Description Logics and Reasoning on Data 2: Reasoning in \mathcal{EL}

C. Bourgaux, M. Thomazo

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline

The \mathcal{EL} family

Normalization of \mathcal{EL} TBoxes

Compact canonical model

Saturation algorithm for classification

Saturation algorithm for instance checking

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A saturation algorithm for \mathcal{ELI}

References

Lightweight Description Logics

- ► Reasoning in *ALC* and all its extensions is **EXPTIME-hard**
- EXPTIME-hardness already holds for *FL*₀, the *ALC* fragment without ¬, ⊔ and ∃, whose concepts are built according to the following grammar: C := ⊤ | A | C ⊓ C | ∀R.C
- Some applications require very large ontologies and/or data
 - SNOMED CT (medical ontology) > 350 000 concepts
 - ► NCI (National Cancer Institute Thesaurus) ≈ 20 000 concepts
 - ► GO (Gene Ontology) ≈ 30 000 concepts
- Many of them do not require universal restrictions (∀R.C) but rather existential restrictions (∃R.C)
- Since the mid 2000's, increasing interest in lightweight DLs
 - reasoning in polynomial time
 - expressivity sufficient for many applications
 - allow for existential restrictions

Lightweight Description Logics

Two main families of lightweight DLs

- the \mathcal{EL} family
 - designed to allow efficient reasoning with large ontologies

- core of the OWL 2 EL profile
- the DL-Lite family
 - designed for ontology-mediated query answering
 - core of the OWL 2 QL profile
 - cf. course on query rewriting

The \mathcal{EL} Family

 \mathcal{EL} concepts are built according to the following grammar:

 $C := \top \mid A \mid C \sqcap C \mid \exists R.C$

and an \mathcal{EL} Tbox contains only concept inclusions $C_1 \sqsubseteq C_2$

- ▶ Fragment of ALC without ¬, \sqcup and \forall
- Possible extensions that remain tractable
 - *EL*⊥: ⊥ to express disjoint concepts
 - *EL^{dr}*: domain and range restrictions
 - dom(R) $\sqsubseteq C$ ($\equiv \exists R. \top \sqsubseteq C$, already in plain \mathcal{EL})
 - ▶ ran(R) \sqsubseteq C (= $\exists R^- . \top \sqsubseteq$ C, not expressible in plain \mathcal{EL})
 - *ELO*: nominals {*o*}
 - ► (complex) role inclusions $R_1 \circ \cdots \circ R_n \sqsubseteq R_{n+1}$ (includes transitivity (trans R) $\equiv R \circ R \sqsubseteq R$)
- OWL 2 EL profile includes all these extensions
- ► Adding any of the constructors ¬, □, ∀, R⁻ makes reasoning EXPTIME-hard

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Focus on plain \mathcal{EL} : the TBox contains concept inclusions $C_1 \sqsubseteq C_2$ with $C := \top \mid A \mid C \sqcap C \mid \exists R.C$

- Satisfiability is trivial

 I = ({e}, ·^{*I*}), a^{*I*} = e, A^{*I*} = {e}, R^{*I*} = {(e, e)}
- Subsumption/classification or instance checking are not!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- cannot be reduced to satisfiability
- focus on these reasoning tasks

Reasoning in \mathcal{EL}

Subsumption: Given an \mathcal{EL} TBox \mathcal{T} and two \mathcal{EL} concepts C and D, decide whether $\mathcal{T} \models C \sqsubseteq D$

▶ We will assume that *C* and *D* are atomic concepts

• if C, D are \mathcal{EL} complex concepts,

$\mathcal{T} \models C \sqsubseteq D \text{ iff } \mathcal{T} \cup \{A \sqsubseteq C, D \sqsubseteq B\} \models A \sqsubseteq B$

where A, B are fresh concept names

Classification: Given an \mathcal{EL} TBox \mathcal{T} , find all atomic concepts A, B such that $\mathcal{T} \models A \sqsubseteq B$

Instance checking: Given an \mathcal{EL} KB $\langle \mathcal{T}, \mathcal{A} \rangle$ and an \mathcal{EL} concept C, decide for every individual a from \mathcal{A} whether $\langle \mathcal{T}, \mathcal{A} \rangle \models C(a)$

▶ We will assume that *C* is an atomic concept

$$\blacktriangleright \langle \mathcal{T}, \mathcal{A} \rangle \models C(a) \text{ iff } \langle \mathcal{T} \cup \{ C \sqsubseteq A \}, \mathcal{A} \rangle \models A(a)$$

Normal Form of \mathcal{EL} TBoxes

An \mathcal{EL} TBox is in normal form if it contains only concept inclusions of one of the following forms:

 $A \sqsubseteq B$ $A_1 \sqcap A_2 \sqsubseteq B$ $A \sqsubseteq \exists R.B$ $\exists R.A \sqsubseteq B$

where A, A_1, A_2 and B are atomic concepts or \top

- For every *EL* TBox *T*, we can construct in polynomial time *T'* in normal form (possibly using new concept names) such that
 - ▶ for every $C \sqsubseteq D$ which uses only concept names from \mathcal{T} , $\mathcal{T} \models C \sqsubseteq D$ iff $\mathcal{T}' \models C \sqsubseteq D$
 - For every ABox A and assertion α that uses atomic concepts from (T, A), (T, A) ⊨ α iff (T', A) ⊨ α

We will assume that TBoxes are in normal form

Normalization algorithm

Exhaustively apply the following normalization rules to ${\mathcal T}$

NR ₀	$\hat{C} \sqsubseteq \hat{D}$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqsubseteq \hat{D}$
$NR^{\ell,1}_{\sqcap}$	$C\sqcap\hat{D}\sqsubseteq B$	\rightarrow	$\hat{D} \sqsubseteq A$,	$C \sqcap A \sqsubseteq B$
$NR^{\ell,2}_{\sqcap}$	$\hat{C}\sqcap D\sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqcap D \sqsubseteq B$
NR^ℓ_\exists	$\exists R.\hat{C} \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$\exists R.A \sqsubseteq B$
NR_{\exists}^{r}	$B \sqsubseteq \exists R.\hat{C}$	\rightarrow	$A \sqsubseteq \hat{C},$	$B \sqsubseteq \exists R.A$
NR_{\Box}^{r}	$B \sqsubseteq D \sqcap E$	\rightarrow	$B \sqsubseteq D$,	$B \sqsubseteq E$

where

- C, D, E are arbitrary \mathcal{EL} concepts
- $\hat{\mathcal{C}},\hat{\mathcal{D}}$ are \mathcal{EL} concepts that are neither atomic concepts nor op

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► *B* is an atomic concept
- ► A is a fresh atomic concept

Normalization of \mathcal{EL} TBoxes $_{\text{Example}}$

NR_0	$\hat{C} \sqsubseteq \hat{D}$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqsubseteq \hat{D}$
$NR^{\ell,1}_{\sqcap}$	$C\sqcap\hat{D}\sqsubseteq B$	\rightarrow	$\hat{D} \sqsubseteq A$,	$C \sqcap A \sqsubseteq B$
$NR^{\ell,2}_{\sqcap}$	$\hat{C} \sqcap D \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqcap D \sqsubseteq B$
NR^ℓ_\exists	$\exists R.\hat{C} \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$\exists R.A \sqsubseteq B$
NR_{\exists}^{r}	$B \sqsubseteq \exists R.\hat{C}$	\rightarrow	$A \sqsubseteq \hat{C},$	$B \sqsubseteq \exists R.A$
NR^r_{\sqcap}	$B \sqsubseteq D \sqcap E$	\rightarrow	$B \sqsubseteq D$,	$B \sqsubseteq E$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Normalize $\mathcal{T} = \{ \exists R. C \sqcap D \sqsubseteq \exists S. \exists R. C \}$

Normalization of \mathcal{EL} TBoxes $_{\text{Example}}$

NR_0	$\hat{C} \sqsubseteq \hat{D}$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqsubseteq \hat{D}$
$NR_{\sqcap}^{\ell,1}$	$C\sqcap\hat{D}\sqsubseteq B$	\rightarrow	$\hat{D} \sqsubseteq A$,	$C \sqcap A \sqsubseteq B$
$NR^{\ell,2}_{\sqcap}$	$\hat{C} \sqcap D \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqcap D \sqsubseteq B$
NR^ℓ_\exists	$\exists R.\hat{C} \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$\exists R.A \sqsubseteq B$
NR_{\exists}^{r}	$B \sqsubseteq \exists R.\hat{C}$	\rightarrow	$A \sqsubseteq \hat{C},$	$B \sqsubseteq \exists R.A$
NR_{\Box}^{r}	$B \sqsubseteq D \sqcap E$	\rightarrow	$B \sqsubseteq D$,	$B \sqsubseteq E$

Normalize $\mathcal{T} = \{ \exists R. C \sqcap D \sqsubseteq \exists S. \exists R. C \}$

 $\exists R.C \sqcap D \sqsubseteq \exists S.\exists R.C \rightarrow \exists R.C \sqcap D \sqsubseteq A_1, \quad A_1 \sqsubseteq \exists S.\exists R.C \quad (\mathsf{NR}_0) \\ \exists R.C \sqcap D \sqsubseteq A_1 \rightarrow \exists R.C \sqsubseteq A_2, \quad A_2 \sqcap D \sqsubseteq A_1 \quad (\mathsf{NR}_{\sqcap}^{\ell,2}) \\ A_1 \sqsubseteq \exists S.\exists R.C \rightarrow A_1 \sqsubseteq \exists S.A_3, \quad A_3 \sqsubseteq \exists R.C \quad (\mathsf{NR}_{\exists}^{r}) \\ \end{cases}$

Normalized TBox:

 $\mathcal{T}' = \{ \exists R.C \sqsubseteq A_2, \ A_2 \sqcap D \sqsubseteq A_1, \ A_1 \sqsubseteq \exists S.A_3, \ A_3 \sqsubseteq \exists R.C \}$

Termination and complexity

For every input \mathcal{EL} TBox \mathcal{T} , the normalization algorithm terminates in linear time w.r.t. the size of \mathcal{T} .

- Proof based on abnormality degree of T
- Abnormal occurrence of a concept C within \mathcal{T} :
 - $C \sqsubseteq D$, where C, D are neither atomic concepts nor \top
 - C is neither an atomic concept nor ⊤, and is under a conjunction or an existential restriction
 - C is under a conjunction operator on the right hand side
- Abnormality degree of \mathcal{T} : number of abnormal occurrences
 - ► a TBox with abnormality degree 0 is in normal form
 - \blacktriangleright the abnormality degree is bounded by the size of ${\mathcal T}$

 \blacktriangleright Claim: Each rule decreases the abnormality degree of ${\cal T}$

Termination and complexity - Proof of the claim

- If \mathcal{T}' is obtained from \mathcal{T} by applying NR₀

 - decreases the abnormality degree by 1
 - ▶ removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C}
 - does not modify other abnormal occurrences

Termination and complexity - Proof of the claim

- \blacktriangleright If \mathcal{T}' is obtained from $\mathcal T$ by applying NR_0
 - $\mathcal{T}' = \mathcal{T} \setminus \{ \hat{C} \sqsubseteq \hat{D} \} \cup \{ \hat{C} \sqsubseteq A, \ A \sqsubseteq \hat{D} \}$
 - decreases the abnormality degree by 1
 - ▶ removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C}
 - does not modify other abnormal occurrences
- If \mathcal{T}' is obtained from \mathcal{T} by applying $\mathsf{NR}_{\sqcap}^{\ell,1}$
 - $\blacktriangleright \ \mathcal{T}' = \mathcal{T} \setminus \{ C \sqcap \hat{D} \sqsubseteq B \} \cup \{ \hat{D} \sqsubseteq A, \ C \sqcap A \sqsubseteq B \}$
 - decreases the abnormality degree by 1
 - ▶ removes abnormal occurrence $C \sqcap \hat{D}$ of \hat{D}
 - ► does not modify the number of other abnormal occurrences $(C \sqcap \hat{D} \text{ is an abnormal occurrence of } C \inf C \sqcap A \text{ is one})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Termination and complexity - Proof of the claim

- ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying NR₀ $\blacktriangleright \mathcal{T}' = \mathcal{T} \setminus \{ \hat{C} \sqsubset \hat{D} \} \cup \{ \hat{C} \sqsubset A, \ A \sqsubset \hat{D} \}$ decreases the abnormality degree by 1 ▶ removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C} does not modify other abnormal occurrences ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying NR^{$\ell,1$} $\blacktriangleright \mathcal{T}' = \mathcal{T} \setminus \{ C \sqcap \hat{D} \sqsubseteq B \} \cup \{ \hat{D} \sqsubseteq A, C \sqcap A \sqsubseteq B \}$ decreases the abnormality degree by 1 \blacktriangleright removes abnormal occurrence $C \Box \hat{D}$ of \hat{D} does not modify the number of other abnormal occurrences $(C \sqcap \hat{D} \text{ is an abnormal occurrence of } C \sqcap f \cap A \text{ is one})$ ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying NR^{*r*}_∃ $\blacktriangleright \mathcal{T}' = \mathcal{T} \setminus \{ B \sqsubseteq \exists R. \hat{C} \} \cup \{ A \sqsubseteq \hat{C}, B \sqsubseteq \exists R. A \}$
 - $I = I \setminus \{B \sqsubseteq \exists R.C\} \cup \{A \sqsubseteq C, B \sqsubseteq \exists R \\ lecreases the abnormality degree by 1$
 - For the removes abnormal occurrence $\exists R.\hat{C}$ of \hat{C}
 - does not modify other abnormal occurrences

Termination and complexity - Proof of the claim

- \blacktriangleright If \mathcal{T}' is obtained from \mathcal{T} by applying NR₀ $\blacktriangleright \mathcal{T}' = \mathcal{T} \setminus \{ \hat{C} \sqsubset \hat{D} \} \cup \{ \hat{C} \sqsubset A, \ A \sqsubset \hat{D} \}$ decreases the abnormality degree by 1 ▶ removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C} does not modify other abnormal occurrences ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying NR^{$\ell,1$} $\blacktriangleright \mathcal{T}' = \mathcal{T} \setminus \{ C \sqcap \hat{D} \sqsubset B \} \cup \{ \hat{D} \sqsubset A, C \sqcap A \sqsubset B \}$ decreases the abnormality degree by 1 ▶ removes abnormal occurrence $C \sqcap \hat{D}$ of \hat{D} does not modify the number of other abnormal occurrences $(C \sqcap \hat{D} \text{ is an abnormal occurrence of } C \sqcap f \cap A \text{ is one})$ • If \mathcal{T}' is obtained from \mathcal{T} by applying NR^{*r*}_¬ $\blacktriangleright \mathcal{T}' = \mathcal{T} \setminus \{ B \sqsubseteq \exists R. \hat{C} \} \cup \{ A \sqsubseteq \hat{C}, B \sqsubset \exists R. A \}$ decreases the abnormality degree by 1 \blacktriangleright removes abnormal occurrence $\exists R.\hat{C}$ of \hat{C} does not modify other abnormal occurrences
 - ▶ $NR_{\Box}^{\ell,2}$, NR_{\exists}^{ℓ} , NR_{\Box}^{r} : left as practice

Conservative Extensions

 \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 if:

- the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_2
- every model of \mathcal{T}_2 is a model of \mathcal{T}_1
- ▶ for every model \mathcal{I}_1 of \mathcal{T}_1 , there exists a model \mathcal{I}_2 of \mathcal{T}_2 with:

$$\blacktriangleright \ \Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$$

• $A^{\mathcal{I}_1} = A^{\mathcal{I}_2}$ for every atomic concept in the signature of \mathcal{T}_1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $R^{\mathcal{I}_1} = R^{\mathcal{I}_2}$ for every role in the signature of \mathcal{T}_1

Conservative Extensions

\mathcal{T}_2 is a conservative extension of \mathcal{T}_1 if:

- the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_2
- every model of \mathcal{T}_2 is a model of \mathcal{T}_1
- for every model \mathcal{I}_1 of \mathcal{T}_1 , there exists a model \mathcal{I}_2 of \mathcal{T}_2 with:

$$\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$$

- $A^{\mathcal{I}_1} = A^{\mathcal{I}_2}$ for every atomic concept in the signature of \mathcal{T}_1
- $R^{\mathcal{I}_1} = R^{\mathcal{I}_2}$ for every role in the signature of \mathcal{T}_1

Properties of conservative extensions

- ► Transitivity: If T₂ is a conservative extension of T₁, and T₃ is a conservative extension of T₂, then T₃ is a conservative extension of T₁
- If \mathcal{T}_2 is a conservative extension of \mathcal{T}_1
 - if C and D are concepts containing only concept and role names from T₁, then it holds that T₁ ⊨ C ⊑ D if and only if T₂ ⊨ C ⊑ D
 - For every ABox A and assertion α that use only atomic concepts and roles from T₁, (T₁, A) ⊨ α iff (T₂, A) ⊨ α

Soundness and completeness

- T and T' need not be equivalent due to the introduction of new atomic concepts by the normalization rules
- Claim: \mathcal{T}' is a conservative extension of \mathcal{T}

Show that if \mathcal{T}_2 is obtained from \mathcal{T}_1 by applying one of the normalization rules, then \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 . The claim follows by transitivity.

Other rules left as practice

- To decide entailment of an axiom or assertion in DL, we normally need to consider all the models of the KB
- In *EL*, for every KB *K* = ⟨*T*, *A*⟩, there exists a finite model *C_K* which can be used to check whether an assertion or an inclusion between two atomic concepts is entailed

• $C_{\mathcal{K}}$ is the compact canonical model of $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

Construction of $\mathcal{C}_\mathcal{K}$

Let $\mathcal{K}=\langle \mathcal{T},\mathcal{A}\rangle$ with \mathcal{T} an \mathcal{EL} TBox in normal form

• Start with \mathcal{I}_0 defined by

 $\Delta^{\mathcal{I}_0} = \{a \mid a \text{ individual from } \mathcal{A}\} \cup \{e_A \mid A \text{ atomic concept}\} \cup \{e_{\top}\}$ $A^{\mathcal{I}_0} = \{a \mid A(a) \in \mathcal{A}\} \cup \{e_A\}$ $R^{\mathcal{I}_0} = \{(a, b) \mid R(a, b) \in \mathcal{A}\}$ $a^{\mathcal{I}_0} = a \text{ for every individual from } \mathcal{A}$

▶ \mathcal{I}_{n+1} is obtained from \mathcal{I}_n by applying one of the following rules (note that *C* can be an atomic concept *A*, $A_1 \sqcap A_2$ or $\exists R.A$)

$$\begin{aligned} &\mathsf{R}_1: \text{if } C \sqsubseteq B \in \mathcal{T}, x \in C^{\mathcal{I}_n} \text{ and } x \notin B^{\mathcal{I}_n}, \text{ then } B^{\mathcal{I}_{n+1}} = B^{\mathcal{I}_n} \cup \{x\} \\ &\mathsf{R}_2: \text{if } A \sqsubseteq \exists R.B \in \mathcal{T}, x \in A^{\mathcal{I}_n} \text{ and } (x, e_B) \notin R^{\mathcal{I}_n}, \text{ then } R^{\mathcal{I}_{n+1}} = R^{\mathcal{I}_n} \cup \{(x, e_B)\} \end{aligned}$$

▶ When we reach I_k such that no more rules apply, set $C_K = I_k$

Example

 $\mathcal{T} = \{ A \sqsubseteq \exists R.B, \exists R.C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R.C \} \\ \mathcal{A} = \{ A(a), R(a, b), B(b), C(b) \}$

Example

 $\mathcal{T} = \{ A \sqsubseteq \exists R.B, \exists R.C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R.C \}$ $\mathcal{A} = \{ A(a), R(a, b), B(b), C(b) \}$

Example

 $\mathcal{T} = \{ A \sqsubseteq \exists R.B, \exists R.C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R.C \} \\ \mathcal{A} = \{ A(a), R(a, b), B(b), C(b) \}$

Example

Example

Example

 $\mathcal{T} = \{ A \sqsubseteq \exists R.B, \exists R.C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R.C \} \\ \mathcal{A} = \{ A(a), R(a, b), B(b), C(b) \}$

Example

 $\mathcal{T} = \{ A \sqsubseteq \exists R.B, \exists R.C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R.C \} \\ \mathcal{A} = \{ A(a), R(a, b), B(b), C(b) \}$

Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─ のへで

Example

Example

◆ロト→個ト→目と→目と 目 のなぐ

Example

◆ロト→個ト→目と→目と 目 のなぐ

Properties of $\mathcal{C}_\mathcal{K}$

- $\mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
 - $\Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
 - each rule application adds an element or pair of elements of
 Δ^{C_K} to the interpretation of an atomic concept or role from K

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Properties of $\mathcal{C}_\mathcal{K}$

- \blacktriangleright $\mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
 - $\Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
 - each rule application adds an element or pair of elements of Δ^{C_K} to the interpretation of an atomic concept or role from *K*
- $C_{\mathcal{K}}$ is a model of \mathcal{K}
 - $\blacktriangleright \ \mathcal{I}_0 \models \mathcal{A} \text{ so } \mathcal{C}_{\mathcal{K}} \models \mathcal{A}$
 - ▶ for every $C \sqsubseteq B \in \mathcal{T}$, $C^{C_{\mathcal{K}}} \subseteq B^{C_{\mathcal{K}}}$ (otherwise R₁ would apply)
 - ▶ for every $A \sqsubseteq \exists R.B \in \mathcal{T}$ and $x \in A^{\mathcal{C}_{\mathcal{K}}}$, $(x, e_B) \in R^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R₂ would apply), and since $e_B \in B^{\mathcal{C}_{\mathcal{K}}}$, $x \in \exists R.B^{\mathcal{C}_{\mathcal{K}}}$

 $\blacktriangleright \text{ hence } \mathcal{C}_{\mathcal{K}} \models \mathcal{T}$

Properties of $\mathcal{C}_\mathcal{K}$

- \blacktriangleright $\mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
 - $\Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
 - each rule application adds an element or pair of elements of Δ^{C_κ} to the interpretation of an atomic concept or role from *K*
- $C_{\mathcal{K}}$ is a model of \mathcal{K}
 - $\blacktriangleright \ \mathcal{I}_0 \models \mathcal{A} \text{ so } \mathcal{C}_{\mathcal{K}} \models \mathcal{A}$
 - ▶ for every $C \sqsubseteq B \in \mathcal{T}$, $C^{C_{\mathcal{K}}} \subseteq B^{C_{\mathcal{K}}}$ (otherwise R₁ would apply)
 - for every A ⊆ ∃R.B ∈ T and x ∈ A^{C_K}, (x, e_B) ∈ R^{C_K} (otherwise R₂ would apply), and since e_B ∈ B^{C_K}, x ∈ ∃R.B^{C_K}
 - $\blacktriangleright \text{ hence } \mathcal{C}_{\mathcal{K}} \models \mathcal{T}$
- For every concept inclusion between atomic concepts A ⊑ B, K ⊨ A ⊑ B iff C_K ⊨ B(e_A)
 - ▶ if $\mathcal{K} \models A \sqsubseteq B$, $\mathcal{C}_{\mathcal{K}} \models A \sqsubseteq B$ so since $e_A \in A^{\mathcal{C}_{\mathcal{K}}}$, $\mathcal{C}_{\mathcal{K}} \models B(e_A)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Claim 1: if $C_{\mathcal{K}} \models B(e_A)$, then $\mathcal{K} \models A \sqsubseteq B$

Properties of $\mathcal{C}_\mathcal{K}$

- $\mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
 - $\Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
 - each rule application adds an element or pair of elements of Δ^{C_K} to the interpretation of an atomic concept or role from *K*
- $C_{\mathcal{K}}$ is a model of \mathcal{K}
 - $\blacktriangleright \ \mathcal{I}_0 \models \mathcal{A} \text{ so } \mathcal{C}_{\mathcal{K}} \models \mathcal{A}$
 - ▶ for every $C \sqsubseteq B \in \mathcal{T}$, $C^{\mathcal{C}_{\mathcal{K}}} \subseteq B^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R₁ would apply)
 - for every A ⊆ ∃R.B ∈ T and x ∈ A^{C_K}, (x, e_B) ∈ R^{C_K} (otherwise R₂ would apply), and since e_B ∈ B^{C_K}, x ∈ ∃R.B^{C_K}
 - $\blacktriangleright \text{ hence } \mathcal{C}_{\mathcal{K}} \models \mathcal{T}$
- For every concept inclusion between atomic concepts A ⊑ B, K ⊨ A ⊑ B iff C_K ⊨ B(e_A)
 - ▶ if $\mathcal{K} \models A \sqsubseteq B$, $\mathcal{C}_{\mathcal{K}} \models A \sqsubseteq B$ so since $e_A \in A^{\mathcal{C}_{\mathcal{K}}}$, $\mathcal{C}_{\mathcal{K}} \models B(e_A)$

• Claim 1: if $\mathcal{C}_{\mathcal{K}} \models B(e_A)$, then $\mathcal{K} \models A \sqsubseteq B$

• for every assertion α , $\mathcal{K} \models \alpha$ iff $\mathcal{C}_{\mathcal{K}} \models \alpha$

• if
$$\mathcal{K} \models \alpha$$
, $\mathcal{C}_{\mathcal{K}} \models \alpha$

- ▶ $C_{\mathcal{K}} \models R(a, b)$ with a, b individuals implies $R(a, b) \in \mathcal{A}$
- ► Claim 2: if $C_{\mathcal{K}} \models A(a)$ with a individual, then $\mathcal{K} \models A(a)$

Example

 $\mathcal{T} = \{ A \sqsubseteq \exists R.B, \exists R.C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R.C \} \\ \mathcal{A} = \{ A(a), R(a, b), B(b), C(b) \}$

 $\mathcal{C}_{\mathcal{K}} \models C(a) \Rightarrow \mathcal{K} \models C(a) \qquad \mathcal{C}_{\mathcal{K}} \models D(a) \Rightarrow \mathcal{K} \models D(a)$ $\mathcal{C}_{\mathcal{K}} \models D(b) \Rightarrow \mathcal{K} \models D(b) \qquad \mathcal{C}_{\mathcal{K}} \models D(e_{\mathcal{C}}) \Rightarrow \mathcal{K} \models \mathcal{C} \sqsubseteq D$

・ロト・西ト・西ト・日・ 白・ シック

e⊤

Properties of $\mathcal{C}_{\mathcal{K}}$ – Proof of Claim 1

For all atomic concepts A, B, $C_{\mathcal{K}} \models B(e_A)$ implies $\mathcal{K} \models A \sqsubseteq B$ Proof by induction on *n* such that $e_A \in B^{\mathcal{I}_n}$

- ▶ Base case: $e_A \in B^{\mathcal{I}_0}$ implies that B = A and $\mathcal{K} \models A \sqsubseteq A$
- Induction hypothesis (IH): For every atomic concepts A and B, e_A ∈ B^{In} implies K ⊨ A ⊑ B

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Properties of $\mathcal{C}_\mathcal{K}$ – Proof of Claim 1

For all atomic concepts A, B, $C_{\mathcal{K}} \models B(e_A)$ implies $\mathcal{K} \models A \sqsubseteq B$ Proof by induction on *n* such that $e_A \in B^{\mathcal{I}_n}$

- ▶ Base case: $e_A \in B^{\mathcal{I}_0}$ implies that B = A and $\mathcal{K} \models A \sqsubseteq A$
- Induction hypothesis (IH): For every atomic concepts A and B, e_A ∈ B^{In} implies K ⊨ A ⊑ B
- ▶ Induction step: Assume that $e_A \in B^{\mathcal{I}_{n+1}}$
 - ▶ If $e_A \in B^{\mathcal{I}_n}$, $\mathcal{K} \models A \sqsubseteq B$ by IH
 - ▶ If $e_A \notin B^{\mathcal{I}_n}$, e_A has been added to $B^{\mathcal{I}_{n+1}}$ by applying rule R_1 : there exists $C \sqsubseteq B \in \mathcal{T}$ such that $e_A \in C^{\mathcal{I}_n}$

Properties of $\mathcal{C}_\mathcal{K}$ – Proof of Claim 1

For all atomic concepts A, B, $C_{\mathcal{K}} \models B(e_A)$ implies $\mathcal{K} \models A \sqsubseteq B$ Proof by induction on *n* such that $e_A \in B^{\mathcal{I}_n}$

- ▶ Base case: $e_A \in B^{\mathcal{I}_0}$ implies that B = A and $\mathcal{K} \models A \sqsubseteq A$
- Induction hypothesis (IH): For every atomic concepts A and B, e_A ∈ B^{In} implies K ⊨ A ⊑ B
- ▶ Induction step: Assume that $e_A \in B^{\mathcal{I}_{n+1}}$
 - ▶ If $e_A \in B_{-}^{\mathcal{I}_n}$, $\mathcal{K} \models A \sqsubseteq B$ by IH
 - If e_A ∉ B^{I_n}, e_A has been added to B^{I_{n+1}} by applying rule R₁: there exists C ⊆ B ∈ T such that e_A ∈ C^{I_n}
 - case C atomic concept: K ⊨ A ⊑ C (by IH). It is then easy to check that K ⊨ A ⊑ B
 - ▶ case $C = A_1 \sqcap A_2$: $e_A \in A_1^{\mathcal{I}_n}$ and $e_A \in A_2^{\mathcal{I}_n}$ so $\mathcal{K} \models A \sqsubseteq A_1$ and $\mathcal{K} \models A \sqsubseteq A_2$ (by IH). Since $A_1 \sqcap A_2 \sqsubseteq B \in \mathcal{T}$, it is then easy to check that $\mathcal{K} \models A \sqsubseteq B$
 - ► case $C = \exists R.D$: there exists $e_X \in D^{\mathcal{I}_n}$ s.t. $(e_A, e_X) \in R^{\mathcal{I}_n}$. $(e_A, e_X) \in R^{\mathcal{I}_n}$ has been added by rule R_2 so $E \sqsubseteq \exists R.X \in \mathcal{T}$ and $e_A \in E^{\mathcal{I}_n}$. $\mathcal{K} \models X \sqsubseteq D$ and $\mathcal{K} \models A \sqsubseteq E$ (by IH). Since $\mathcal{K} \models A \sqsubseteq E$, $\mathcal{K} \models E \sqsubseteq \exists R.X$, $\mathcal{K} \models X \sqsubseteq D$ and $\mathcal{K} \models \exists R.D \sqsubseteq B$, it is easy to check that $\mathcal{K} \models A \sqsubseteq B$

Properties of $\mathcal{C}_\mathcal{K}$ – Proof of Claim 2

For every concept assertion A(a), if $C_{\mathcal{K}} \models A(a)$, then $\mathcal{K} \models A(a)$ Proof by induction on *n* such that $a \in A^{\mathcal{I}_n}$

- ▶ Base case: $a \in A^{\mathcal{I}_0}$ implies $A(a) \in \mathcal{A}$
- Induction hypothesis (IH): For every atomic concept A and individual a, a ∈ A^{In} implies K ⊨ A(a)

Properties of $\mathcal{C}_{\mathcal{K}}$ – Proof of Claim 2

For every concept assertion A(a), if $C_{\mathcal{K}} \models A(a)$, then $\mathcal{K} \models A(a)$ Proof by induction on *n* such that $a \in A^{\mathcal{I}_n}$

- ▶ Base case: $a \in A^{\mathcal{I}_0}$ implies $A(a) \in \mathcal{A}$
- Induction hypothesis (IH): For every atomic concept A and individual a, a ∈ A^{In} implies K ⊨ A(a)
- ▶ Induction step: Assume that $a \in A^{\mathcal{I}_{n+1}}$
 - ▶ If $a \in A^{\mathcal{I}_n}$, $\mathcal{K} \models A(a)$ by IH
 - If a ∉ A^{I_n}, a has been added to A^{I_{n+1}} by applying rule R₁: there exists C ⊑ A ∈ T such that a ∈ C^{I_n}

Properties of $\mathcal{C}_\mathcal{K}$ – Proof of Claim 2

For every concept assertion A(a), if $C_{\mathcal{K}} \models A(a)$, then $\mathcal{K} \models A(a)$ Proof by induction on *n* such that $a \in A^{\mathcal{I}_n}$

- ▶ Base case: $a \in A^{\mathcal{I}_0}$ implies $A(a) \in \mathcal{A}$
- Induction hypothesis (IH): For every atomic concept A and individual a, a ∈ A^{In} implies K ⊨ A(a)

▶ Induction step: Assume that $a \in A^{\mathcal{I}_{n+1}}$

▶ If
$$a \in A^{\mathcal{I}_n}$$
, $\mathcal{K} \models A(a)$ by IH

- If a ∉ A^{I_n}, a has been added to A^{I_{n+1}} by applying rule R₁: there exists C ⊑ A ∈ T such that a ∈ C^{I_n}
 - case C atomic concept: K ⊨ C(a) (by IH). It is then easy to check that K ⊨ A(a)
 - ▶ case $C = A_1 \sqcap A_2$: $\mathcal{K} \models A_1(a)$ and $\mathcal{K} \models A_2(a)$ (by IH). Since $A_1 \sqcap A_2 \sqsubseteq A \in \mathcal{T}$, it is then easy to check that $\mathcal{K} \models A(a)$
 - ► case $C = \exists R.D$: there exists $x \in D^{\mathcal{I}_n}$ s.t. $(a, x) \in R^{\mathcal{I}_n}$ - if x is an individual, $R(a, x) \in \mathcal{A}$ and $\mathcal{K} \models D(x)$ (by IH) so since $\exists R.D \sqsubseteq A \in \mathcal{T}$, it is easy to check that $\mathcal{K} \models A(a)$ - if $x = e_X$, $E \sqsubseteq \exists R.X \in \mathcal{T}$ and $a \in E^{\mathcal{I}_n}$ so $\mathcal{K} \models E(a)$ (by IH). By Claim 1, $\mathcal{K} \models X \sqsubseteq D$. It is then easy to check that $\mathcal{K} \models A(a)$

Exercise

Build the compact canonical model of $\langle \mathcal{T}, \mathcal{A} \rangle$ and use it to classify \mathcal{T} and find all assertions entailed by $\langle \mathcal{T}, \mathcal{A} \rangle$

$$\mathcal{T} = \{ A \sqcap B \sqsubseteq D, \quad B \sqcap D \sqsubseteq C, \quad \exists S.D \sqsubseteq D, \\ C \sqsubseteq \exists R.A, \quad C \sqsubseteq \exists R.B, \quad B \sqsubseteq \exists S.D \} \\ \mathcal{A} = \{ A(a), \quad B(a), \quad S(a,b), \quad D(b) \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given a TBox \mathcal{T} in normal form, complete \mathcal{T} using saturation rules

$$\operatorname{CR}_1^T \frac{}{A \sqsubseteq A} \qquad \operatorname{CR}_2^T \frac{}{A \sqsubseteq \top} \qquad \operatorname{CR}_3^T \frac{A_1 \sqsubseteq B \quad B \sqsubseteq A_2}{A_1 \sqsubseteq A_2}$$

 $\mathsf{CR}_{\mathsf{4}}^{\mathsf{T}} \xrightarrow{A \sqsubseteq A_1} \xrightarrow{A \sqsubseteq A_2} \xrightarrow{A_1 \sqcap A_2 \sqsubseteq B} \mathsf{CR}_{\mathsf{5}}^{\mathsf{T}} \xrightarrow{A \sqsubseteq \exists R.A_1} \xrightarrow{A_1 \sqsubseteq B_1} \exists R.B_1 \sqsubseteq B} \xrightarrow{A \sqsubseteq B}$

- Instantiated rule: obtained by replacing A, A₁, A₂, B, B₁ by atomic concepts or ⊤ and R by atomic role
- Instantiated rule with premises $\alpha_1, \ldots, \alpha_n$ and conclusion β is applicable if $\{\alpha_1, \ldots, \alpha_n\} \subseteq \mathcal{T}$ and $\beta \notin \mathcal{T}$.
 - premises: axioms above the line
 - conclusion: axiom below the line

Applying the rule adds β to \mathcal{T}

$$CR_{1}^{T} \xrightarrow{A \sqsubseteq A} CR_{2}^{T} \xrightarrow{A \sqsubseteq \top} CR_{3}^{T} \xrightarrow{A_{1} \sqsubseteq B} B \sqsubseteq A_{2} \xrightarrow{A_{2}}$$
$$CR_{4}^{T} \xrightarrow{A \sqsubseteq A_{1}} A \sqsubseteq A_{2} \xrightarrow{A_{1}} A_{2} \sqsubseteq B CR_{5}^{T} \xrightarrow{A \sqsubseteq \exists R.A_{1}} A_{1} \sqsubseteq B_{1} \exists R.B_{1} \sqsubseteq B \xrightarrow{A \sqcup B}$$

Classify *T*: find all atomic concepts *A*, *B* such that *T* ⊨ *A* ⊑ *B*Exhaustively apply instantiated saturation rules to *T*the resulting TBox sat(*T*) is called the saturated TBox
For every atomic concepts *A* and *B*, return that *T* ⊨ *A* ⊑ *B* iff *A* ⊑ *B* ∈ sat(*T*)

Lemma

All exhaustive sequences of rule applications lead to a unique saturated TBox

Example

$$\mathcal{T} = \{ A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R.D, \\ \exists R.E \sqsubseteq C, \quad \exists R.\top \sqsubseteq E \}$$

Example

$$\mathcal{T} = \{ A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R.D, \\ \exists R.E \sqsubseteq C, \quad \exists R.\top \sqsubseteq E \}$$
$$\overline{A \sqsubseteq A} \qquad \overline{B \sqsubseteq B} \qquad \overline{C \sqsubseteq C} \qquad \overline{D \sqsubseteq D} \qquad \overline{E \sqsubseteq E} \\ \overline{A \sqsubseteq \top} \qquad \overline{B \sqsubseteq \top} \qquad \overline{C \sqsubseteq \top} \qquad \overline{D \sqsubseteq \top} \qquad \overline{E \sqsubseteq \top}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example

$$\mathcal{T} = \{ A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R.D, \\ \exists R.E \sqsubseteq C, \quad \exists R.\top \sqsubseteq E \}$$

 $\overline{A \sqsubseteq A} \qquad \overline{B \sqsubseteq B} \qquad \overline{C \sqsubseteq C} \qquad \overline{D \sqsubseteq D} \qquad \overline{E \sqsubseteq E} \\ \overline{A \sqsubseteq \top} \qquad \overline{B \sqsubseteq \top} \qquad \overline{C \sqsubseteq \top} \qquad \overline{D \sqsubseteq \top} \qquad \overline{E \sqsubseteq \top}$

 $\frac{D \sqsubseteq \exists R.D \quad D \sqsubseteq \top \quad \exists R.\top \sqsubseteq E}{D \sqsubseteq E} \qquad \frac{D \sqsubseteq \exists R.D \quad D \sqsubseteq E \quad \exists R.E \sqsubseteq C}{D \sqsubseteq C}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example

$$\mathcal{T} = \{ A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R.D, \\ \exists R.E \sqsubseteq C, \quad \exists R.\top \sqsubseteq E \}$$

 $\overline{A \sqsubseteq A} \qquad \overline{B \sqsubseteq B} \qquad \overline{C \sqsubseteq C} \qquad \overline{D \sqsubseteq D} \qquad \overline{E \sqsubseteq E} \\ \overline{A \sqsubseteq \top} \qquad \overline{B \sqsubseteq \top} \qquad \overline{C \sqsubseteq \top} \qquad \overline{D \sqsubseteq \top} \qquad \overline{E \sqsubseteq \top}$

 $\frac{D \sqsubseteq \exists R.D \quad D \sqsubseteq \top \quad \exists R.\top \sqsubseteq E}{D \sqsubseteq E} \qquad \frac{D \sqsubseteq \exists R.D \quad D \sqsubseteq E \quad \exists R.E \sqsubseteq C}{D \sqsubseteq C}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

 $\frac{D \sqsubseteq D \quad D \sqsubseteq C \quad D \sqcap C \sqsubseteq B}{D \sqsubseteq B}$

Example

$$\mathcal{T} = \{ A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R.D, \\ \exists R.E \sqsubseteq C, \quad \exists R.\top \sqsubseteq E \}$$

 $\overline{A \sqsubseteq A} \qquad \overline{B \sqsubseteq B} \qquad \overline{C \sqsubseteq C} \qquad \overline{D \sqsubseteq D} \qquad \overline{E \sqsubseteq E} \\ \overline{A \sqsubseteq \top} \qquad \overline{B \sqsubseteq \top} \qquad \overline{C \sqsubseteq \top} \qquad \overline{D \sqsubseteq \top} \qquad \overline{E \sqsubseteq \top}$

 $\frac{D \sqsubseteq \exists R.D \quad D \sqsubseteq \top \quad \exists R.\top \sqsubseteq E}{D \sqsubseteq E} \qquad \frac{D \sqsubseteq \exists R.D \quad D \sqsubseteq E \quad \exists R.E \sqsubseteq C}{D \sqsubseteq C}$

 $\frac{D \sqsubseteq D \quad D \sqsubseteq C \quad D \sqcap C \sqsubseteq B}{D \sqsubseteq B}$

 $\frac{A \sqsubseteq D \quad D \sqsubseteq E}{A \sqsubseteq E} \qquad \frac{A \sqsubseteq D \quad D \sqsubseteq C}{A \sqsubseteq C} \qquad \frac{A \sqsubseteq D \quad D \sqsubseteq B}{A \sqsubseteq B}$

Termination and complexity

Classification algorithm runs in polynomial time w.r.t. the size of ${\mathcal T}$

- ► Each rule application adds a concept inclusion of the form $A \sqsubseteq B$ with A and B atomic concepts from T or \top
- The number of such concept inclusions is quadratic in the number of atomic concepts that occur in T

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Soundness
$$CR_1^T \xrightarrow{A \sqsubseteq A} CR_2^T \xrightarrow{A \sqsubseteq T} CR_3^T \xrightarrow{A_1 \sqsubseteq B} B \sqsubseteq A_2$$

 $CR_4^T \xrightarrow{A \sqsubseteq A_1} A \sqsubseteq A_2 \xrightarrow{A_1 \sqcap A_2} \sqsubseteq B CR_5^T \xrightarrow{A \sqsubseteq \exists R.A_1} A_1 \sqsubseteq B_1 \exists R.B_1 \sqsubseteq B$

If $A \sqsubseteq B \in \mathsf{sat}(\mathcal{T})$ then $\mathcal{T} \models A \sqsubseteq B$.

Show that if β is added to \mathcal{T} by applying a saturation rule whose premises are entailed by \mathcal{T} , then $\mathcal{T} \models \beta$

CR₁^T or CR₂^T case: β is of the form A ⊑ A or A ⊑ ⊤ and holds in every interpretation, so T ⊨ β

•
$$\mathsf{CR}_3^{\mathcal{T}}$$
 case: $\beta = A_1 \sqsubseteq A_2$, $\mathcal{T} \models A_1 \sqsubseteq B$ and $\mathcal{T} \models B \sqsubseteq A_2$

▶ let \mathcal{I} be a model of \mathcal{T} : $A_1^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq A_2^{\mathcal{I}}$ so $A_1^{\mathcal{I}} \subseteq A_2^{\mathcal{I}}$, yielding $\mathcal{I} \models A_1 \sqsubseteq A_2$

$$\blacktriangleright \text{ hence } \mathcal{T} \models A_1 \sqsubseteq A_2$$

• CR_4^T and CR_5^T cases: left as practice

The property follows by induction on the number of rule applications before $A \sqsubseteq B$ has been added to sat(\mathcal{T})

Completeness

If $\mathcal{T} \models A \sqsubseteq B$ then $A \sqsubseteq B \in \mathsf{sat}(\mathcal{T})$.

Show the contrapositive: if $A \sqsubseteq B \notin sat(\mathcal{T})$, then $\mathcal{T} \not\models A \sqsubseteq B$

• Define an interpretation $\mathcal{I}_{\mathsf{sat}(\mathcal{T})}$ from $\mathsf{sat}(\mathcal{T})$

•
$$\Delta^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}} = \{e_A \mid A \text{ is an atomic concept in } \mathcal{T}\} \cup \{e_{\top}\}$$

$$A^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}} = \{ e_B \mid B \sqsubseteq A \in \mathsf{sat}(\mathcal{T}) \}$$

$$\blacktriangleright R^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}} = \{ (e_A, e_B) \mid A \sqsubseteq C \in \mathsf{sat}(\mathcal{T}), C \sqsubseteq \exists R.B \in \mathsf{sat}(\mathcal{T}) \}$$

- ► Claim: $\mathcal{I}_{sat(\mathcal{T})}$ is a model of \mathcal{T} and $A \sqsubseteq B \notin sat(\mathcal{T})$ implies that $\mathcal{I}_{sat(\mathcal{T})} \not\models A \sqsubseteq B$
- ▶ If $A \sqsubseteq B \notin sat(\mathcal{T})$, then $\mathcal{I}_{sat(\mathcal{T})} \not\models A \sqsubseteq B$, so $\mathcal{T} \not\models A \sqsubseteq B$

Remark: $\mathcal{I}_{\mathsf{sat}(\mathcal{T})}$ is actually the compact canonical model of $\langle \mathcal{T}, \emptyset \rangle$

Completeness – Proof of the claim

 $\mathcal{I}_{\mathsf{sat}(\mathcal{T})} \models \mathcal{T} \text{ and } A \sqsubseteq B \not\in \mathsf{sat}(\mathcal{T}) \text{ implies that } \mathcal{I}_{\mathsf{sat}(\mathcal{T})} \not\models A \sqsubseteq B$

• $\mathcal{I}_{\mathsf{sat}(\mathcal{T})}$ is a model of $\mathsf{sat}(\mathcal{T})$: let $\beta \in \mathsf{sat}(\mathcal{T})$

- ► Case $\beta = A \sqsubseteq B$: if $e_D \in A^{\mathcal{I}_{sat}(\mathcal{T})}$, then $D \sqsubseteq A \in sat(\mathcal{T})$ By $CR_3^{\mathcal{T}}$, $D \sqsubseteq B \in sat(\mathcal{T})$, so $e_D \in B^{\mathcal{I}_{sat}(\mathcal{T})}$
- Case $\beta = A_1 \sqcap A_2 \sqsubseteq B$: if $e_D \in (A_1 \sqcap A_2)^{\mathcal{I}_{sat(\mathcal{T})}}$, then $D \sqsubseteq A_1 \in sat(\mathcal{T})$ and $D \sqsubseteq A_2 \in sat(\mathcal{T})$ By $CR_4^{\mathcal{T}}$, $D \sqsubseteq B \in sat(\mathcal{T})$, so $e_D \in B^{\mathcal{I}_{sat(\mathcal{T})}}$
- ► Case $\beta = A \sqsubseteq \exists R.B$: if $e_D \in A^{\mathcal{I}_{sat}(\mathcal{T})}$, then $D \sqsubseteq A \in sat(\mathcal{T})$ By construction of $\mathcal{I}_{sat(\mathcal{T})}$, it follows that $(e_D, e_B) \in R^{\mathcal{I}_{sat(\mathcal{T})}}$ By $CR_1^{\mathcal{T}}$, $B \sqsubset B \in sat(\mathcal{T})$ so $e_B \in B^{\mathcal{I}_{sat(\mathcal{T})}}$: $e_D \in \exists R.B^{\mathcal{I}_{sat(\mathcal{T})}}$
- Case $\beta = \exists R.B \sqsubseteq A$: if $e_D \in \exists R.B^{\mathcal{I}_{sat(\mathcal{T})}}$, then there exists $e_C \in B^{\mathcal{I}_{sat(\mathcal{T})}}$ such that $(e_D, e_C) \in R^{\mathcal{I}_{sat(\mathcal{T})}}$ Hence $C \sqsubseteq B \in sat(\mathcal{T})$ and $D \sqsubseteq \exists R.C \in sat(\mathcal{T})$ By CR_5^T , $D \sqsubseteq A \in sat(\mathcal{T})$, so $e_D \in A^{\mathcal{I}_{sat(\mathcal{T})}}$

▶ Since $\mathcal{T} \subseteq \mathsf{sat}(\mathcal{T})$, it follows that $\mathcal{I}_{\mathsf{sat}(\mathcal{T})} \models \mathcal{T}$

► If $A \sqsubseteq B \notin \operatorname{sat}(\mathcal{T})$, then $e_A \notin B^{\mathcal{I}_{\operatorname{sat}}(\mathcal{T})}$ while $e_A \in A^{\mathcal{I}_{\operatorname{sat}}(\mathcal{T})}$ (since $A \sqsubseteq A \in \operatorname{sat}(\mathcal{T})$ by $\operatorname{CR}_1^{\mathcal{T}}$) so $\mathcal{I}_{\operatorname{sat}(\mathcal{T})} \nvDash A \sqsubseteq B$

Instance Checking

Add rules to derive assertions to the saturation rules

$$CR_{1}^{T} \xrightarrow{A \sqsubseteq A} CR_{2}^{T} \xrightarrow{A \sqsubseteq \top} CR_{3}^{T} \xrightarrow{A_{1} \sqsubseteq B} \xrightarrow{B \sqsubseteq A_{2}}{A_{1} \sqsubseteq A_{2}}$$

$$CR_{4}^{T} \xrightarrow{A \sqsubseteq A_{1}} \xrightarrow{A \sqsubseteq A_{2}} \xrightarrow{A_{1} \sqcap A_{2}} \xrightarrow{\Box B} CR_{5}^{T} \xrightarrow{A \sqsubseteq \exists R.A_{1}} \xrightarrow{A_{1} \sqsubseteq B_{1}} \xrightarrow{\exists R.B_{1}} \xrightarrow{\Box B}}{A \sqsubseteq B}$$

$$CR_{4}^{A} \xrightarrow{T(a)} CR_{2}^{A} \xrightarrow{A \sqsubseteq B} \xrightarrow{A(a)}{B(a)}$$

$$CR_{3}^{A} \xrightarrow{A_{1} \sqcap A_{2}} \xrightarrow{\Box B} \xrightarrow{A_{1}(a)} \xrightarrow{A_{2}(a)} CR_{4}^{A} \xrightarrow{\exists R.A} \xrightarrow{\Box B} \xrightarrow{R(a,b)} \xrightarrow{A(b)}{B(a)}$$

- Take as input an *EL* KB (*T*, *A*) with *T* in normal form and an atomic concept *A*
- \blacktriangleright Exhaustively apply instantiated saturation rules to $\langle \mathcal{T}, \mathcal{A} \rangle$
 - the resulting KB sat(\mathcal{T}, \mathcal{A}) = $\langle \mathcal{T}^{\star}, \mathcal{A}^{\star} \rangle$ is the saturated KB
- ► For every individual *a*, return $\langle \mathcal{T}, \mathcal{A} \rangle \models A(a)$ iff $A(a) \in \mathcal{A}^*$

Instance Checking

- The instance checking algorithm adds a number of concept inclusions and concept assertions which is at most quadratic in the size of the KB, hence runs in polynomial time
- Soundness: left as practice
- Completeness: Show the contrapositive: if $A(a) \notin A^*$, then $\langle \mathcal{T}, \mathcal{A} \rangle \not\models A(a)$
 - Define an interpretation \mathcal{I}^{\star} from sat $(\mathcal{T}, \mathcal{A}) = \langle \mathcal{T}^{\star}, \mathcal{A}^{\star} \rangle$
 - $$\begin{split} & \Delta^{\mathcal{I}^{\star}} = \{c \mid c \text{ individual from } \mathcal{A}\} \cup \\ & \{e_A \mid A \text{ is an atomic concept in } \mathcal{T}\} \cup \{e_{\top}\} \\ & c^{\mathcal{I}^{\star}} = c \text{ for every individual } c \text{ from } \mathcal{A} \\ & \mathcal{A}^{\mathcal{I}^{\star}} = \{c \mid A(c) \in \mathcal{A}^{\star}\} \cup \{e_B \mid B \sqsubseteq A \in \mathcal{T}^{\star}\} \\ & \mathcal{R}^{\mathcal{I}^{\star}} = \{(c,d) \mid \mathcal{R}(c,d) \in \mathcal{A}^{\star}\} \cup \\ & \{(a,e_B) \mid A \sqsubseteq \exists \mathcal{R}.B \in \mathcal{T}^{\star}, A(a) \in \mathcal{A}^{\star}\} \cup \\ & \{(e_A,e_B) \mid A \sqsubseteq C \in \mathcal{T}^{\star}, C \sqsubseteq \exists \mathcal{R}.B \in \mathcal{T}^{\star}\} \end{split}$$
 - ▶ Claim: \mathcal{I}^* is a model of $\langle \mathcal{T}, \mathcal{A} \rangle$ and $A(a) \notin \mathcal{A}^*$ implies that $\mathcal{I}^* \not\models A(a)$: left as practice

Exercise

Normalize \mathcal{T} and apply the saturation algorithm to classify \mathcal{T} and find the assertions entailed by $\langle \mathcal{T}, \mathcal{A} \rangle$

$$\mathcal{T} = \{ \exists S.B \sqsubseteq D, \exists R.D \sqsubseteq E, \exists R.A \sqsubseteq \exists R.\exists S.(B \sqcap C) \}$$
$$\mathcal{A} = \{ R(a, b), A(b) \}$$

•
$$\mathcal{ELI} = \mathcal{EL} + \text{ inverse roles}$$

$C := \top \mid A \mid C \sqcap C \mid \exists R.C \mid \exists R^{-}.C$

- Axiom entailment is EXPTIME-complete
- However, \mathcal{ELI} retains some nice properties
 - canonical model (no case-based reasoning)
 - \blacktriangleright can extend the saturation algorithm to handle \mathcal{ELI}
 - may produce an exponential number of concept inclusions
 - deduce $A \sqcap D \sqsubseteq \exists R.(B \sqcap E)$ from $A \sqsubseteq \exists R.B$ and $\exists R^-.D \sqsubseteq E$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• The same holds for $\mathcal{ELHI}_{\perp} = \mathcal{ELI} + \text{role inclusions} + \perp$

$$CR_{1}^{T} \xrightarrow{} CR_{2}^{T} \xrightarrow{} CR_{2}^{T} \xrightarrow{} A \sqsubseteq \top$$

$$CR_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} CR_{4}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap N') N \sqsubseteq A}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$CR_{5}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap A) \exists S.A \sqsubseteq B}{M \sqsubseteq B} CR_{6}^{T} \frac{M \sqsubseteq \exists S.N \exists inv(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

$$CR_{1}^{A} \xrightarrow{} (a) CR_{2}^{A} \frac{A_{1} \sqcap \cdots \sqcap A_{n} \sqsubseteq B}{B(a)} \{A_{i}(a)\}_{i=1}^{n}$$

$$CR_{3}^{A} \frac{\exists R.A \sqsubseteq B R(a, b) A(b)}{B(a)} CR_{4}^{A} \frac{\exists R^{-}.A \sqsubseteq B R(b, a) A(b)}{B(a)}$$

• R is an atomic role, $S := R \mid R^-$, $inv(R) = R^-$ and $inv(R^-) = R$

- ► A, B, A_i, B_i are atomic concepts or \top
- ► M, N, N' are conjunctions of atomic concepts or T, treated as sets (no repetition, the order does not matter)

Example

$$CR_{1}^{T} \xrightarrow{CR_{1}^{T}} \frac{A \sqsubseteq A}{A \sqsubseteq A} \qquad CR_{2}^{T} \xrightarrow{A \sqsubseteq \top}$$

$$CR_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} \quad B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} \qquad CR_{4}^{T} \quad \frac{M \sqsubseteq \exists S.(N \sqcap N') \quad N \sqsubseteq A}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$CR_{5}^{T} \quad \frac{M \sqsubseteq \exists S.(N \sqcap A) \quad \exists S.A \sqsubseteq B}{M \sqsubseteq B} \qquad CR_{6}^{T} \quad \frac{M \sqsubseteq \exists S.N \quad \exists inv(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

 $\mathcal{T} = \{ A \sqsubseteq R.B, \ \exists R^-.C \sqsubseteq D, \ D \sqsubseteq E, \ \exists R.E \sqsubseteq F, \ G \sqsubseteq A, \ G \sqsubseteq C \}$

Example

$$CR_{1}^{T} \xrightarrow{CR_{2}^{T}} \frac{R_{2}^{T}}{A \sqsubseteq A} \qquad CR_{2}^{T} \xrightarrow{T}$$

$$CR_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} \quad B_{1} \sqcap \dots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} \qquad CR_{4}^{T} \quad \frac{M \sqsubseteq \exists S.(N \sqcap N') \quad N \sqsubseteq A}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$CR_{5}^{T} \quad \frac{M \sqsubseteq \exists S.(N \sqcap A) \quad \exists S.A \sqsubseteq B}{M \sqsubseteq B} \qquad CR_{6}^{T} \quad \frac{M \sqsubseteq \exists S.N \quad \exists inv(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

 $\mathcal{T} = \{ A \sqsubseteq R.B, \ \exists R^-.C \sqsubseteq D, \ D \sqsubseteq E, \ \exists R.E \sqsubseteq F, \ G \sqsubseteq A, \ G \sqsubseteq C \}$

$$\frac{A \sqsubseteq \exists R.B \quad \exists R^-.C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D)} \quad (\mathsf{CR}_6^T)$$

Example

$$CR_{1}^{T} \xrightarrow{CR_{2}^{T}} CR_{2}^{T} \xrightarrow{R \sqsubseteq T}$$

$$CR_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} \quad B_{1} \sqcap \dots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} \qquad CR_{4}^{T} \quad \frac{M \sqsubseteq \exists S.(N \sqcap N') \quad N \sqsubseteq A}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$CR_{5}^{T} \quad \frac{M \sqsubseteq \exists S.(N \sqcap A) \quad \exists S.A \sqsubseteq B}{M \sqsubseteq B} \qquad CR_{6}^{T} \quad \frac{M \sqsubseteq \exists S.N \quad \exists inv(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

 $\mathcal{T} = \{ A \sqsubseteq R.B, \ \exists R^-.C \sqsubseteq D, \ D \sqsubseteq E, \ \exists R.E \sqsubseteq F, \ G \sqsubseteq A, \ G \sqsubseteq C \}$

$$\frac{A \sqsubseteq \exists R.B \quad \exists R^-.C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D)} \quad (CR_6^T)$$
$$\frac{A \sqcap C \sqsubseteq \exists R.(B \sqcap D) \quad D \sqsubseteq E}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D \sqcap E)} \quad (CR_4^T)$$

Example

$$CR_{1}^{T} \xrightarrow{CR_{2}^{T}} \frac{A \sqsubseteq A}{A \sqsubseteq A} \qquad CR_{2}^{T} \xrightarrow{A \sqsubseteq \top}$$

$$CR_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} \xrightarrow{B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}}{A \sqsubseteq B} \qquad CR_{4}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap N') \xrightarrow{N \sqsubseteq A}}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$CR_{5}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap A) \xrightarrow{\exists S.A} \sqsubseteq B}{M \sqsubseteq B} \qquad CR_{6}^{T} \frac{M \sqsubseteq \exists S.N \xrightarrow{\exists inv}(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

 $\mathcal{T} = \{ A \sqsubseteq R.B, \ \exists R^-.C \sqsubseteq D, \ D \sqsubseteq E, \ \exists R.E \sqsubseteq F, \ G \sqsubseteq A, \ G \sqsubseteq C \}$

$$\frac{A \sqsubseteq \exists R.B \quad \exists R^{-}.C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D)} \quad (CR_{6}^{T})$$
$$\frac{A \sqcap C \sqsubseteq \exists R.(B \sqcap D) \quad D \sqsubseteq E}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D \sqcap E)} \quad (CR_{4}^{T})$$
$$\frac{A \sqcap C \sqsubseteq \exists R.(B \sqcap D \sqcap E) \quad \exists R.E \sqsubseteq F}{A \sqcap C \sqsubseteq F} \quad (CR_{5}^{T})$$

Example

$$CR_{1}^{T} \xrightarrow{CR_{2}^{T}} \overrightarrow{A \sqsubseteq A} \qquad CR_{2}^{T} \xrightarrow{A \sqsubseteq \top}$$

$$CR_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} \quad B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} \qquad CR_{4}^{T} \quad \frac{M \sqsubseteq \exists S.(N \sqcap N') \quad N \sqsubseteq A}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$CR_{5}^{T} \quad \frac{M \sqsubseteq \exists S.(N \sqcap A) \quad \exists S.A \sqsubseteq B}{M \sqsubseteq B} \qquad CR_{6}^{T} \quad \frac{M \sqsubseteq \exists S.N \quad \exists inv(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

 $\mathcal{T} = \{ A \sqsubseteq R.B, \ \exists R^-.C \sqsubseteq D, \ D \sqsubseteq E, \ \exists R.E \sqsubseteq F, \ G \sqsubseteq A, \ G \sqsubseteq C \}$

$$\frac{A \sqsubseteq \exists R.B \quad \exists R^{-}.C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D)} \quad (CR_{6}^{T})$$

$$\frac{A \sqcap C \sqsubseteq \exists R.(B \sqcap D) \quad D \sqsubseteq E}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D \sqcap E)} \quad (CR_{4}^{T})$$

$$\frac{A \sqcap C \sqsubseteq \exists R.(B \sqcap D \sqcap E) \quad \exists R.E \sqsubseteq F}{A \sqcap C \sqsubseteq F} \quad (CR_{5}^{T})$$

$$\frac{G \sqsubseteq A \quad G \sqsubseteq C \quad A \sqcap C \sqsubseteq F}{G \sqsubseteq F} \quad (CR_{3}^{T})$$

э

References

- Baader, Brandt, Lutz (IJCAI 2005): Pushing the EL Envelope (https://www.ijcai.org/Proceedings/05/Papers/0372.pdf).
- Baader, Brandt, Lutz (OWLED 2008): Pushing the EL Envelope Further (https://ceur-ws.org/Vol-496/owled2008dc_paper_3.pdf).
- Bienvenu and Ortiz (RW 2015): Ontology-Mediated Query Answering with Data-Tractable Description Logics (https://www.labri.fr/perso/meghyn/papers/BieOrt-RW15.pdf)
- Kontchakov, Zakharyaschev (RW 2014): An Introduction to Description Logics and Query Rewriting (https://www.dcs.bbk.ac.uk/~roman/papers/RW12014.pdf)
- Bienvenu (2022): Ontologies & Description Logics (lecture: https://www.labri.fr/perso/meghyn/teaching/lola-2022/ 3-lola-lightweight-el.pdf)
- Baader (2019): course on Description Logics (lecture: https://tu-dresden.de/ing/informatik/thi/lat/studium/ lehrveranstaltungen/sommersemester-2019/description-logic)