cc = B(ea), then K= AC B



Compact Canonical Model
Properties of Cx

» Cx can be constructed in polynomial time
» ACX s linear in the size of K
» each rule application adds an element or pair of elements of

ACK to the interpretation of an atomic concept or role from K

» Ci is a model of IC
> IhEAsoCr = A
> for every CC B €T, C°< C B¢~ (otherwise R; would apply)
> for every AC IR.B € T and x € A®%, (x, eg) € RC<

(otherwise Ry would apply), and since eg € B°<, x € IR.B*

» henceCx ET

> for every concept inclusion between atomic concepts A C B,

K = ALC Biff Cc = B(ea)

> if C|=AC B, Cx = AL B sosince eq € A%, C |= B(ea)
» Claim 1: if Cc = B(ea), then K= AC B

» for every assertion o, K = «a iff Cx =«
> fKEa CkFa
» Ci = R(a, b) with a, b individuals implies R(a, b) € A
» Claim 2: if Cx = A(a) with a individual, then K |= A(a)



Compact Canonical Model

Example

T={AC3R.B, IR.CC D, ANDC C, CC 3R.C}
A ={A(a), R(a,b), B(b), C(b)}

A R B
€A ---------- 2 eB er
R
A D,C
ar’
\R
R Tec R ep
P C,D-~- D
B R
b
B,C,D

CelEC)=KECG)  Ccl=D(a)= K = D(a)
Ce = D(b) = K= D(b)  Ccl=D(ec) =K CCD



Compact Canonical Model
Properties of Cx — Proof of Claim 1
For all atomic concepts A, B, Cx |= B(ea) implies K =AC B
Proof by induction on n such that e4 € B%»
> Base case: e € B% impliesthat B=Aand C=AC A
» Induction hypothesis (IH): For every atomic concepts A and
B, es € BT implies K = AC B



Compact Canonical Model
Properties of Cx — Proof of Claim 1
For all atomic concepts A, B, Cx = B(ea) implies C =ALC B
Proof by induction on n such that e4 € B
> Base case: e € B% impliesthat B=Aand C=AC A
» Induction hypothesis (IH): For every atomic concepts A and
B, es € BT implies K = AC B
» Induction step: Assume that ey € B+
> Ifeac B, KEAC BbyIH

> If en & B%", ey has been added to BZ+ by applying rule Ry:
there exists C — B € T such that e4 € C%»



Compact Canonical Model
Properties of Cx — Proof of Claim 1
For all atomic concepts A, B, Cx = B(ea) implies C =ALC B
Proof by induction on n such that e4 € B
> Base case: e € B% impliesthat B=Aand C=AC A
» Induction hypothesis (IH): For every atomic concepts A and
B, es € BT implies K = AC B
» Induction step: Assume that ey € B+
> Ifeac B, KEAC BbyIH
> If en & B%", ey has been added to BZ+ by applying rule Ry:
there exists C — B € T such that e4 € C%»
> case C atomic concept: K = ALC C (by IH). It is then easy to
check that C=ALC B
> case C=AMNA ea€Al"andesa € A" so K EAC A
and K = AC Ay (by IH). Since AiM A, C B €T, it is then
easy to check that C=ALC B
> case C = 3R.D: there exists ex € D™ s.t. (ea, ex) € R,
(ea, ex) € R™" has been added by rule Ry so EC IR.X € T
and e4 € E". K}= X C D and K = AC E (by IH). Since
KEACE KEEC3IRX, K XCD and
K =3R.D C B, it is easy to check that L = ALC B



Compact Canonical Model
Properties of Cx — Proof of Claim 2
For every concept assertion A(a), if Cx = A(a), then K |= A(a)
Proof by induction on n such that a € A%
> Base case: a € A% implies A(a) € A
» Induction hypothesis (IH): For every atomic concept A and
individual a, a € A" implies K = A(a)



Compact Canonical Model
Properties of Cx — Proof of Claim 2
For every concept assertion A(a), if Cx = A(a), then K |= A(a)
Proof by induction on n such that a € A%
> Base case: a € A% implies A(a) € A
» Induction hypothesis (IH): For every atomic concept A and
individual a, a € A" implies K = A(a)
» Induction step: Assume that a € AZr1
> If ac AL, K |= A(a) by IH
> If a ¢ A", a has been added to A7+ by applying rule Ry:
there exists C _ A € T such that a € C%»



Compact Canonical Model
Properties of Cx — Proof of Claim 2
For every concept assertion A(a), if Cx = A(a), then K |= A(a)
Proof by induction on n such that a € A%
> Base case: a € A% implies A(a) € A
» Induction hypothesis (IH): For every atomic concept A and
individual a, a € A" implies K = A(a)
» Induction step: Assume that a € AZr1
> If ac AL, K |= A(a) by IH
> If a ¢ A", a has been added to A7+ by applying rule Ry:
there exists C _ A € T such that a € C%»
> case C atomic concept: K = C(a) (by IH). It is then easy to
check that K |= A(a)
» case C = A1 M Az K |= Ai(a) and K = Ax(a) (by IH). Since
A1 A C A€ T, itis then easy to check that K = A(a)
> case C = 3R.D: there exists x € D™ s.t. (a,x) € R™
—if x is an individual, R(a, x) € A and K = D(x) (by IH) so
since GR.DC A€ T, it is easy to check that K = A(a)
—ifx=ex, ECIRXET and ac ET so K |= E(a) (by
IH). By Claim 1, £ |= X C D. It is then easy to check that
K = A(a)



Exercise

Build the compact canonical model of (7,.A) and use it to classify
T and find all assertions entailed by (T, .A)

T={ANBCD, BNDCC, 3S.DCD,
CC3RA CC3IRB, BC3IS.D}
A={A(a), B(a), S(a,b), D(b)}



Classification Algorithm

Given a TBox 7T in normal form, complete 7 using saturation rules

AlCB BLCA
r AL C A
CRs AL CE A

CR/ CRJ

AC A ACT

CRTAgAl AC A A MNALCB CRTA;HR.Al A CB 3JRBLCB
4 ACB 5 AC B

> Instantiated rule: obtained by replacing A, A1, A>, B, By by
atomic concepts or T and R by atomic role
» Instantiated rule with premises a1, ..., a, and conclusion 3 is
applicable if {a1,...,a,} CT and 5 ¢ T.
P premises: axioms above the line
» conclusion: axiom below the line

Applying the rule adds 5 to T



Classification Algorithm

AiCB BLCA
CRT CRJ R L== = =72
AC A ACT ALC Ay

;s ACA ACA ANALCSB s AC3RA, A CB 3RBLCB
CR] CR!
ACB ALC B

Classify T find all atomic concepts A, B such that T = ALC B
» Exhaustively apply instantiated saturation rules to T
> the resulting TBox sat(7) is called the saturated TBox

» For every atomic concepts A and B, return that 7T = AC B
iff AC B € sat(7)

Lemma
All exhaustive sequences of rule applications lead to a unique
saturated TBox



Classification Algorithm
Example
T={ACD, CNDCB, DC3R.D,
JRECC, 3RTLCE}



Classification Algorithm
Example
T={ACD, CnDCB, DLC3R.D,
JRECC, 3RTLCE}




Classification Algorithm
Example
T={ACD, CnDCB, DLC3R.D,
JRECC, 3RTLCE}

ACA BCB ccc DCD ECE

ACT BCT CCT DCT ECT

DCIRD DCT JRTLCE DC3IRD DCE JRECC

DCE DC C



Classification Algorithm
Example
T={ACD, CnDCB, DLC3R.D,
JRECC, 3RTLCE}

ACA BCB ccc DCD ECE

ACT BCT CCT DCT ECT

DCIRD DCT JRTLCE DC3IRD DCE JRECC

DCE DC C

bCD DCC DncCCB
DCB




Classification Algorithm
Example
T={ACD, CnDCB, DLC3R.D,
JRECC, 3RTLCE}

ACA BCB ccc DCD ECE

ACT BCT CCT DCT ECT

DCIRD DCT JRTLCE DC3IRD DCE JRECC

DCE DC C

bCD DCC DncCCB
DCB




Classification Algorithm

Termination and complexity

Classification algorithm runs in polynomial time w.r.t. the size of T

» Each rule application adds a concept inclusion of the form
A C B with A and B atomic concepts from T or T

» The number of such concept inclusions is quadratic in the
number of atomic concepts that occur in T



Classification Algorithm

AiC B BL A
CRT — CRT CRIF 2=~ ~ =77
Soundness 1 AT A 2 ACT 3 AT A
T ACA ACA ANALCSB + AC3IRA, A LB 3IRB LB
CR, CRg

AC B AC B

If AC Besat(T)then T EALC B.

Show that if 8 is added to 7 by applying a saturation rule whose
premises are entailed by 7, then 7 = 3
> CRZ— or CR2T case: [ is of the foom AC Aor AC T and
holds in every interpretation, so 7 = 3
> CR; case: f=A1C A, TEALCBandTEBLCA;
> let Z be a model of T: A C BT and B% C A% so AT C AZ,
yielding Z = A; C Ay
> hence T = A C A

» CR/ and CR{ cases: left as practice

The property follows by induction on the number of rule
applications before A C B has been added to sat(7)



Classification Algorithm

Completeness

If 7= AC B then AC B € sat(T).

Show the contrapositive: if AC B ¢ sat(7T), then T = AC B
> Define an interpretation Zg,(1) from sat(7)

» A=) = {es | Ais an atomic concept in T} U {eT}
> Al = {eg | BC A € sat(T)}
» RIaum) = {(es,eg) | AC C €sat(T),C C IR.B € sat(T)}

> Claim: Zg,(7) is @ model of 7 and AC B ¢ sat(7) implies
that Isat(T) l# ACB

> If AC B ¢ sat(T), then Zoyy FAC B, so T £ AC B

Remark: Zg,(7) is actually the compact canonical model of (7, )



Classification Algorithm
Completeness — Proof of the claim

Ty E T and AC B ¢ sat(T) implies that Zg,(7) £ AC B

> Isat(T) is a model of sat(7): let 8 € sat(7)

» Case ﬁ = AL B: if ep € A%=7), then D C A € sat(T)
By CRy, D C B € sat(T), so ep € BT=(7)
> Case B=A;MAy C B: if ep € (A; 1 Ay)T=n), then
DC A, €sat(T) and D C A € sat(T)
By CR/, D C B € sat(T), so ep € BT=(7)
> Case 3= AL 3R.B: if ep € A=7), then D C A € sat(7)
By construction of Zg,(7), it follows that (ep, es) € RZsa(7)
By CR{, BC B € sat(T) so eg € BL=": ep € IR.BLT=n)
» Case f=3R.BLC A: if ep € IR.BT=T), then there exists
ec € BZ=(7 such that (ep, ec) € REs=7)
Hence C C B € sat(7T) and D C 3R.C € sat(T)
By CR{, D C A € sat(T), so ep € AZs=n)

> Since T C sat(7), it follows that Zg, () = T

> If AC B ¢ sat(T), then eq ¢ BX=47) while eq € ALst(T
(since AC A ¢ sat(7) by CR{) so Loy FAC B



Instance Checking
Add rules to derive assertions to the saturation rules
ALCB BLCA
CRI
3 ALC A

CR; CRJ

AC A ACT
rACA ACA, ANACB  rAC3RA ALCB IRBLSB
4

R AC B 5 AC B

AC B A2
Rism R

CRA AiMAC B Ai(a) Aa)
’ B(a)

ra SRACB R(a,b) A(b)

¢ B(2)

» Take as input an ££ KB (T, A) with 7 in normal form and
an atomic concept A
» Exhaustively apply instantiated saturation rules to (7,.4)
» the resulting KB sat(7,.A) = (T*, A*) is the saturated KB

» For every individual a, return (7, A) = A(a) iff A(a) € A*



Instance Checking

» The instance checking algorithm adds a number of concept

inclusions and concept assertions which is at most quadratic
in the size of the KB, hence runs in polynomial time

» Soundness: left as practice

Completeness: Show the contrapositive: if A(a) ¢ A*, then
(T, A) I~ Aa)
» Define an interpretation Z* from sat(7,.A) = (T*, A*)
» AT = {c| ¢ individual from A} U
{ea | Ais an atomic concept in T} U {eT}
> czi = ¢ for every individual ¢ from A
> AT ={c|A(c)e A'}Ufes |[BCACT"}
» RY ={(c,d)| R(c,d) € A*}U
{(a,e8) |ACIR.Be T, A(a) € A" }U
{(ea,e8) | AL CE€T*,CC3IRBeT"}
» Claim: Z* is a model of (T, .A) and A(a) & A* implies that
I* [~ A(a): left as practice



Exercise

Normalize 7 and apply the saturation algorithm to classify 7 and
find the assertions entailed by (7, .A)

T ={35.BC D, 3IRDC E, IRAC IRIS.(BNC)}

A= {R(a b), A(b)}



A Saturation Algorithm for ELZ

» £LT = EL + inverse roles
C=T|A|CNC|3IRC|3IR .C

> Axiom entailment is EXPTIME-complete
» However, £LT retains some nice properties

» canonical model (no case-based reasoning)
» can extend the saturation algorithm to handle ££7

> may produce an exponential number of concept inclusions
» deduce AMMDC 3R (BME) from AC3R.Band 3R".DC E

» The same holds for ELHT | = ELT + role inclusions + L



A Saturation Algorithm for ELZ

T T
s {ACBY., BnN---NB,CB S MC3S(NAN) NCA
CR] i= CR]
ACB M E 3S. (NN A)
cRr MEIS(NNA) 3SACE  or MCISN Ginv(S)AC B
MC B MMOAC 35.(NMB)
C i n
CR CRA Al M1l An = B {A’(a)}I:].
T(a) B(a)
2 JRACB R(ab) Ab) 2 IR-ACB R(ba) A(b)
CRA CR)
B(a) B(a)

> Ris an atomic role, S:= R| R, inv(R) =R~ and inv(R™) =R
> A, B, A, B; are atomic concepts or T

» M, N, N’ are conjunctions of atomic concepts or T, treated as sets
(no repetition, the order does not matter)



A Saturation Algorithm for ELZ

Example

CR; CR]

AC A ACT
crr YAEBIL, BiN---NB,CB  r MC3IS(NON) NCA
3 ACB Y MC3S (NN TA)
cRf MC3S(NMA) 3SACB .y MC3SN Sinv(S)ACB
5 MC B 6 MMNAC35.(NMB)

T={ACRB,3R-.CCD, DCE,3RECF, GCA GC C}



A Saturation Algorithm for ELZ

Example

CR{ CR{

ACA ACT

crr YAEBIL, BiN---NB,CB  r MC3IS(NON) NCA
3 ACB Y MC3S (NN TA)

; MC3S(NMA) 3SACB

; MCT3S.N 3Jinv(S).ACB
CR{
MC B

CR{
MM AC 35.(NMB)

T={ACRB,3R-.CCD, DCE,3RECF, GCA GC C}

AC3IRB 3IR-.CCD
AN CC3R(BMD)

(CR)



A Saturation Algorithm for ELZ

Example CRT
1

CR]
AC A ACT

crr {ACEBIL, BiN---NB,CB  p MC3S(NON) NCA
3 ACB Y MC3S (NN TA)

cRf MC3S(NMA) 3SACB .y MC3SN Sinv(S)ACB
5 MC B 6 MMNAC35.(NMB)

T={ACRB,3JR-.CCD, DCE,JRECF, GCA GLCC}
AC3IRB 3IR-.CCD
AN CC3R(BMD)

ANCC3R(BND) DCE
ANCC 3R(BNDNE)

(CR)

(CRJ)



A Saturation Algorithm for ELZ

Example CRT
1

CR]
AC A ACT

crr YAEBIL, BiN---NB,CB  r MC3IS(NON) NCA
3 ACB Y MC3S (NN TA)

cRf MC3S(NMA) 3SACB .y MC3SN Sinv(S)ACB
5 MC B 6 MMNAC35.(NMB)

T={ACRB,3JR-.CCD, DCE,JRECF, GCA GLCC}
AC3IRB 3IR-.CCD
AN CC3R(BMD)
ANCC3R(BND) DCE
ANCC3R(BNDMNE)

ANCC3R(BNDNE) 3RECF
ANCCF

(CR)

(CRJ)

(CRJ)



A Saturation Algorithm for ELZ

Example CRT
1

CR]
AC A ACT

crr YAEBIL, BiN---NB,CB  r MC3IS(NON) NCA
3 ACB Y MC3S (NN TA)

cRf MC3S(NMA) 3SACB .y MC3SN Sinv(S)ACB
5 MC B 6 MMNAC35.(NMB)

T={ACRB,3JR-.CCD, DCE,JRECF, GCA GLCC}
AC3IRB 3IR-.CCD
AN CC3R(BMD)
ANCC3R(BND) DCE
ANCC3R(BNDMNE)

ANCC3R(BNDNE) 3RECF
ANCCF

GCA GCC ANCCF
GCF

(CR)

(CRJ)

(CRJ)

(CR9)
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