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Lightweight Description Logics

▶ Reasoning in ALC and all its extensions is ExpTime-hard

▶ ExpTime-hardness already holds for FL0, the ALC fragment
without ¬, ⊔ and ∃, whose concepts are built according to the
following grammar: C := ⊤ | A | C ⊓ C | ∀R.C

▶ Some applications require very large ontologies and/or data
▶ SNOMED CT (medical ontology) > 350 000 concepts
▶ NCI (National Cancer Institute Thesaurus) ≈ 20 000 concepts
▶ GO (Gene Ontology) ≈ 30 000 concepts

▶ Many of them do not require universal restrictions (∀R.C ) but
rather existential restrictions (∃R.C )

▶ Since the mid 2000’s, increasing interest in lightweight DLs
▶ reasoning in polynomial time
▶ expressivity sufficient for many applications
▶ allow for existential restrictions



Lightweight Description Logics

▶ Two main families of lightweight DLs
▶ the EL family

▶ designed to allow efficient reasoning with large ontologies
▶ core of the OWL 2 EL profile

▶ the DL-Lite family
▶ designed for ontology-mediated query answering
▶ core of the OWL 2 QL profile
▶ cf. course on query rewriting



The EL Family

EL concepts are built according to the following grammar:

C := ⊤ | A | C ⊓ C | ∃R.C

and an EL Tbox contains only concept inclusions C1 ⊑ C2

▶ Fragment of ALC without ¬, ⊔ and ∀
▶ Possible extensions that remain tractable

▶ EL⊥: ⊥ to express disjoint concepts
▶ ELdr : domain and range restrictions

▶ dom(R) ⊑ C (≡ ∃R.⊤ ⊑ C , already in plain EL)
▶ ran(R) ⊑ C (≡ ∃R−.⊤ ⊑ C , not expressible in plain EL)

▶ ELO: nominals {o}
▶ (complex) role inclusions R1 ◦ · · · ◦ Rn ⊑ Rn+1

(includes transitivity (trans R) ≡ R ◦ R ⊑ R)

▶ OWL 2 EL profile includes all these extensions

▶ Adding any of the constructors ¬, ⊔, ∀, R− makes reasoning
ExpTime-hard



Reasoning in EL

Focus on plain EL: the TBox contains concept inclusions C1 ⊑ C2

with C := ⊤ | A | C ⊓ C | ∃R.C

▶ Satisfiability is trivial
▶ I = ({e}, ·I), aI = e, AI = {e}, RI = {(e, e)}

▶ Subsumption/classification or instance checking are not!
▶ cannot be reduced to satisfiability
▶ focus on these reasoning tasks



Reasoning in EL

Subsumption: Given an EL TBox T and two EL concepts C and
D, decide whether T |= C ⊑ D
▶ We will assume that C and D are atomic concepts

▶ if C , D are EL complex concepts,

T |= C ⊑ D iff T ∪ {A ⊑ C ,D ⊑ B} |= A ⊑ B

where A, B are fresh concept names

Classification: Given an EL TBox T , find all atomic concepts A, B
such that T |= A ⊑ B

Instance checking: Given an EL KB ⟨T ,A⟩ and an EL concept C ,
decide for every individual a from A whether ⟨T ,A⟩ |= C (a)
▶ We will assume that C is an atomic concept

▶ ⟨T ,A⟩ |= C (a) iff ⟨T ∪ {C ⊑ A},A⟩ |= A(a)



Normal Form of EL TBoxes

An EL TBox is in normal form if it contains only concept
inclusions of one of the following forms:

A ⊑ B A1 ⊓ A2 ⊑ B A ⊑ ∃R.B ∃R.A ⊑ B

where A,A1,A2 and B are atomic concepts or ⊤
▶ For every EL TBox T , we can construct in polynomial time T ′

in normal form (possibly using new concept names) such that
▶ for every C ⊑ D which uses only concept names from T ,

T |= C ⊑ D iff T ′ |= C ⊑ D
▶ for every ABox A and assertion α that uses atomic concepts

from ⟨T ,A⟩, ⟨T ,A⟩ |= α iff ⟨T ′,A⟩ |= α

We will assume that TBoxes are in normal form



Normalization of EL TBoxes
Normalization algorithm

Exhaustively apply the following normalization rules to T

NR0 Ĉ ⊑ D̂ → Ĉ ⊑ A, A ⊑ D̂

NRℓ,1
⊓ C ⊓ D̂ ⊑ B → D̂ ⊑ A, C ⊓ A ⊑ B

NRℓ,2
⊓ Ĉ ⊓ D ⊑ B → Ĉ ⊑ A, A ⊓ D ⊑ B

NRℓ
∃ ∃R.Ĉ ⊑ B → Ĉ ⊑ A, ∃R.A ⊑ B

NRr
∃ B ⊑ ∃R.Ĉ → A ⊑ Ĉ , B ⊑ ∃R.A

NRr
⊓ B ⊑ D ⊓ E → B ⊑ D, B ⊑ E

where

▶ C ,D,E are arbitrary EL concepts

▶ Ĉ , D̂ are EL concepts that are neither atomic concepts nor ⊤
▶ B is an atomic concept

▶ A is a fresh atomic concept



Normalization of EL TBoxes
Example

NR0 Ĉ ⊑ D̂ → Ĉ ⊑ A, A ⊑ D̂

NRℓ,1
⊓ C ⊓ D̂ ⊑ B → D̂ ⊑ A, C ⊓ A ⊑ B

NRℓ,2
⊓ Ĉ ⊓ D ⊑ B → Ĉ ⊑ A, A ⊓ D ⊑ B

NRℓ
∃ ∃R.Ĉ ⊑ B → Ĉ ⊑ A, ∃R.A ⊑ B

NRr
∃ B ⊑ ∃R.Ĉ → A ⊑ Ĉ , B ⊑ ∃R.A

NRr
⊓ B ⊑ D ⊓ E → B ⊑ D, B ⊑ E

Normalize T = {∃R.C ⊓ D ⊑ ∃S .∃R.C}

∃R.C ⊓ D ⊑ ∃S .∃R.C → ∃R.C ⊓ D ⊑ A1, A1 ⊑ ∃S .∃R.C (NR0)

∃R.C ⊓ D ⊑ A1 → ∃R.C ⊑ A2, A2 ⊓ D ⊑ A1 (NRℓ,2
⊓ )

A1 ⊑ ∃S .∃R.C → A1 ⊑ ∃S .A3, A3 ⊑ ∃R.C (NRr
∃)

Normalized TBox:
T ′ = {∃R.C ⊑ A2, A2 ⊓ D ⊑ A1, A1 ⊑ ∃S .A3, A3 ⊑ ∃R.C}
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Normalization of EL TBoxes
Termination and complexity

For every input EL TBox T , the normalization algorithm
terminates in linear time w.r.t. the size of T .

▶ Proof based on abnormality degree of T
▶ Abnormal occurrence of a concept C within T :

▶ C ⊑ D, where C , D are neither atomic concepts nor ⊤
▶ C is neither an atomic concept nor ⊤, and is under a

conjunction or an existential restriction
▶ C is under a conjunction operator on the right hand side

▶ Abnormality degree of T : number of abnormal occurrences
▶ a TBox with abnormality degree 0 is in normal form
▶ the abnormality degree is bounded by the size of T

▶ Claim: Each rule decreases the abnormality degree of T



Normalization of EL TBoxes
Termination and complexity – Proof of the claim

▶ If T ′ is obtained from T by applying NR0

▶ T ′ = T \ {Ĉ ⊑ D̂} ∪ {Ĉ ⊑ A, A ⊑ D̂}
▶ decreases the abnormality degree by 1

▶ removes abnormal occurrence Ĉ ⊑ D̂ of Ĉ
▶ does not modify other abnormal occurrences

▶ If T ′ is obtained from T by applying NRℓ,1
⊓

▶ T ′ = T \ {C ⊓ D̂ ⊑ B} ∪ {D̂ ⊑ A, C ⊓ A ⊑ B}
▶ decreases the abnormality degree by 1

▶ removes abnormal occurrence C ⊓ D̂ of D̂
▶ does not modify the number of other abnormal occurrences

(C ⊓ D̂ is an abnormal occurence of C iff C ⊓ A is one)

▶ If T ′ is obtained from T by applying NRr
∃

▶ T ′ = T \ {B ⊑ ∃R.Ĉ} ∪ {A ⊑ Ĉ , B ⊑ ∃R.A}
▶ decreases the abnormality degree by 1

▶ removes abnormal occurrence ∃R.Ĉ of Ĉ
▶ does not modify other abnormal occurrences

▶ NRℓ,2
⊓ , NRℓ

∃, NR
r
⊓: left as practice
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▶ does not modify other abnormal occurrences

▶ NRℓ,2
⊓ , NRℓ

∃, NR
r
⊓: left as practice



Normalization of EL TBoxes
Termination and complexity – Proof of the claim

▶ If T ′ is obtained from T by applying NR0

▶ T ′ = T \ {Ĉ ⊑ D̂} ∪ {Ĉ ⊑ A, A ⊑ D̂}
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Conservative Extensions
T2 is a conservative extension of T1 if:

▶ the signature of T1 is included in the signature of T2
▶ every model of T2 is a model of T1
▶ for every model I1 of T1, there exists a model I2 of T2 with:

▶ ∆I1 = ∆I2

▶ AI1 = AI2 for every atomic concept in the signature of T1
▶ RI1 = RI2 for every role in the signature of T1

Properties of conservative extensions

▶ Transitivity: If T2 is a conservative extension of T1, and T3 is
a conservative extension of T2, then T3 is a conservative
extension of T1

▶ If T2 is a conservative extension of T1
▶ if C and D are concepts containing only concept and role

names from T1, then it holds that T1 |= C ⊑ D if and only if
T2 |= C ⊑ D

▶ for every ABox A and assertion α that use only atomic
concepts and roles from T1, ⟨T1,A⟩ |= α iff ⟨T2,A⟩ |= α
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Normalization of EL TBoxes
Soundness and completeness

▶ T and T ′ need not be equivalent due to the introduction of
new atomic concepts by the normalization rules

▶ Claim: T ′ is a conservative extension of T
Show that if T2 is obtained from T1 by applying one of the
normalization rules, then T2 is a conservative extension of T1.
The claim follows by transitivity.

▶ If T2 is obtained from T1 by applying NR0

▶ T2 = T1 \ {Ĉ ⊑ D̂} ∪ {Ĉ ⊑ A, A ⊑ D̂}
▶ every model of T2 is a model of T1
▶ for every model I1 of T1, define I2

▶ ∆I2 = ∆I1 , RI2 = RI1 for every role
▶ BI2 = BI1 for every atomic concept different from A
▶ AI2 = ĈI1

▶ I2 |= T2
▶ Other rules left as practice



Compact Canonical Model

▶ To decide entailment of an axiom or assertion in DL, we
normally need to consider all the models of the KB

▶ In EL, for every KB K = ⟨T ,A⟩, there exists a finite model
CK which can be used to check whether an assertion or an
inclusion between two atomic concepts is entailed

▶ CK is the compact canonical model of K = ⟨T ,A⟩



Compact Canonical Model
Construction of CK

Let K = ⟨T ,A⟩ with T an EL TBox in normal form

▶ Start with I0 defined by

∆I0 ={a | a individual from A} ∪ {eA | A atomic concept} ∪ {e⊤}
AI0 ={a | A(a) ∈ A} ∪ {eA}
RI0 ={(a, b) | R(a, b) ∈ A}
aI0 =a for every individual from A

▶ In+1 is obtained from In by applying one of the following rules
(note that C can be an atomic concept A, A1 ⊓ A2 or ∃R.A)

R1 : if C ⊑ B ∈ T , x ∈ CIn and x /∈ BIn , then BIn+1 = BIn ∪ {x}
R2 : if A ⊑ ∃R.B ∈ T , x ∈ AIn and (x , eB) /∈ RIn , then RIn+1 = RIn ∪ {(x , eB)}

▶ When we reach Ik such that no more rules apply, set CK = Ik



Compact Canonical Model
Example

T ={A ⊑ ∃R.B, ∃R.C ⊑ D, A ⊓ D ⊑ C , C ⊑ ∃R.C}
A ={A(a), R(a, b), B(b), C (b)}

a

A

,D,C

b
B,C

,D

eA
A

eB
B

e⊤

eC
C

,D

eD

D

R

R

R

R

R

R
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Compact Canonical Model
Properties of CK

▶ CK can be constructed in polynomial time
▶ ∆CK is linear in the size of K
▶ each rule application adds an element or pair of elements of

∆CK to the interpretation of an atomic concept or role from K

▶ CK is a model of K
▶ I0 |= A so CK |= A
▶ for every C ⊑ B ∈ T , CCK ⊆ BCK (otherwise R1 would apply)
▶ for every A ⊑ ∃R.B ∈ T and x ∈ ACK , (x , eB) ∈ RCK

(otherwise R2 would apply), and since eB ∈ BCK , x ∈ ∃R.BCK

▶ hence CK |= T
▶ for every concept inclusion between atomic concepts A ⊑ B,

K |= A ⊑ B iff CK |= B(eA)
▶ if K |= A ⊑ B, CK |= A ⊑ B so since eA ∈ ACK , CK |= B(eA)
▶ Claim 1: if CK |= B(eA), then K |= A ⊑ B

▶ for every assertion α, K |= α iff CK |= α
▶ if K |= α, CK |= α
▶ CK |= R(a, b) with a, b individuals implies R(a, b) ∈ A
▶ Claim 2: if CK |= A(a) with a individual, then K |= A(a)
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∆CK to the interpretation of an atomic concept or role from K
▶ CK is a model of K

▶ I0 |= A so CK |= A
▶ for every C ⊑ B ∈ T , CCK ⊆ BCK (otherwise R1 would apply)
▶ for every A ⊑ ∃R.B ∈ T and x ∈ ACK , (x , eB) ∈ RCK

(otherwise R2 would apply), and since eB ∈ BCK , x ∈ ∃R.BCK

▶ hence CK |= T
▶ for every concept inclusion between atomic concepts A ⊑ B,

K |= A ⊑ B iff CK |= B(eA)
▶ if K |= A ⊑ B, CK |= A ⊑ B so since eA ∈ ACK , CK |= B(eA)
▶ Claim 1: if CK |= B(eA), then K |= A ⊑ B

▶ for every assertion α, K |= α iff CK |= α
▶ if K |= α, CK |= α
▶ CK |= R(a, b) with a, b individuals implies R(a, b) ∈ A
▶ Claim 2: if CK |= A(a) with a individual, then K |= A(a)



Compact Canonical Model
Example

T ={A ⊑ ∃R.B, ∃R.C ⊑ D, A ⊓ D ⊑ C , C ⊑ ∃R.C}
A ={A(a), R(a, b), B(b), C (b)}

a

A,D,C

b
B,C ,D

eA
A

eB
B

e⊤

eC
C ,D

eD

D

R

R

R

R

R

R

CK |= C (a) ⇒ K |= C (a) CK |= D(a) ⇒ K |= D(a)

CK |= D(b) ⇒ K |= D(b) CK |= D(eC ) ⇒ K |= C ⊑ D



Compact Canonical Model
Properties of CK – Proof of Claim 1

For all atomic concepts A, B, CK |= B(eA) implies K |= A ⊑ B

Proof by induction on n such that eA ∈ BIn

▶ Base case: eA ∈ BI0 implies that B = A and K |= A ⊑ A
▶ Induction hypothesis (IH): For every atomic concepts A and

B, eA ∈ BIn implies K |= A ⊑ B

▶ Induction step: Assume that eA ∈ BIn+1

▶ If eA ∈ BIn , K |= A ⊑ B by IH
▶ If eA /∈ BIn , eA has been added to BIn+1 by applying rule R1:

there exists C ⊑ B ∈ T such that eA ∈ CIn

▶ case C atomic concept: K |= A ⊑ C (by IH). It is then easy to
check that K |= A ⊑ B

▶ case C = A1 ⊓ A2: eA ∈ AIn
1 and eA ∈ AIn

2 so K |= A ⊑ A1

and K |= A ⊑ A2 (by IH). Since A1 ⊓ A2 ⊑ B ∈ T , it is then
easy to check that K |= A ⊑ B

▶ case C = ∃R.D: there exists eX ∈ DIn s.t. (eA, eX ) ∈ RIn .
(eA, eX ) ∈ RIn has been added by rule R2 so E ⊑ ∃R.X ∈ T
and eA ∈ EIn . K |= X ⊑ D and K |= A ⊑ E (by IH). Since
K |= A ⊑ E , K |= E ⊑ ∃R.X , K |= X ⊑ D and
K |= ∃R.D ⊑ B, it is easy to check that K |= A ⊑ B



Compact Canonical Model
Properties of CK – Proof of Claim 1

For all atomic concepts A, B, CK |= B(eA) implies K |= A ⊑ B

Proof by induction on n such that eA ∈ BIn

▶ Base case: eA ∈ BI0 implies that B = A and K |= A ⊑ A
▶ Induction hypothesis (IH): For every atomic concepts A and

B, eA ∈ BIn implies K |= A ⊑ B
▶ Induction step: Assume that eA ∈ BIn+1

▶ If eA ∈ BIn , K |= A ⊑ B by IH
▶ If eA /∈ BIn , eA has been added to BIn+1 by applying rule R1:

there exists C ⊑ B ∈ T such that eA ∈ CIn

▶ case C atomic concept: K |= A ⊑ C (by IH). It is then easy to
check that K |= A ⊑ B

▶ case C = A1 ⊓ A2: eA ∈ AIn
1 and eA ∈ AIn

2 so K |= A ⊑ A1

and K |= A ⊑ A2 (by IH). Since A1 ⊓ A2 ⊑ B ∈ T , it is then
easy to check that K |= A ⊑ B

▶ case C = ∃R.D: there exists eX ∈ DIn s.t. (eA, eX ) ∈ RIn .
(eA, eX ) ∈ RIn has been added by rule R2 so E ⊑ ∃R.X ∈ T
and eA ∈ EIn . K |= X ⊑ D and K |= A ⊑ E (by IH). Since
K |= A ⊑ E , K |= E ⊑ ∃R.X , K |= X ⊑ D and
K |= ∃R.D ⊑ B, it is easy to check that K |= A ⊑ B



Compact Canonical Model
Properties of CK – Proof of Claim 1

For all atomic concepts A, B, CK |= B(eA) implies K |= A ⊑ B

Proof by induction on n such that eA ∈ BIn

▶ Base case: eA ∈ BI0 implies that B = A and K |= A ⊑ A
▶ Induction hypothesis (IH): For every atomic concepts A and

B, eA ∈ BIn implies K |= A ⊑ B
▶ Induction step: Assume that eA ∈ BIn+1

▶ If eA ∈ BIn , K |= A ⊑ B by IH
▶ If eA /∈ BIn , eA has been added to BIn+1 by applying rule R1:

there exists C ⊑ B ∈ T such that eA ∈ CIn

▶ case C atomic concept: K |= A ⊑ C (by IH). It is then easy to
check that K |= A ⊑ B

▶ case C = A1 ⊓ A2: eA ∈ AIn
1 and eA ∈ AIn

2 so K |= A ⊑ A1

and K |= A ⊑ A2 (by IH). Since A1 ⊓ A2 ⊑ B ∈ T , it is then
easy to check that K |= A ⊑ B

▶ case C = ∃R.D: there exists eX ∈ DIn s.t. (eA, eX ) ∈ RIn .
(eA, eX ) ∈ RIn has been added by rule R2 so E ⊑ ∃R.X ∈ T
and eA ∈ EIn . K |= X ⊑ D and K |= A ⊑ E (by IH). Since
K |= A ⊑ E , K |= E ⊑ ∃R.X , K |= X ⊑ D and
K |= ∃R.D ⊑ B, it is easy to check that K |= A ⊑ B



Compact Canonical Model
Properties of CK – Proof of Claim 2

For every concept assertion A(a), if CK |= A(a), then K |= A(a)

Proof by induction on n such that a ∈ AIn

▶ Base case: a ∈ AI0 implies A(a) ∈ A
▶ Induction hypothesis (IH): For every atomic concept A and

individual a, a ∈ AIn implies K |= A(a)

▶ Induction step: Assume that a ∈ AIn+1

▶ If a ∈ AIn , K |= A(a) by IH
▶ If a /∈ AIn , a has been added to AIn+1 by applying rule R1:

there exists C ⊑ A ∈ T such that a ∈ CIn

▶ case C atomic concept: K |= C(a) (by IH). It is then easy to
check that K |= A(a)

▶ case C = A1 ⊓ A2: K |= A1(a) and K |= A2(a) (by IH). Since
A1 ⊓ A2 ⊑ A ∈ T , it is then easy to check that K |= A(a)

▶ case C = ∃R.D: there exists x ∈ DIn s.t. (a, x) ∈ RIn

– if x is an individual, R(a, x) ∈ A and K |= D(x) (by IH) so
since ∃R.D ⊑ A ∈ T , it is easy to check that K |= A(a)
– if x = eX , E ⊑ ∃R.X ∈ T and a ∈ EIn so K |= E(a) (by
IH). By Claim 1, K |= X ⊑ D. It is then easy to check that
K |= A(a)



Compact Canonical Model
Properties of CK – Proof of Claim 2

For every concept assertion A(a), if CK |= A(a), then K |= A(a)

Proof by induction on n such that a ∈ AIn

▶ Base case: a ∈ AI0 implies A(a) ∈ A
▶ Induction hypothesis (IH): For every atomic concept A and

individual a, a ∈ AIn implies K |= A(a)
▶ Induction step: Assume that a ∈ AIn+1

▶ If a ∈ AIn , K |= A(a) by IH
▶ If a /∈ AIn , a has been added to AIn+1 by applying rule R1:

there exists C ⊑ A ∈ T such that a ∈ CIn

▶ case C atomic concept: K |= C(a) (by IH). It is then easy to
check that K |= A(a)

▶ case C = A1 ⊓ A2: K |= A1(a) and K |= A2(a) (by IH). Since
A1 ⊓ A2 ⊑ A ∈ T , it is then easy to check that K |= A(a)

▶ case C = ∃R.D: there exists x ∈ DIn s.t. (a, x) ∈ RIn

– if x is an individual, R(a, x) ∈ A and K |= D(x) (by IH) so
since ∃R.D ⊑ A ∈ T , it is easy to check that K |= A(a)
– if x = eX , E ⊑ ∃R.X ∈ T and a ∈ EIn so K |= E(a) (by
IH). By Claim 1, K |= X ⊑ D. It is then easy to check that
K |= A(a)



Compact Canonical Model
Properties of CK – Proof of Claim 2

For every concept assertion A(a), if CK |= A(a), then K |= A(a)

Proof by induction on n such that a ∈ AIn

▶ Base case: a ∈ AI0 implies A(a) ∈ A
▶ Induction hypothesis (IH): For every atomic concept A and

individual a, a ∈ AIn implies K |= A(a)
▶ Induction step: Assume that a ∈ AIn+1

▶ If a ∈ AIn , K |= A(a) by IH
▶ If a /∈ AIn , a has been added to AIn+1 by applying rule R1:

there exists C ⊑ A ∈ T such that a ∈ CIn

▶ case C atomic concept: K |= C(a) (by IH). It is then easy to
check that K |= A(a)

▶ case C = A1 ⊓ A2: K |= A1(a) and K |= A2(a) (by IH). Since
A1 ⊓ A2 ⊑ A ∈ T , it is then easy to check that K |= A(a)

▶ case C = ∃R.D: there exists x ∈ DIn s.t. (a, x) ∈ RIn

– if x is an individual, R(a, x) ∈ A and K |= D(x) (by IH) so
since ∃R.D ⊑ A ∈ T , it is easy to check that K |= A(a)
– if x = eX , E ⊑ ∃R.X ∈ T and a ∈ EIn so K |= E(a) (by
IH). By Claim 1, K |= X ⊑ D. It is then easy to check that
K |= A(a)



Exercise

Build the compact canonical model of ⟨T ,A⟩ and use it to classify
T and find all assertions entailed by ⟨T ,A⟩

T = {A ⊓ B ⊑ D, B ⊓ D ⊑ C , ∃S .D ⊑ D,

C ⊑ ∃R.A, C ⊑ ∃R.B, B ⊑ ∃S .D}
A = {A(a), B(a), S(a, b), D(b)}



Classification Algorithm

Given a TBox T in normal form, complete T using saturation rules

CRT
1 A ⊑ A

CRT
2 A ⊑ ⊤

CRT
3

A1 ⊑ B B ⊑ A2

A1 ⊑ A2

CRT
4

A ⊑ A1 A ⊑ A2 A1 ⊓ A2 ⊑ B

A ⊑ B
CRT

5

A ⊑ ∃R.A1 A1 ⊑ B1 ∃R.B1 ⊑ B

A ⊑ B

▶ Instantiated rule: obtained by replacing A,A1,A2,B,B1 by
atomic concepts or ⊤ and R by atomic role

▶ Instantiated rule with premises α1, . . . , αn and conclusion β is
applicable if {α1, . . . , αn} ⊆ T and β /∈ T .
▶ premises: axioms above the line
▶ conclusion: axiom below the line

Applying the rule adds β to T



Classification Algorithm

CRT
1 A ⊑ A

CRT
2 A ⊑ ⊤

CRT
3

A1 ⊑ B B ⊑ A2

A1 ⊑ A2

CRT
4

A ⊑ A1 A ⊑ A2 A1 ⊓ A2 ⊑ B

A ⊑ B
CRT

5

A ⊑ ∃R.A1 A1 ⊑ B1 ∃R.B1 ⊑ B

A ⊑ B

Classify T : find all atomic concepts A, B such that T |= A ⊑ B
▶ Exhaustively apply instantiated saturation rules to T

▶ the resulting TBox sat(T ) is called the saturated TBox

▶ For every atomic concepts A and B, return that T |= A ⊑ B
iff A ⊑ B ∈ sat(T )

Lemma
All exhaustive sequences of rule applications lead to a unique
saturated TBox



Classification Algorithm
Example

T = {A ⊑ D, C ⊓ D ⊑ B, D ⊑ ∃R.D,

∃R.E ⊑ C , ∃R.⊤ ⊑ E}

A ⊑ A B ⊑ B C ⊑ C D ⊑ D E ⊑ E

A ⊑ ⊤ B ⊑ ⊤ C ⊑ ⊤ D ⊑ ⊤ E ⊑ ⊤

D ⊑ ∃R.D D ⊑ ⊤ ∃R.⊤ ⊑ E

D ⊑ E

D ⊑ ∃R.D D ⊑ E ∃R.E ⊑ C

D ⊑ C

D ⊑ D D ⊑ C D ⊓ C ⊑ B

D ⊑ B

A ⊑ D D ⊑ E

A ⊑ E

A ⊑ D D ⊑ C

A ⊑ C

A ⊑ D D ⊑ B

A ⊑ B



Classification Algorithm
Example

T = {A ⊑ D, C ⊓ D ⊑ B, D ⊑ ∃R.D,

∃R.E ⊑ C , ∃R.⊤ ⊑ E}

A ⊑ A B ⊑ B C ⊑ C D ⊑ D E ⊑ E

A ⊑ ⊤ B ⊑ ⊤ C ⊑ ⊤ D ⊑ ⊤ E ⊑ ⊤

D ⊑ ∃R.D D ⊑ ⊤ ∃R.⊤ ⊑ E

D ⊑ E

D ⊑ ∃R.D D ⊑ E ∃R.E ⊑ C

D ⊑ C

D ⊑ D D ⊑ C D ⊓ C ⊑ B

D ⊑ B

A ⊑ D D ⊑ E

A ⊑ E

A ⊑ D D ⊑ C

A ⊑ C

A ⊑ D D ⊑ B

A ⊑ B



Classification Algorithm
Example

T = {A ⊑ D, C ⊓ D ⊑ B, D ⊑ ∃R.D,

∃R.E ⊑ C , ∃R.⊤ ⊑ E}

A ⊑ A B ⊑ B C ⊑ C D ⊑ D E ⊑ E

A ⊑ ⊤ B ⊑ ⊤ C ⊑ ⊤ D ⊑ ⊤ E ⊑ ⊤

D ⊑ ∃R.D D ⊑ ⊤ ∃R.⊤ ⊑ E

D ⊑ E

D ⊑ ∃R.D D ⊑ E ∃R.E ⊑ C

D ⊑ C

D ⊑ D D ⊑ C D ⊓ C ⊑ B

D ⊑ B

A ⊑ D D ⊑ E

A ⊑ E

A ⊑ D D ⊑ C

A ⊑ C

A ⊑ D D ⊑ B

A ⊑ B



Classification Algorithm
Example

T = {A ⊑ D, C ⊓ D ⊑ B, D ⊑ ∃R.D,

∃R.E ⊑ C , ∃R.⊤ ⊑ E}

A ⊑ A B ⊑ B C ⊑ C D ⊑ D E ⊑ E

A ⊑ ⊤ B ⊑ ⊤ C ⊑ ⊤ D ⊑ ⊤ E ⊑ ⊤

D ⊑ ∃R.D D ⊑ ⊤ ∃R.⊤ ⊑ E

D ⊑ E

D ⊑ ∃R.D D ⊑ E ∃R.E ⊑ C

D ⊑ C

D ⊑ D D ⊑ C D ⊓ C ⊑ B

D ⊑ B

A ⊑ D D ⊑ E

A ⊑ E

A ⊑ D D ⊑ C

A ⊑ C

A ⊑ D D ⊑ B

A ⊑ B



Classification Algorithm
Example

T = {A ⊑ D, C ⊓ D ⊑ B, D ⊑ ∃R.D,

∃R.E ⊑ C , ∃R.⊤ ⊑ E}

A ⊑ A B ⊑ B C ⊑ C D ⊑ D E ⊑ E

A ⊑ ⊤ B ⊑ ⊤ C ⊑ ⊤ D ⊑ ⊤ E ⊑ ⊤

D ⊑ ∃R.D D ⊑ ⊤ ∃R.⊤ ⊑ E

D ⊑ E

D ⊑ ∃R.D D ⊑ E ∃R.E ⊑ C

D ⊑ C

D ⊑ D D ⊑ C D ⊓ C ⊑ B

D ⊑ B

A ⊑ D D ⊑ E

A ⊑ E

A ⊑ D D ⊑ C

A ⊑ C

A ⊑ D D ⊑ B

A ⊑ B



Classification Algorithm
Termination and complexity

Classification algorithm runs in polynomial time w.r.t. the size of T
▶ Each rule application adds a concept inclusion of the form

A ⊑ B with A and B atomic concepts from T or ⊤
▶ The number of such concept inclusions is quadratic in the

number of atomic concepts that occur in T



Classification Algorithm
Soundness CRT

1 A ⊑ A
CRT

2 A ⊑ ⊤
CRT

3

A1 ⊑ B B ⊑ A2

A1 ⊑ A2

CRT
4

A ⊑ A1 A ⊑ A2 A1 ⊓ A2 ⊑ B

A ⊑ B
CRT

5

A ⊑ ∃R.A1 A1 ⊑ B1 ∃R.B1 ⊑ B

A ⊑ B

If A ⊑ B ∈ sat(T ) then T |= A ⊑ B.

Show that if β is added to T by applying a saturation rule whose
premises are entailed by T , then T |= β

▶ CRT
1 or CRT

2 case: β is of the form A ⊑ A or A ⊑ ⊤ and
holds in every interpretation, so T |= β

▶ CRT
3 case: β = A1 ⊑ A2, T |= A1 ⊑ B and T |= B ⊑ A2

▶ let I be a model of T : AI
1 ⊆ BI and BI ⊆ AI

2 so AI
1 ⊆ AI

2 ,
yielding I |= A1 ⊑ A2

▶ hence T |= A1 ⊑ A2

▶ CRT
4 and CRT

5 cases: left as practice

The property follows by induction on the number of rule
applications before A ⊑ B has been added to sat(T )



Classification Algorithm
Completeness

If T |= A ⊑ B then A ⊑ B ∈ sat(T ).

Show the contrapositive: if A ⊑ B ̸∈ sat(T ), then T ̸|= A ⊑ B
▶ Define an interpretation Isat(T ) from sat(T )

▶ ∆Isat(T ) = {eA | A is an atomic concept in T } ∪ {e⊤}
▶ AIsat(T ) = {eB | B ⊑ A ∈ sat(T )}
▶ RIsat(T ) = {(eA, eB) | A ⊑ C ∈ sat(T ),C ⊑ ∃R.B ∈ sat(T )}

▶ Claim: Isat(T ) is a model of T and A ⊑ B ̸∈ sat(T ) implies
that Isat(T ) ̸|= A ⊑ B

▶ If A ⊑ B ̸∈ sat(T ), then Isat(T ) ̸|= A ⊑ B, so T ̸|= A ⊑ B

Remark: Isat(T ) is actually the compact canonical model of ⟨T , ∅⟩



Classification Algorithm
Completeness – Proof of the claim

Isat(T ) |= T and A ⊑ B ̸∈ sat(T ) implies that Isat(T ) ̸|= A ⊑ B

▶ Isat(T ) is a model of sat(T ): let β ∈ sat(T )
▶ Case β = A ⊑ B: if eD ∈ AIsat(T ) , then D ⊑ A ∈ sat(T )

By CRT
3 , D ⊑ B ∈ sat(T ), so eD ∈ BIsat(T )

▶ Case β = A1 ⊓ A2 ⊑ B: if eD ∈ (A1 ⊓ A2)
Isat(T ) , then

D ⊑ A1 ∈ sat(T ) and D ⊑ A2 ∈ sat(T )
By CRT

4 , D ⊑ B ∈ sat(T ), so eD ∈ BIsat(T )

▶ Case β = A ⊑ ∃R.B: if eD ∈ AIsat(T ) , then D ⊑ A ∈ sat(T )
By construction of Isat(T ), it follows that (eD , eB) ∈ RIsat(T )

By CRT
1 , B ⊑ B ∈ sat(T ) so eB ∈ BIsat(T ) : eD ∈ ∃R.BIsat(T )

▶ Case β = ∃R.B ⊑ A: if eD ∈ ∃R.BIsat(T ) , then there exists
eC ∈ BIsat(T ) such that (eD , eC ) ∈ RIsat(T )

Hence C ⊑ B ∈ sat(T ) and D ⊑ ∃R.C ∈ sat(T )
By CRT

5 , D ⊑ A ∈ sat(T ), so eD ∈ AIsat(T )

▶ Since T ⊆ sat(T ), it follows that Isat(T ) |= T
▶ If A ⊑ B ̸∈ sat(T ), then eA /∈ BIsat(T ) while eA ∈ AIsat(T )

(since A ⊑ A ∈ sat(T ) by CRT
1 ) so Isat(T ) ̸|= A ⊑ B



Instance Checking
Add rules to derive assertions to the saturation rules

CRT
1 A ⊑ A

CRT
2 A ⊑ ⊤

CRT
3

A1 ⊑ B B ⊑ A2

A1 ⊑ A2

CRT
4

A ⊑ A1 A ⊑ A2 A1 ⊓ A2 ⊑ B

A ⊑ B
CRT

5

A ⊑ ∃R.A1 A1 ⊑ B1 ∃R.B1 ⊑ B

A ⊑ B

CRA
1 ⊤(a)

CRA
2

A ⊑ B A(a)

B(a)

CRA
3

A1 ⊓ A2 ⊑ B A1(a) A2(a)

B(a)
CRA

4

∃R.A ⊑ B R(a, b) A(b)

B(a)

▶ Take as input an EL KB ⟨T ,A⟩ with T in normal form and
an atomic concept A

▶ Exhaustively apply instantiated saturation rules to ⟨T ,A⟩
▶ the resulting KB sat(T ,A) = ⟨T ⋆,A⋆⟩ is the saturated KB

▶ For every individual a, return ⟨T ,A⟩ |= A(a) iff A(a) ∈ A⋆



Instance Checking

▶ The instance checking algorithm adds a number of concept
inclusions and concept assertions which is at most quadratic
in the size of the KB, hence runs in polynomial time

▶ Soundness: left as practice
▶ Completeness: Show the contrapositive: if A(a) ̸∈ A⋆, then

⟨T ,A⟩ ̸|= A(a)
▶ Define an interpretation I⋆ from sat(T ,A) = ⟨T ⋆,A⋆⟩

▶ ∆I⋆

= {c | c individual from A} ∪
{eA | A is an atomic concept in T } ∪ {e⊤}

▶ cI
⋆

= c for every individual c from A
▶ AI⋆

= {c | A(c) ∈ A⋆} ∪ {eB | B ⊑ A ∈ T ⋆}
▶ RI⋆

= {(c, d) | R(c, d) ∈ A⋆}∪
{(a, eB) | A ⊑ ∃R.B ∈ T ⋆,A(a) ∈ A⋆}∪
{(eA, eB) | A ⊑ C ∈ T ⋆,C ⊑ ∃R.B ∈ T ⋆}

▶ Claim: I⋆ is a model of ⟨T ,A⟩ and A(a) ̸∈ A⋆ implies that
I⋆ ̸|= A(a): left as practice



Exercise

Normalize T and apply the saturation algorithm to classify T and
find the assertions entailed by ⟨T ,A⟩

T = {∃S .B ⊑ D, ∃R.D ⊑ E , ∃R.A ⊑ ∃R.∃S .(B ⊓ C )}

A = {R(a, b), A(b)}



A Saturation Algorithm for ELI

▶ ELI = EL + inverse roles

C := ⊤ | A | C ⊓ C | ∃R.C | ∃R−.C

▶ Axiom entailment is ExpTime-complete
▶ However, ELI retains some nice properties

▶ canonical model (no case-based reasoning)
▶ can extend the saturation algorithm to handle ELI

▶ may produce an exponential number of concept inclusions
▶ deduce A ⊓D ⊑ ∃R.(B ⊓ E) from A ⊑ ∃R.B and ∃R−.D ⊑ E

▶ The same holds for ELHI⊥ = ELI + role inclusions + ⊥



A Saturation Algorithm for ELI

CRT
1 A ⊑ A

CRT
2 A ⊑ ⊤

CRT
3

{A ⊑ Bi}ni=1 B1 ⊓ · · · ⊓ Bn ⊑ B

A ⊑ B
CRT

4

M ⊑ ∃S .(N ⊓ N ′) N ⊑ A

M ⊑ ∃S .(N ⊓ N ′ ⊓ A)

CRT
5

M ⊑ ∃S .(N ⊓ A) ∃S .A ⊑ B

M ⊑ B
CRT

6

M ⊑ ∃S .N ∃inv(S).A ⊑ B

M ⊓ A ⊑ ∃S .(N ⊓ B)

CRA
1 ⊤(a)

CRA
2

A1 ⊓ · · · ⊓ An ⊑ B {Ai (a)}ni=1

B(a)

CRA
3

∃R.A ⊑ B R(a, b) A(b)

B(a)
CRA

4

∃R−.A ⊑ B R(b, a) A(b)

B(a)

▶ R is an atomic role, S := R | R−, inv(R) = R− and inv(R−) = R

▶ A,B,Ai ,Bi are atomic concepts or ⊤
▶ M,N,N ′ are conjunctions of atomic concepts or ⊤, treated as sets

(no repetition, the order does not matter)
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