Description Logics and Reasoning on Data 2: Reasoning in $\mathcal{E L}$

C. Bourgaux, M. Thomazo

Outline

The $\mathcal{E L}$ family

Normalization of $\mathcal{E L}$ TBoxes

Compact canonical model

Saturation algorithm for classification

Saturation algorithm for instance checking

A saturation algorithm for $\mathcal{E} \mathcal{L I}$

References

Lightweight Description Logics

- Reasoning in $\mathcal{A L C}$ and all its extensions is ExpTime-hard
- ExpTime-hardness already holds for $\mathcal{F} \mathcal{L}_{0}$, the $\mathcal{A L C}$ fragment without \neg, \sqcup and \exists, whose concepts are built according to the following grammar: $C:=\top|A| C \sqcap C \mid \forall R . C$
- Some applications require very large ontologies and/or data
- SNOMED CT (medical ontology) > 350000 concepts
- NCI (National Cancer Institute Thesaurus) ≈ 20000 concepts
- GO (Gene Ontology) ≈ 30000 concepts
- Many of them do not require universal restrictions ($\forall R . C$) but rather existential restrictions ($\exists R . C$)
- Since the mid 2000's, increasing interest in lightweight DLs
- reasoning in polynomial time
- expressivity sufficient for many applications
- allow for existential restrictions

Lightweight Description Logics

- Two main families of lightweight DLs
- the $\mathcal{E L}$ family
- designed to allow efficient reasoning with large ontologies
- core of the OWL 2 EL profile
- the DL-Lite family
- designed for ontology-mediated query answering
- core of the OWL 2 QL profile
- cf. course on query rewriting

The $\mathcal{E} \mathcal{L}$ Family

$\mathcal{E} \mathcal{L}$ concepts are built according to the following grammar:

$$
C:=\top|A| C \sqcap C \mid \exists R . C
$$

and an $\mathcal{E L}$ Tbox contains only concept inclusions $C_{1} \sqsubseteq C_{2}$

- Fragment of $\mathcal{A L C}$ without \neg, \sqcup and \forall
- Possible extensions that remain tractable
- $\mathcal{E} \mathcal{L}_{\perp}: \perp$ to express disjoint concepts
- $\mathcal{E} \mathcal{L}^{d r}$: domain and range restrictions
- $\operatorname{dom}(R) \sqsubseteq C(\equiv \exists R$. $\top \sqsubseteq C$, already in plain $\mathcal{E} \mathcal{L})$
$-\operatorname{ran}(R) \sqsubseteq C\left(\equiv \exists R^{-}\right.$.T $\sqsubseteq C$, not expressible in plain $\left.\mathcal{E L}\right)$
- $\mathcal{E L O}$: nominals $\{0\}$
- (complex) role inclusions $R_{1} \circ \cdots \circ R_{n} \sqsubseteq R_{n+1}$ (includes transitivity (trans R) $\equiv R \circ R \sqsubseteq R$)
- OWL 2 EL profile includes all these extensions
- Adding any of the constructors $\neg, \sqcup, \forall, R^{-}$makes reasoning ExpTime-hard

Reasoning in $\mathcal{E} \mathcal{L}$

Focus on plain $\mathcal{E} \mathcal{L}$: the TBox contains concept inclusions $C_{1} \sqsubseteq C_{2}$ with $C:=\top|A| C \sqcap C \mid \exists R . C$

- Satisfiability is trivial
- $\mathcal{I}=\left(\{e\},{ }^{\mathcal{I}}\right), a^{\mathcal{I}}=e, A^{\mathcal{I}}=\{e\}, R^{\mathcal{I}}=\{(e, e)\}$
- Subsumption/classification or instance checking are not!
- cannot be reduced to satisfiability
- focus on these reasoning tasks

Reasoning in $\mathcal{E} \mathcal{L}$

Subsumption: Given an $\mathcal{E L}$ TBox \mathcal{T} and two $\mathcal{E} \mathcal{L}$ concepts C and D, decide whether $\mathcal{T} \vDash C \sqsubseteq D$

- We will assume that C and D are atomic concepts
- if C, D are $\mathcal{E L}$ complex concepts,

$$
\mathcal{T} \models C \sqsubseteq D \text { iff } \mathcal{T} \cup\{A \sqsubseteq C, D \sqsubseteq B\} \models A \sqsubseteq B
$$

where A, B are fresh concept names
Classification: Given an $\mathcal{E} \mathcal{L}$ TBox \mathcal{T}, find all atomic concepts A, B such that $\mathcal{T} \models A \sqsubseteq B$

Instance checking: Given an $\mathcal{E} \mathcal{L} \mathrm{KB}\langle\mathcal{T}, \mathcal{A}\rangle$ and an $\mathcal{E} \mathcal{L}$ concept C, decide for every individual a from \mathcal{A} whether $\langle\mathcal{T}, \mathcal{A}\rangle \models C(a)$

- We will assume that C is an atomic concept
- $\langle\mathcal{T}, \mathcal{A}\rangle \models C(a)$ iff $\langle\mathcal{T} \cup\{C \sqsubseteq A\}, \mathcal{A}\rangle \models A(a)$

Normal Form of $\mathcal{E} \mathcal{L}$ TBoxes

An $\mathcal{E} \mathcal{L}$ TBox is in normal form if it contains only concept inclusions of one of the following forms:

$$
A \sqsubseteq B \quad A_{1} \sqcap A_{2} \sqsubseteq B \quad A \sqsubseteq \exists R . B \quad \exists R . A \sqsubseteq B
$$

where A, A_{1}, A_{2} and B are atomic concepts or \top

- For every $\mathcal{E} \mathcal{L} \operatorname{TBox} \mathcal{T}$, we can construct in polynomial time \mathcal{T}^{\prime} in normal form (possibly using new concept names) such that
- for every $C \sqsubseteq D$ which uses only concept names from \mathcal{T}, $\mathcal{T} \models C \sqsubseteq D$ iff $\mathcal{T}^{\prime} \models C \sqsubseteq D$
- for every ABox \mathcal{A} and assertion α that uses atomic concepts from $\langle\mathcal{T}, \mathcal{A}\rangle,\langle\mathcal{T}, \mathcal{A}\rangle \models \alpha$ iff $\left\langle\mathcal{T}^{\prime}, \mathcal{A}\right\rangle \models \alpha$
We will assume that TBoxes are in normal form

Normalization of $\mathcal{E L}$ TBoxes

Normalization algorithm

Exhaustively apply the following normalization rules to \mathcal{T}

NR_{0}	$\hat{C} \sqsubseteq \hat{D}$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqsubseteq \hat{D}$
$\mathrm{NR}_{\Gamma}^{\ell, 1}$	$C \sqcap \hat{D} \sqsubseteq B$	\rightarrow	$\hat{D} \sqsubseteq A$,	$C \sqcap A \sqsubseteq B$
$\mathrm{NR}_{\Gamma}^{\ell, 2}$	$\hat{C} \sqcap D \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqcap D \sqsubseteq B$
$\mathrm{NR}_{\exists}^{\ell}$	$\exists R \cdot \hat{C} \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$\exists R \cdot A \sqsubseteq B$
$\mathrm{NR}_{\exists}^{r}$	$B \sqsubseteq \exists R \cdot \hat{C}$	\rightarrow	$A \sqsubseteq \hat{C}$,	$B \sqsubseteq \exists R . A$
$\mathrm{NR} \mathrm{\Pi}_{\square}^{r}$	$B \sqsubseteq D \sqcap E$	\rightarrow	$B \sqsubseteq D$,	$B \sqsubseteq E$

where

- C, D, E are arbitrary $\mathcal{E} \mathcal{L}$ concepts
- \hat{C}, \hat{D} are $\mathcal{E L}$ concepts that are neither atomic concepts nor \top
- B is an atomic concept
- A is a fresh atomic concept

Normalization of $\mathcal{E L}$ TBoxes

Example

NR_{0}	$\hat{C} \sqsubseteq \hat{D}$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqsubseteq \hat{D}$
$\mathrm{NR}_{\sqcap}^{\ell, 1}$	$C \sqcap \hat{D} \sqsubseteq B$	\rightarrow	$\hat{D} \sqsubseteq A$,	$C \sqcap A \sqsubseteq B$
$\mathrm{NR}_{\Pi}^{\ell, 2}$	$\hat{C} \sqcap D \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqcap D \sqsubseteq B$
$\mathrm{NR}_{\exists}^{\ell}$	$\exists R . \hat{C} \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$\exists R . A \sqsubseteq B$
$\mathrm{NR}_{\exists}^{r}$	$B \sqsubseteq \exists R \cdot \hat{C}$	\rightarrow	$A \sqsubseteq \hat{C}$,	$B \sqsubseteq \exists R . A$
$\mathrm{NR}_{\square}^{r}$	$B \sqsubseteq D \sqcap E$	\rightarrow	$B \sqsubseteq D$,	$B \sqsubseteq E$

Normalize $\mathcal{T}=\{\exists R . C \sqcap D \sqsubseteq \exists S . \exists R . C\}$

Normalization of $\mathcal{E L}$ TBoxes

Example

NR_{0}	$\hat{C} \sqsubseteq \hat{D}$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqsubseteq \hat{D}$
$\mathrm{NR}_{\Pi}^{\ell, 1}$	$C \sqcap \hat{D} \sqsubseteq B$	\rightarrow	$\hat{D} \sqsubseteq A$,	$C \sqcap A \sqsubseteq B$
$\mathrm{NR}_{\Pi}^{\ell, 2}$	$\hat{C} \sqcap D \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqcap D \sqsubseteq B$
$\mathrm{NR}_{\exists}^{\ell}$	$\exists R . \hat{C} \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$\exists R . A \sqsubseteq B$
$\mathrm{NR}_{\exists}^{r}$	$B \sqsubseteq \exists R \cdot \hat{C}$	\rightarrow	$A \sqsubseteq \hat{C}$,	$B \sqsubseteq \exists R . A$
$\mathrm{NR}_{\square}^{r}$	$B \sqsubseteq D \sqcap E$	\rightarrow	$B \sqsubseteq D$,	$B \sqsubseteq E$

Normalize $\mathcal{T}=\{\exists R . C \sqcap D \sqsubseteq \exists S . \exists R . C\}$

$$
\begin{array}{rllll}
\exists R . C \sqcap D \sqsubseteq \exists S . \exists R . C & & \exists & \exists R . C \sqcap D \sqsubseteq A_{1}, & A_{1} \sqsubseteq \exists S . \exists R . C
\end{array}\left(\mathrm{NR}_{0}\right)
$$

Normalized TBox:

$$
\mathcal{T}^{\prime}=\left\{\exists R . C \sqsubseteq A_{2}, A_{2} \sqcap D \sqsubseteq A_{1}, A_{1} \sqsubseteq \exists S . A_{3}, A_{3} \sqsubseteq \exists R . C\right\}
$$

Normalization of $\mathcal{E L}$ TBoxes

Termination and complexity

For every input $\mathcal{E} \mathcal{L}$ TBox \mathcal{T}, the normalization algorithm terminates in linear time w.r.t. the size of \mathcal{T}.

- Proof based on abnormality degree of \mathcal{T}
- Abnormal occurrence of a concept C within \mathcal{T} :
- $C \sqsubseteq D$, where C, D are neither atomic concepts nor T
- C is neither an atomic concept nor T, and is under a conjunction or an existential restriction
- C is under a conjunction operator on the right hand side
- Abnormality degree of \mathcal{T} : number of abnormal occurrences
- a TBox with abnormality degree 0 is in normal form
- the abnormality degree is bounded by the size of \mathcal{T}
- Claim: Each rule decreases the abnormality degree of \mathcal{T}

Normalization of $\mathcal{E L}$ TBoxes

Termination and complexity - Proof of the claim

- If \mathcal{T}^{\prime} is obtained from \mathcal{T} by applying NR_{0}
- $\mathcal{T}^{\prime}=\mathcal{T} \backslash\{\hat{C} \sqsubseteq \hat{D}\} \cup\{\hat{C} \sqsubseteq A, A \sqsubseteq \hat{D}\}$
- decreases the abnormality degree by 1
- removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C}
- does not modify other abnormal occurrences

Normalization of $\mathcal{E L}$ TBoxes

Termination and complexity - Proof of the claim

- If \mathcal{T}^{\prime} is obtained from \mathcal{T} by applying NR_{0}
- $\mathcal{T}^{\prime}=\mathcal{T} \backslash\{\hat{C} \sqsubseteq \hat{D}\} \cup\{\hat{C} \sqsubseteq A, A \sqsubseteq \hat{D}\}$
- decreases the abnormality degree by 1
- removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C}
- does not modify other abnormal occurrences
- If \mathcal{T}^{\prime} is obtained from \mathcal{T} by applying $\mathrm{NR}_{\square}^{\ell, 1}$
- $\mathcal{T}^{\prime}=\mathcal{T} \backslash\{C \sqcap \hat{D} \sqsubseteq B\} \cup\{\hat{D} \sqsubseteq A, C \sqcap A \sqsubseteq B\}$
- decreases the abnormality degree by 1
- removes abnormal occurrence $C \sqcap \hat{D}$ of \hat{D}
- does not modify the number of other abnormal occurrences ($C \sqcap \hat{D}$ is an abnormal occurence of C iff $C \sqcap A$ is one)

Normalization of $\mathcal{E L}$ TBoxes

Termination and complexity - Proof of the claim

- If \mathcal{T}^{\prime} is obtained from \mathcal{T} by applying NR_{0}
- $\mathcal{T}^{\prime}=\mathcal{T} \backslash\{\hat{C} \sqsubseteq \hat{D}\} \cup\{\hat{C} \sqsubseteq A, A \sqsubseteq \hat{D}\}$
- decreases the abnormality degree by 1
- removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C}
- does not modify other abnormal occurrences
- If \mathcal{T}^{\prime} is obtained from \mathcal{T} by applying $\mathrm{NR}_{\Gamma}^{\ell, 1}$
- $\mathcal{T}^{\prime}=\mathcal{T} \backslash\{C \sqcap \hat{D} \sqsubseteq B\} \cup\{\hat{D} \sqsubseteq A, C \sqcap A \sqsubseteq B\}$
- decreases the abnormality degree by 1
- removes abnormal occurrence $C \sqcap \hat{D}$ of \hat{D}
- does not modify the number of other abnormal occurrences ($C \sqcap \hat{D}$ is an abnormal occurence of C iff $C \sqcap A$ is one)
- If \mathcal{T}^{\prime} is obtained from \mathcal{T} by applying $\mathrm{NR}_{\exists}^{r}$
- $\mathcal{T}^{\prime}=\mathcal{T} \backslash\{B \sqsubseteq \exists R . \hat{C}\} \cup\{A \sqsubseteq \hat{C}, B \sqsubseteq \exists R . A\}$
- decreases the abnormality degree by 1
- removes abnormal occurrence $\exists R . \hat{C}$ of \hat{C}
- does not modify other abnormal occurrences

Normalization of $\mathcal{E L}$ TBoxes

Termination and complexity - Proof of the claim

- If \mathcal{T}^{\prime} is obtained from \mathcal{T} by applying NR_{0}
- $\mathcal{T}^{\prime}=\mathcal{T} \backslash\{\hat{C} \sqsubseteq \hat{D}\} \cup\{\hat{C} \sqsubseteq A, A \sqsubseteq \hat{D}\}$
- decreases the abnormality degree by 1
- removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C}
- does not modify other abnormal occurrences
- If \mathcal{T}^{\prime} is obtained from \mathcal{T} by applying $\mathrm{NR}_{\Gamma}^{\ell, 1}$
- $\mathcal{T}^{\prime}=\mathcal{T} \backslash\{C \sqcap \hat{D} \sqsubseteq B\} \cup\{\hat{D} \sqsubseteq A, C \sqcap A \sqsubseteq B\}$
- decreases the abnormality degree by 1
- removes abnormal occurrence $C \sqcap \hat{D}$ of \hat{D}
- does not modify the number of other abnormal occurrences ($C \sqcap \hat{D}$ is an abnormal occurence of C iff $C \sqcap A$ is one)
- If \mathcal{T}^{\prime} is obtained from \mathcal{T} by applying $\mathrm{NR}_{\exists}^{r}$
- $\mathcal{T}^{\prime}=\mathcal{T} \backslash\{B \sqsubseteq \exists R . \hat{C}\} \cup\{A \sqsubseteq \hat{C}, B \sqsubseteq \exists R . A\}$
- decreases the abnormality degree by 1
- removes abnormal occurrence $\exists R . \hat{C}$ of \hat{C}
- does not modify other abnormal occurrences
$-\mathrm{NR}_{\Pi}^{\ell, 2}, \mathrm{NR}_{\exists}^{\ell}, \mathrm{NR}_{\Pi}^{r}$: left as practice

Conservative Extensions

\mathcal{T}_{2} is a conservative extension of \mathcal{T}_{1} if:

- the signature of \mathcal{T}_{1} is included in the signature of \mathcal{T}_{2}
- every model of \mathcal{T}_{2} is a model of \mathcal{T}_{1}
- for every model \mathcal{I}_{1} of \mathcal{T}_{1}, there exists a model \mathcal{I}_{2} of \mathcal{T}_{2} with:
- $\Delta^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{2}}$
- $A^{\mathcal{I}_{1}}=A^{\mathcal{I}_{2}}$ for every atomic concept in the signature of \mathcal{T}_{1}
- $R^{\mathcal{I}_{1}}=R^{\mathcal{I}_{2}}$ for every role in the signature of \mathcal{T}_{1}

Conservative Extensions

\mathcal{T}_{2} is a conservative extension of \mathcal{T}_{1} if:

- the signature of \mathcal{T}_{1} is included in the signature of \mathcal{T}_{2}
- every model of \mathcal{T}_{2} is a model of \mathcal{T}_{1}
- for every model \mathcal{I}_{1} of \mathcal{T}_{1}, there exists a model \mathcal{I}_{2} of \mathcal{T}_{2} with:
- $\Delta^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{2}}$
- $A^{\mathcal{I}_{1}}=A^{\mathcal{I}_{2}}$ for every atomic concept in the signature of \mathcal{T}_{1}
- $R^{\mathcal{I}_{1}}=R^{\mathcal{I}_{2}}$ for every role in the signature of \mathcal{T}_{1}

Properties of conservative extensions

- Transitivity: If \mathcal{T}_{2} is a conservative extension of \mathcal{T}_{1}, and \mathcal{T}_{3} is a conservative extension of \mathcal{T}_{2}, then \mathcal{T}_{3} is a conservative extension of \mathcal{T}_{1}
- If \mathcal{T}_{2} is a conservative extension of \mathcal{T}_{1}
- if C and D are concepts containing only concept and role names from \mathcal{T}_{1}, then it holds that $\mathcal{T}_{1} \models C \sqsubseteq D$ if and only if $\mathcal{T}_{2} \models C \sqsubseteq D$
- for every ABox \mathcal{A} and assertion α that use only atomic concepts and roles from $\mathcal{T}_{1},\left\langle\mathcal{T}_{1}, \mathcal{A}\right\rangle \models \alpha$ iff $\left\langle\mathcal{T}_{2}, \mathcal{A}\right\rangle \models \alpha$

Normalization of $\mathcal{E L}$ TBoxes

Soundness and completeness

- \mathcal{T} and \mathcal{T}^{\prime} need not be equivalent due to the introduction of new atomic concepts by the normalization rules
- Claim: \mathcal{T}^{\prime} is a conservative extension of \mathcal{T}

Show that if \mathcal{T}_{2} is obtained from \mathcal{T}_{1} by applying one of the normalization rules, then \mathcal{T}_{2} is a conservative extension of \mathcal{T}_{1}.
The claim follows by transitivity.

- If \mathcal{T}_{2} is obtained from \mathcal{T}_{1} by applying NR_{0}
- $\mathcal{T}_{2}=\mathcal{T}_{1} \backslash\{\hat{C} \sqsubseteq \hat{D}\} \cup\{\hat{C} \sqsubseteq A, A \sqsubseteq \hat{D}\}$
- every model of \mathcal{T}_{2} is a model of \mathcal{T}_{1}
- for every model \mathcal{I}_{1} of \mathcal{T}_{1}, define \mathcal{I}_{2}
- $\Delta^{\mathcal{I}_{2}}=\Delta^{\mathcal{I}_{1}}, R^{\mathcal{I}_{2}}=R^{\mathcal{I}_{1}}$ for every role
- $B^{\mathcal{I}_{2}}=B^{\mathcal{I}_{1}}$ for every atomic concept different from A
- $A^{I_{2}}=\hat{C}^{I_{1}}$
- $\mathcal{I}_{2} \models \mathcal{T}_{2}$
- Other rules left as practice

Compact Canonical Model

- To decide entailment of an axiom or assertion in DL, we normally need to consider all the models of the KB
- In $\mathcal{E} \mathcal{L}$, for every $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, there exists a finite model $\mathcal{C}_{\mathcal{K}}$ which can be used to check whether an assertion or an inclusion between two atomic concepts is entailed
- $\mathcal{C}_{\mathcal{K}}$ is the compact canonical model of $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$

Compact Canonical Model

Construction of $\mathcal{C}_{\mathcal{K}}$

Let $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$ with \mathcal{T} an $\mathcal{E} \mathcal{L}$ TBox in normal form

- Start with \mathcal{I}_{0} defined by

$$
\begin{aligned}
\Delta^{\mathcal{I}_{0}} & =\{a \mid a \text { individual from } \mathcal{A}\} \cup\left\{e_{A} \mid A \text { atomic concept }\right\} \cup\left\{e_{T}\right\} \\
A^{\mathcal{I}_{0}} & =\{a \mid A(a) \in \mathcal{A}\} \cup\left\{e_{A}\right\} \\
R^{\mathcal{I}_{0}} & =\{(a, b) \mid R(a, b) \in \mathcal{A}\} \\
a^{\mathcal{I}_{0}} & =a \text { for every individual from } \mathcal{A}
\end{aligned}
$$

- \mathcal{I}_{n+1} is obtained from \mathcal{I}_{n} by applying one of the following rules (note that C can be an atomic concept $A, A_{1} \sqcap A_{2}$ or $\exists R . A$)
R_{1} : if $C \sqsubseteq B \in \mathcal{T}, x \in C^{\mathcal{I}_{n}}$ and $x \notin B^{\mathcal{I}_{n}}$, then $B^{\mathcal{I}_{n+1}}=B^{\mathcal{I}_{n}} \cup\{x\}$
R_{2} : if $A \sqsubseteq \exists R . B \in \mathcal{T}, x \in A^{\mathcal{I}_{n}}$ and $\left(x, e_{B}\right) \notin R^{\mathcal{I}_{n}}$, then $R^{\mathcal{I}_{n+1}}=R^{\mathcal{I}_{n}} \cup\left\{\left(x, e_{B}\right)\right\}$
- When we reach \mathcal{I}_{k} such that no more rules apply, set $\mathcal{C}_{\mathcal{K}}=\mathcal{I}_{k}$

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R . B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

A	B
e_{A}	e_{B}

e_{\top}

A

$\left.\right\|^{a}$		
R	e_{C}	e_{D}
b	C	D
B, C		

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R \cdot B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R \cdot B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R . B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R \cdot B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R \cdot B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R \cdot B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R \cdot B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R \cdot B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R . C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R \cdot B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

Compact Canonical Model

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq \exists R \cdot B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
& \mathcal{A}=\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

Compact Canonical Model

Properties of $\mathcal{C}_{\mathcal{K}}$

- $\mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
- $\Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
- each rule application adds an element or pair of elements of $\Delta^{\mathcal{C}_{\mathcal{K}}}$ to the interpretation of an atomic concept or role from \mathcal{K}

Compact Canonical Model

Properties of $\mathcal{C}_{\mathcal{K}}$

- $\mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
- $\Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
- each rule application adds an element or pair of elements of $\Delta^{\mathcal{C}_{\mathcal{K}}}$ to the interpretation of an atomic concept or role from \mathcal{K}
- $\mathcal{C}_{\mathcal{K}}$ is a model of \mathcal{K}
- $\mathcal{I}_{0} \models \mathcal{A}$ so $\mathcal{C}_{\mathcal{K}} \models \mathcal{A}$
- for every $C \sqsubseteq B \in \mathcal{T}, C^{\mathcal{C}_{\mathcal{K}}} \subseteq B^{\mathcal{C}_{\kappa}}$ (otherwise R_{1} would apply)
- for every $A \sqsubseteq \exists R . B \in \mathcal{T}$ and $x \in A^{\mathcal{C}_{\mathcal{K}}},\left(x, e_{B}\right) \in R^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_{2} would apply), and since $e_{B} \in B^{\mathcal{C}_{\mathcal{K}}}, x \in \exists R . B^{\mathcal{C}_{\mathcal{K}}}$
- hence $\mathcal{C}_{\mathcal{K}} \models \mathcal{T}$

Compact Canonical Model

Properties of $\mathcal{C}_{\mathcal{K}}$
$-\mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time

- $\Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
- each rule application adds an element or pair of elements of $\Delta^{\mathcal{C}_{\mathcal{K}}}$ to the interpretation of an atomic concept or role from \mathcal{K}
$\rightarrow \mathcal{C}_{\mathcal{K}}$ is a model of \mathcal{K}
- $\mathcal{I}_{0}=\mathcal{A}$ so $\mathcal{C}_{\mathcal{K}} \models \mathcal{A}$
- for every $C \sqsubseteq B \in \mathcal{T}, C^{\mathcal{C}_{\mathcal{K}}} \subseteq B^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_{1} would apply)
- for every $A \sqsubseteq \exists R . B \in \mathcal{T}$ and $x \in A^{\mathcal{C}_{\mathcal{K}}},\left(x, e_{B}\right) \in R^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_{2} would apply), and since $e_{B} \in B^{\mathcal{C}_{\mathcal{K}}}, x \in \exists R . B^{\mathcal{C}_{\mathcal{K}}}$
- hence $\mathcal{C}_{\mathcal{K}} \models \mathcal{T}$
- for every concept inclusion between atomic concepts $A \sqsubseteq B$, $\mathcal{K} \models A \sqsubseteq B$ iff $\mathcal{C}_{\mathcal{K}} \models B\left(e_{A}\right)$
- if $\mathcal{K} \models A \sqsubseteq B, \mathcal{C}_{\mathcal{K}} \models A \sqsubseteq B$ so since $e_{A} \in A^{\mathcal{C}_{\kappa}}, \mathcal{C}_{\mathcal{K}} \models B\left(e_{A}\right)$
- Claim 1: if $\mathcal{C}_{\mathcal{K}} \models B\left(e_{A}\right)$, then $\mathcal{K} \models A \sqsubseteq B$

Compact Canonical Model

Properties of $\mathcal{C}_{\mathcal{K}}$

- $\mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
- $\Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
- each rule application adds an element or pair of elements of $\Delta^{\mathcal{C}_{\mathcal{K}}}$ to the interpretation of an atomic concept or role from \mathcal{K}
$\rightarrow \mathcal{C}_{\mathcal{K}}$ is a model of \mathcal{K}
- $\mathcal{I}_{0}=\mathcal{A}$ so $\mathcal{C}_{\mathcal{K}} \models \mathcal{A}$
- for every $C \sqsubseteq B \in \mathcal{T}, C^{\mathcal{C}_{\mathcal{K}}} \subseteq B^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_{1} would apply)
- for every $A \sqsubseteq \exists R . B \in \mathcal{T}$ and $x \in A^{\mathcal{C}_{\mathcal{K}}},\left(x, e_{B}\right) \in R^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_{2} would apply), and since $e_{B} \in B^{\mathcal{C}_{\mathcal{K}}}, x \in \exists R . B^{\mathcal{C}_{\mathcal{K}}}$
- hence $\mathcal{C}_{\mathcal{K}} \models \mathcal{T}$
- for every concept inclusion between atomic concepts $A \sqsubseteq B$, $\mathcal{K} \models A \sqsubseteq B$ iff $\mathcal{C}_{\mathcal{K}} \models B\left(e_{A}\right)$
- if $\mathcal{K} \models A \sqsubseteq B, \mathcal{C}_{\mathcal{K}} \models A \sqsubseteq B$ so since $e_{A} \in A^{\mathcal{C}_{\kappa}}, \mathcal{C}_{\mathcal{K}} \models B\left(e_{A}\right)$
- Claim 1: if $\mathcal{C}_{\mathcal{K}} \models B\left(e_{A}\right)$, then $\mathcal{K} \models A \sqsubseteq B$
- for every assertion $\alpha, \mathcal{K} \models \alpha$ iff $\mathcal{C}_{\mathcal{K}} \models \alpha$
- if $\mathcal{K} \models \alpha, \mathcal{C}_{\mathcal{K}} \models \alpha$
- $\mathcal{C}_{\mathcal{K}} \models R(a, b)$ with a, b individuals implies $R(a, b) \in \mathcal{A}$
- Claim 2: if $\mathcal{C}_{\mathcal{K}} \models A(a)$ with a individual, then $\mathcal{K} \models A(a)$

Compact Canonical Model

Example

$$
\begin{aligned}
\mathcal{T} & =\{A \sqsubseteq \exists R . B, \exists R \cdot C \sqsubseteq D, A \sqcap D \sqsubseteq C, C \sqsubseteq \exists R \cdot C\} \\
\mathcal{A} & =\{A(a), R(a, b), B(b), C(b)\}
\end{aligned}
$$

$$
\begin{array}{lc}
\mathcal{C}_{\mathcal{K}} \models C(a) \Rightarrow \mathcal{K} \models C(a) & \mathcal{C}_{\mathcal{K}} \models D(a) \Rightarrow \mathcal{K} \models D(a) \\
\mathcal{C}_{\mathcal{K}} \models D(b) \Rightarrow \mathcal{K} \models D(b) & \mathcal{C}_{\mathcal{K}} \models D\left(e_{C}\right) \Rightarrow \mathcal{K} \models C \sqsubseteq D
\end{array}
$$

Compact Canonical Model

Properties of $\mathcal{C}_{\mathcal{K}}$ - Proof of Claim 1

For all atomic concepts $A, B, \mathcal{C}_{\mathcal{K}} \models B\left(e_{A}\right)$ implies $\mathcal{K} \models A \sqsubseteq B$
Proof by induction on n such that $e_{A} \in B^{\mathcal{I}_{n}}$

- Base case: $e_{A} \in B^{\mathcal{I}_{0}}$ implies that $B=A$ and $\mathcal{K} \models A \sqsubseteq A$
- Induction hypothesis (IH): For every atomic concepts A and $B, e_{A} \in B^{\mathcal{I}_{n}}$ implies $\mathcal{K} \models A \sqsubseteq B$

Compact Canonical Model

Properties of $\mathcal{C}_{\mathcal{K}}$ - Proof of Claim 1

For all atomic concepts $A, B, \mathcal{C}_{\mathcal{K}} \models B\left(e_{A}\right)$ implies $\mathcal{K} \models A \sqsubseteq B$
Proof by induction on n such that $e_{A} \in B^{\mathcal{I}_{n}}$

- Base case: $e_{A} \in B^{\mathcal{I}_{0}}$ implies that $B=A$ and $\mathcal{K} \models A \sqsubseteq A$
- Induction hypothesis (IH): For every atomic concepts A and $B, e_{A} \in B^{\mathcal{I}_{n}}$ implies $\mathcal{K} \models A \sqsubseteq B$
- Induction step: Assume that $e_{A} \in B^{\mathcal{I}_{n+1}}$
- If $e_{A} \in B^{\mathcal{I}_{n}}, \mathcal{K} \models A \sqsubseteq B$ by IH
- If $e_{A} \notin B^{\mathcal{I}_{n}}, e_{A}$ has been added to $B^{\mathcal{I}_{n+1}}$ by applying rule R_{1} : there exists $C \sqsubseteq B \in \mathcal{T}$ such that $e_{A} \in C^{\mathcal{I}_{n}}$

Compact Canonical Model

Properties of $\mathcal{C}_{\mathcal{K}}$ - Proof of Claim 1

For all atomic concepts $A, B, \mathcal{C}_{\mathcal{K}} \models B\left(e_{A}\right)$ implies $\mathcal{K} \models A \sqsubseteq B$
Proof by induction on n such that $e_{A} \in B^{\mathcal{I}_{n}}$

- Base case: $e_{A} \in B^{\mathcal{I}_{0}}$ implies that $B=A$ and $\mathcal{K} \models A \sqsubseteq A$
- Induction hypothesis (IH): For every atomic concepts A and $B, e_{A} \in B^{\mathcal{I}_{n}}$ implies $\mathcal{K} \models A \sqsubseteq B$
- Induction step: Assume that $e_{A} \in B^{\mathcal{I}_{n+1}}$
- If $e_{A} \in B^{\mathcal{I}_{n}}, \mathcal{K} \models A \sqsubseteq B$ by IH
- If $e_{A} \notin B^{\mathcal{I}_{n}}, e_{A}$ has been added to $B^{\mathcal{I}_{n+1}}$ by applying rule R_{1} : there exists $C \sqsubseteq B \in \mathcal{T}$ such that $e_{A} \in C^{\mathcal{I}_{n}}$
- case C atomic concept: $\mathcal{K} \models A \sqsubseteq C$ (by IH). It is then easy to check that $\mathcal{K} \models A \sqsubseteq B$
- case $C=A_{1} \sqcap A_{2}: e_{A} \in A_{1}^{\mathcal{I}_{n}}$ and $e_{A} \in A_{2}^{\mathcal{I}_{n}}$ so $\mathcal{K} \models A \sqsubseteq A_{1}$ and $\mathcal{K} \models A \sqsubseteq A_{2}$ (by IH). Since $A_{1} \sqcap A_{2} \sqsubseteq B \in \mathcal{T}$, it is then easy to check that $\mathcal{K} \models A \sqsubseteq B$
\checkmark case $C=\exists R$. D : there exists $e_{X} \in D^{\mathcal{I}_{n}}$ s.t. $\left(e_{A}, e_{X}\right) \in R^{\mathcal{I}_{n}}$. $\left(e_{A}, e_{X}\right) \in R^{\mathcal{I}_{n}}$ has been added by rule R_{2} so $E \sqsubseteq \exists R . X \in \mathcal{T}$ and $e_{A} \in E^{\mathcal{I}_{n}} . \mathcal{K} \models X \sqsubseteq D$ and $\mathcal{K} \models A \sqsubseteq E$ (by IH). Since $\mathcal{K} \models A \sqsubseteq E, \mathcal{K} \models E \sqsubseteq \exists R . X, \mathcal{K} \models X \sqsubseteq D$ and $\mathcal{K} \models \exists R . D \sqsubseteq B$, it is easy to check that $\mathcal{K} \models A \sqsubseteq B$

Compact Canonical Model

Properties of $\mathcal{C}_{\mathcal{K}}$ - Proof of Claim 2
For every concept assertion $A(a)$, if $\mathcal{C}_{\mathcal{K}} \models A(a)$, then $\mathcal{K} \models A(a)$
Proof by induction on n such that $a \in A^{\mathcal{I}_{n}}$

- Base case: $a \in A^{\mathcal{I}_{0}}$ implies $A(a) \in \mathcal{A}$
- Induction hypothesis (IH): For every atomic concept A and individual $a, a \in A^{\mathcal{I}_{n}}$ implies $\mathcal{K} \models A(a)$

Compact Canonical Model

Properties of $\mathcal{C}_{\mathcal{K}}$ - Proof of Claim 2
For every concept assertion $A(a)$, if $\mathcal{C}_{\mathcal{K}} \models A(a)$, then $\mathcal{K} \models A(a)$
Proof by induction on n such that $a \in A^{\mathcal{I}_{n}}$

- Base case: $a \in A^{\mathcal{I}_{0}}$ implies $A(a) \in \mathcal{A}$
- Induction hypothesis (IH): For every atomic concept A and individual a, $a \in A^{\mathcal{I}_{n}}$ implies $\mathcal{K} \models A(a)$
- Induction step: Assume that $a \in A^{\mathcal{I}_{n+1}}$
- If $a \in A^{\mathcal{I}_{n}}, \mathcal{K} \models A(a)$ by IH
- If $a \notin A^{\mathcal{I}_{n}}, a$ has been added to $A^{\mathcal{I}_{n+1}}$ by applying rule R_{1} : there exists $C \sqsubseteq A \in \mathcal{T}$ such that $a \in C^{\mathcal{I}_{n}}$

Compact Canonical Model

Properties of $\mathcal{C}_{\mathcal{K}}$ - Proof of Claim 2

For every concept assertion $A(a)$, if $\mathcal{C}_{\mathcal{K}} \models A(a)$, then $\mathcal{K} \models A(a)$
Proof by induction on n such that $a \in A^{\mathcal{I}_{n}}$

- Base case: $a \in A^{\mathcal{I}_{0}}$ implies $A(a) \in \mathcal{A}$
- Induction hypothesis (IH): For every atomic concept A and individual a, $a \in A^{\mathcal{I}_{n}}$ implies $\mathcal{K} \models A(a)$
- Induction step: Assume that $a \in A^{\mathcal{I}_{n+1}}$
- If $a \in A^{\mathcal{I}_{n}}, \mathcal{K} \models A(a)$ by IH
- If a $\notin A^{\mathcal{I}_{n}}$, a has been added to $A^{\mathcal{I}_{n+1}}$ by applying rule R_{1} : there exists $C \sqsubseteq A \in \mathcal{T}$ such that $a \in \mathcal{C}^{\mathcal{I}_{n}}$
- case C atomic concept: $\mathcal{K} \models C(a)$ (by IH). It is then easy to check that $\mathcal{K} \vDash A(a)$
- case $C=A_{1} \sqcap A_{2}: \mathcal{K} \models A_{1}(a)$ and $\mathcal{K} \models A_{2}($ a) (by IH). Since $A_{1} \sqcap A_{2} \sqsubseteq A \in \mathcal{T}$, it is then easy to check that $\mathcal{K} \models A(a)$
- case $C=\exists R . D$: there exists $x \in D^{\mathcal{I}_{n}}$ s.t. $(a, x) \in R^{\mathcal{I}_{n}}$
- if x is an individual, $R(a, x) \in \mathcal{A}$ and $\mathcal{K} \models D(x)$ (by IH) so since $\exists R . D \sqsubseteq A \in \mathcal{T}$, it is easy to check that $\mathcal{K} \models A(a)$
- if $x=e_{X}, E \sqsubseteq \exists R . X \in \mathcal{T}$ and $a \in E^{\mathcal{I}_{n}}$ so $\mathcal{K} \mid=E(a)$ (by IH). By Claim $1, \mathcal{K} \models X \sqsubseteq D$. It is then easy to check that $\mathcal{K} \models A(a)$

Exercise

Build the compact canonical model of $\langle\mathcal{T}, \mathcal{A}\rangle$ and use it to classify \mathcal{T} and find all assertions entailed by $\langle\mathcal{T}, \mathcal{A}\rangle$

$$
\begin{aligned}
\mathcal{T}= & \{A \sqcap B \sqsubseteq D, \quad B \sqcap D \sqsubseteq C, \quad \exists S . D \sqsubseteq D, \\
& C \sqsubseteq \exists R \cdot A, \quad C \sqsubseteq \exists R . B, \quad B \sqsubseteq \exists S . D\} \\
\mathcal{A}= & \{A(a), \quad B(a), \quad S(a, b), \quad D(b)\}
\end{aligned}
$$

Classification Algorithm

Given a TBox \mathcal{T} in normal form, complete \mathcal{T} using saturation rules

$$
\mathrm{CR}_{1}^{T} \overline{A \sqsubseteq A} \quad \mathrm{CR}_{2}^{T} \overline{A \sqsubseteq T} \quad \mathrm{CR}_{3}^{T} \frac{A_{1} \sqsubseteq B \quad B \sqsubseteq A_{2}}{A_{1} \sqsubseteq A_{2}}
$$

$\mathrm{CR}_{4}^{T} \frac{A \sqsubseteq A_{1} \quad A \sqsubseteq A_{2} \quad A_{1} \sqcap A_{2} \sqsubseteq B}{A \sqsubseteq B} \quad \mathrm{CR}_{5}^{T} \frac{A \sqsubseteq \exists R . A_{1} \quad A_{1} \sqsubseteq B_{1} \quad \exists R . B_{1} \sqsubseteq B}{A \sqsubseteq B}$

- Instantiated rule: obtained by replacing $A, A_{1}, A_{2}, B, B_{1}$ by atomic concepts or T and R by atomic role
- Instantiated rule with premises $\alpha_{1}, \ldots, \alpha_{n}$ and conclusion β is applicable if $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq \mathcal{T}$ and $\beta \notin \mathcal{T}$.
- premises: axioms above the line
- conclusion: axiom below the line

Applying the rule adds β to \mathcal{T}

Classification Algorithm

$$
\begin{gathered}
\mathrm{CR}_{1}^{T} \frac{A \sqsubseteq A}{A \sqsubseteq} \quad \mathrm{CR}_{2}^{T} \overline{A \sqsubseteq \top} \quad \mathrm{CR}_{3}^{T} \frac{A_{1} \sqsubseteq B \quad B \sqsubseteq A_{2}}{A_{1} \sqsubseteq A_{2}} \\
\mathrm{CR}_{4}^{T} \frac{A \sqsubseteq A_{1}}{} \frac{A \sqsubseteq A_{2} \quad A_{1} \sqcap A_{2} \sqsubseteq B}{A \sqsubseteq B} \quad \mathrm{CR}_{5}^{T} \frac{A \sqsubseteq \exists R \cdot A_{1} \quad A_{1} \sqsubseteq B_{1} \quad \exists R \cdot B_{1} \sqsubseteq B}{A \sqsubseteq B}
\end{gathered}
$$

Classify \mathcal{T} : find all atomic concepts A, B such that $\mathcal{T} \models A \sqsubseteq B$

- Exhaustively apply instantiated saturation rules to \mathcal{T}
- the resulting TBox $\operatorname{sat}(\mathcal{T})$ is called the saturated TBox
- For every atomic concepts A and B, return that $\mathcal{T} \models A \sqsubseteq B$ iff $A \sqsubseteq B \in \operatorname{sat}(\mathcal{T})$

Lemma

All exhaustive sequences of rule applications lead to a unique saturated TBox

Classification Algorithm

Example

$$
\begin{aligned}
\mathcal{T}= & \{A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R . D, \\
& \exists R . E \sqsubseteq C, \quad \exists R . \top \sqsubseteq E\}
\end{aligned}
$$

Classification Algorithm

Example

$$
\begin{aligned}
\mathcal{T}= & \{A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R . D, \\
& \exists R . E \sqsubseteq C, \quad \exists R . \top \sqsubseteq E\}
\end{aligned}
$$

$$
\begin{array}{lllll}
\overline{A \sqsubseteq A} & \overline{B \sqsubseteq B} & \overline{C \sqsubseteq C} & \overline{D \sqsubseteq D} & \overline{E \sqsubseteq E} \\
\overline{A \sqsubseteq T} & \overline{B \sqsubseteq T} & \overline{C \sqsubseteq \top} & \overline{D \sqsubseteq \top} & \overline{E \sqsubseteq \top}
\end{array}
$$

Classification Algorithm

Example

$$
\begin{array}{cccc}
\mathcal{T}=\{A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R . D, \\
& \exists R . E \sqsubseteq C, \quad \exists R . T \sqsubseteq E\} \\
\overline{A \sqsubseteq A} & \overline{B \sqsubseteq B} \quad \overline{C \sqsubseteq C} \quad \overline{D \sqsubseteq D} & \overline{E \sqsubseteq E} \\
\overline{A \sqsubseteq \top} & \overline{B \sqsubseteq \top} \quad \overline{C \sqsubseteq \top} \quad \overline{D \sqsubseteq \top} & \overline{E \sqsubseteq \top} \\
\frac{D \sqsubseteq \exists R . D}{} D \sqsubseteq \top & \exists R . \top \sqsubseteq E & \frac{D \sqsubseteq \exists R . D}{} & D \sqsubseteq E \\
D \sqsubseteq E & & \\
\hline D . E \sqsubseteq C
\end{array}
$$

Classification Algorithm

Example

$$
\begin{array}{cccc}
\mathcal{T}=\{A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R . D, \\
& \exists R . E \sqsubseteq C, \quad \exists R . T \sqsubseteq E\} \\
\overline{A \sqsubseteq A} & \overline{B \sqsubseteq B} \quad \overline{C \sqsubseteq C} \quad \overline{D \sqsubseteq D} & \overline{E \sqsubseteq E} \\
\overline{A \sqsubseteq \top} & \overline{B \sqsubseteq \top} \quad \overline{C \sqsubseteq \top} \quad \overline{D \sqsubseteq \top} & \overline{E \sqsubseteq \top} \\
\frac{D \sqsubseteq \exists R . D}{} D \sqsubseteq \top & \exists R . T \sqsubseteq E & \frac{D \sqsubseteq \exists R . D}{} D \sqsubseteq E \quad \exists R . E \sqsubseteq C \\
\hline D \sqsubseteq E & D \sqsubseteq C \\
\frac{D \sqsubseteq D}{} D \sqsubseteq C \quad D \sqcap C \sqsubseteq B \\
D \sqsubseteq B & &
\end{array}
$$

Classification Algorithm

Example

$$
\begin{aligned}
& \mathcal{T}=\{A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R . D, \\
& \exists R . E \sqsubseteq C, \quad \exists R . T \sqsubseteq E\} \\
& \overline{A \sqsubseteq A} \quad \overline{B \sqsubseteq B} \quad \overline{C \sqsubseteq C} \quad \overline{D \sqsubseteq D} \quad \overline{E \sqsubseteq E} \\
& \overline{A \sqsubseteq \top} \quad \overline{B \sqsubseteq \top} \quad \overline{C \sqsubseteq T} \quad \overline{D \sqsubseteq \top} \quad \overline{E \sqsubseteq \top} \\
& \begin{array}{ccccc}
D \sqsubseteq \exists R . D & D \sqsubseteq T \quad \exists R . T \sqsubseteq E \\
D \sqsubseteq E & D \sqsubseteq \exists R . D \quad D \sqsubseteq E \quad \exists R . E \sqsubseteq C \\
D \sqsubseteq C
\end{array} \\
& \frac{D \sqsubseteq D \quad D \sqsubseteq C \quad D \sqcap C \sqsubseteq B}{D \sqsubseteq B} \\
& \frac{A \sqsubseteq D \quad D \sqsubseteq E}{A \sqsubseteq E} \quad \frac{A \sqsubseteq D \quad D \sqsubseteq C}{A \sqsubseteq C} \quad \frac{A \sqsubseteq D \quad D \sqsubseteq B}{A \sqsubseteq B}
\end{aligned}
$$

Classification Algorithm

Termination and complexity

Classification algorithm runs in polynomial time w.r.t. the size of \mathcal{T}

- Each rule application adds a concept inclusion of the form $A \sqsubseteq B$ with A and B atomic concepts from \mathcal{T} or \top
- The number of such concept inclusions is quadratic in the number of atomic concepts that occur in \mathcal{T}

Classification Algorithm

$$
\text { Soundness } \quad \mathrm{CR}_{1}^{T} \overline{\overline{A \sqsubseteq A}} \quad \mathrm{CR}_{2}^{T} \overline{A \sqsubseteq T} \quad \mathrm{CR}_{3}^{T} \frac{A_{1} \sqsubseteq B \quad B \sqsubseteq A_{2}}{A_{1} \sqsubseteq A_{2}}
$$

$\mathrm{CR}_{4}^{T} \frac{A \sqsubseteq A_{1} \quad A \sqsubseteq A_{2} \quad A_{1} \sqcap A_{2} \sqsubseteq B}{A \sqsubseteq B} \quad \mathrm{CR}_{5}^{T} \frac{A \sqsubseteq \exists R . A_{1}}{} A_{1} \sqsubseteq B_{1} \quad \exists R . B_{1} \sqsubseteq B$
If $A \sqsubseteq B \in \operatorname{sat}(\mathcal{T})$ then $\mathcal{T} \models A \sqsubseteq B$.
Show that if β is added to \mathcal{T} by applying a saturation rule whose premises are entailed by \mathcal{T}, then $\mathcal{T} \models \beta$

- CR_{1}^{T} or CR_{2}^{T} case: β is of the form $A \sqsubseteq A$ or $A \sqsubseteq \top$ and holds in every interpretation, so $\mathcal{T} \models \beta$
- CR_{3}^{T} case: $\beta=A_{1} \sqsubseteq A_{2}, \mathcal{T} \models A_{1} \sqsubseteq B$ and $\mathcal{T} \models B \sqsubseteq A_{2}$
- let \mathcal{I} be a model of $\mathcal{T}: A_{1}^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq A_{2}^{\mathcal{I}}$ so $A_{1}^{\mathcal{I}} \subseteq A_{2}^{\mathcal{I}}$, yielding $\mathcal{I} \models A_{1} \sqsubseteq A_{2}$
- hence $\mathcal{T} \models A_{1} \sqsubseteq A_{2}$
- CR_{4}^{T} and CR_{5}^{T} cases: left as practice

The property follows by induction on the number of rule applications before $A \sqsubseteq B$ has been added to $\operatorname{sat}(\mathcal{T})$

Classification Algorithm

Completeness

If $\mathcal{T} \models A \sqsubseteq B$ then $A \sqsubseteq B \in \operatorname{sat}(\mathcal{T})$.
Show the contrapositive: if $A \sqsubseteq B \notin \operatorname{sat}(\mathcal{T})$, then $\mathcal{T} \not \vDash A \sqsubseteq B$

- Define an interpretation $\mathcal{I}_{\text {sat }(\mathcal{T})}$ from $\operatorname{sat}(\mathcal{T})$
- $\Delta^{\mathcal{I}_{\text {sat }}(\mathcal{T})}=\left\{e_{A} \mid A\right.$ is an atomic concept in $\left.\mathcal{T}\right\} \cup\left\{e_{T}\right\}$
- $A^{\mathcal{I}_{\text {sat }}(\mathcal{T})}=\left\{e_{B} \mid B \sqsubseteq A \in \operatorname{sat}(\mathcal{T})\right\}$
- $R^{\mathcal{I s t a t}^{\text {sit }}}=\left\{\left(e_{A}, e_{B}\right) \mid A \sqsubseteq C \in \operatorname{sat}(\mathcal{T}), C \sqsubseteq \exists R . B \in \operatorname{sat}(\mathcal{T})\right\}$
- Claim: $\mathcal{I}_{\text {sat }(\mathcal{T})}$ is a model of \mathcal{T} and $A \sqsubseteq B \notin \operatorname{sat}(\mathcal{T})$ implies that $\mathcal{I}_{\text {sat }(\mathcal{T})} \not \vDash A \sqsubseteq B$
- If $A \sqsubseteq B \notin \operatorname{sat}(\mathcal{T})$, then $\mathcal{I}_{\text {sat }(\mathcal{T})} \not \models A \sqsubseteq B$, so $\mathcal{T} \not \models A \sqsubseteq B$

Remark: $\mathcal{I}_{\text {sat }(\mathcal{T})}$ is actually the compact canonical model of $\langle\mathcal{T}, \emptyset\rangle$

Classification Algorithm

Completeness - Proof of the claim

$\mathcal{I}_{\text {sat }(\mathcal{T})} \models \mathcal{T}$ and $A \sqsubseteq B \notin \operatorname{sat}(\mathcal{T})$ implies that $\mathcal{I}_{\text {sat }(\mathcal{T})} \not \vDash A \sqsubseteq B$

- $\mathcal{I}_{\text {sat }(\mathcal{T})}$ is a model of $\operatorname{sat}(\mathcal{T}):$ let $\beta \in \operatorname{sat}(\mathcal{T})$
- Case $\beta=A \sqsubseteq B$: if $e_{D} \in A^{\mathcal{I s s t}^{\text {st }}(\mathcal{T})}$, then $D \sqsubseteq A \in \operatorname{sat}(\mathcal{T})$ By $\mathrm{CR}_{3}^{T}, D \sqsubseteq B \in \operatorname{sat}(\mathcal{T})$, so $e_{D} \in B^{\mathcal{I}_{\text {sat }}(\mathcal{T})}$
- Case $\beta=A_{1} \sqcap A_{2} \sqsubseteq B$: if $e_{D} \in\left(A_{1} \sqcap A_{2}\right)^{\mathcal{I}_{\text {sat }}(\mathcal{T})}$, then
$D \sqsubseteq A_{1} \in \operatorname{sat}(\mathcal{T})$ and $D \sqsubseteq A_{2} \in \operatorname{sat}(\mathcal{T})$
By $\mathrm{CR}_{4}^{T}, D \sqsubseteq B \in \operatorname{sat}(\mathcal{T})$, so $e_{D} \in B^{\mathcal{I}_{\text {sat }}(\mathcal{T})}$
- Case $\beta=A \sqsubseteq \exists R . B$: if $e_{D} \in A^{\mathcal{I}_{\text {sat }}(\mathcal{T})}$, then $D \sqsubseteq A \in \operatorname{sat}(\mathcal{T})$ By construction of $\mathcal{I}_{\text {sat }(\mathcal{T})}$, it follows that $\left(e_{D}, e_{B}\right) \in R^{\mathcal{I}_{\text {sat }}(\mathcal{T})}$ By $\mathrm{CR}_{1}^{T}, B \sqsubseteq B \in \operatorname{sat}(\mathcal{T})$ so $e_{B} \in B^{\mathcal{I}_{\text {sat }}(\mathcal{T})}: e_{D} \in \exists R . B^{\mathcal{I s t a t}_{\text {st }}}$
- Case $\beta=\exists R . B \sqsubseteq A$: if $e_{D} \in \exists R . B^{\mathcal{I}_{\text {sat }}(\mathcal{T})}$, then there exists $e_{C} \in B^{\mathcal{I}_{\text {sat }}(\mathcal{T})}$ such that $\left(e_{D}, e_{C}\right) \in R^{\mathcal{I}_{\text {sat }}(\mathcal{T})}$
Hence $C \sqsubseteq B \in \operatorname{sat}(\mathcal{T})$ and $D \sqsubseteq \exists R . C \in \operatorname{sat}(\mathcal{T})$
By $\mathrm{CR}_{5}^{T}, D \sqsubseteq A \in \operatorname{sat}(\mathcal{T})$, so $e_{D} \in A^{\left.\mathcal{I s t a}^{\text {st }}\right)}$
- Since $\mathcal{T} \subseteq \operatorname{sat}(\mathcal{T})$, it follows that $\mathcal{I}_{\text {sat }(\mathcal{T})} \vDash \mathcal{T}$
- If $A \sqsubseteq B \notin \operatorname{sat}(\mathcal{T})$, then $e_{A} \notin B^{\mathcal{I}_{\text {sat }(\mathcal{T})}}$ while $e_{A} \in A^{\mathcal{I}_{\text {sat }(\mathcal{T})}}$
(since $A \sqsubseteq A \in \operatorname{sat}(\mathcal{T})$ by CR_{1}^{T}) so $\mathcal{I}_{\text {sat }(\mathcal{T})} \not \not \neq A \sqsubseteq B$

Instance Checking

Add rules to derive assertions to the saturation rules

$$
\mathrm{CR}_{1}^{T} \overline{A \sqsubseteq A} \quad \mathrm{CR}_{2}^{T} \overline{A \sqsubseteq \top} \quad \mathrm{CR}_{3}^{T} \frac{A_{1} \sqsubseteq B \quad B \sqsubseteq A_{2}}{A_{1} \sqsubseteq A_{2}}
$$

$\mathrm{CR}_{4}^{T} \frac{A \sqsubseteq A_{1} \quad A \sqsubseteq A_{2} \quad A_{1} \sqcap A_{2} \sqsubseteq B}{A \sqsubseteq B} \quad \mathrm{CR}_{5}^{T} \frac{A \sqsubseteq \exists R . A_{1} \quad A_{1} \sqsubseteq B_{1} \quad \exists R \cdot B_{1} \sqsubseteq B}{A \sqsubseteq B}$

$$
\mathrm{CR}_{1}^{A} \overline{\top(a)} \quad \mathrm{CR}_{2}^{A} \frac{A \sqsubseteq B \quad A(a)}{B(a)}
$$

$\mathrm{CR}_{3}^{A} \frac{A_{1} \sqcap A_{2} \sqsubseteq B \quad A_{1}(a) \quad A_{2}(a)}{B(a)}$

$$
\mathrm{CR}_{4}^{A} \frac{\exists R \cdot A \sqsubseteq B \quad R(a, b) \quad A(b)}{B(a)}
$$

- Take as input an $\mathcal{E L} \mathrm{KB}\langle\mathcal{T}, \mathcal{A}\rangle$ with \mathcal{T} in normal form and an atomic concept A
- Exhaustively apply instantiated saturation rules to $\langle\mathcal{T}, \mathcal{A}\rangle$
- the resulting $\mathrm{KB} \operatorname{sat}(\mathcal{T}, \mathcal{A})=\left\langle\mathcal{T}^{\star}, \mathcal{A}^{\star}\right\rangle$ is the saturated KB
- For every individual a, return $\langle\mathcal{T}, \mathcal{A}\rangle \models A(a)$ iff $A(a) \in \mathcal{A}^{\star}$

Instance Checking

- The instance checking algorithm adds a number of concept inclusions and concept assertions which is at most quadratic in the size of the $K B$, hence runs in polynomial time
- Soundness: left as practice
- Completeness: Show the contrapositive: if $A(a) \notin \mathcal{A}^{\star}$, then $\langle\mathcal{T}, \mathcal{A}\rangle \not \vDash A(a)$
- Define an interpretation \mathcal{I}^{\star} from $\operatorname{sat}(\mathcal{T}, \mathcal{A})=\left\langle\mathcal{T}^{\star}, \mathcal{A}^{\star}\right\rangle$
- $\Delta^{\mathcal{I}^{\star}}=\{c \mid c$ individual from $\mathcal{A}\} \cup$ $\left\{e_{A} \mid A\right.$ is an atomic concept in $\left.\mathcal{T}\right\} \cup\left\{e_{T}\right\}$
- $c^{\mathcal{I}^{\star}}=c$ for every individual c from \mathcal{A}
- $A^{\mathcal{I}^{\star}}=\left\{c \mid A(c) \in \mathcal{A}^{\star}\right\} \cup\left\{e_{B} \mid B \sqsubseteq A \in \mathcal{T}^{\star}\right\}$
- $R^{\mathcal{I}^{\star}}=\left\{(c, d) \mid R(c, d) \in \mathcal{A}^{\star}\right\} \cup$

$$
\begin{aligned}
& \left\{\left(a, e_{B}\right) \mid A \sqsubseteq \exists R . B \in \mathcal{T}^{\star}, A(a) \in \mathcal{A}^{\star}\right\} \cup \\
& \left\{\left(e_{A}, e_{B}\right) \mid A \sqsubseteq C \in \mathcal{T}^{\star}, C \sqsubseteq \exists R . B \in \mathcal{T}^{\star}\right\}
\end{aligned}
$$

- Claim: \mathcal{I}^{\star} is a model of $\langle\mathcal{T}, \mathcal{A}\rangle$ and $A(a) \notin \mathcal{A}^{\star}$ implies that $\mathcal{I}^{\star} \notin A(a)$: left as practice

Exercise

Normalize \mathcal{T} and apply the saturation algorithm to classify \mathcal{T} and find the assertions entailed by $\langle\mathcal{T}, \mathcal{A}\rangle$

$$
\begin{gathered}
\mathcal{T}=\{\exists S . B \sqsubseteq D, \exists R \cdot D \sqsubseteq E, \exists R \cdot A \sqsubseteq \exists R \cdot \exists S \cdot(B \sqcap C)\} \\
\mathcal{A}=\{R(a, b), A(b)\}
\end{gathered}
$$

A Saturation Algorithm for $\mathcal{E L} \mathcal{L}$

- $\mathcal{E L I}=\mathcal{E} \mathcal{L}+$ inverse roles

$$
C:=\top|A| C \sqcap C|\exists R . C| \exists R^{-} . C
$$

- Axiom entailment is ExpTime-complete
- However, $\mathcal{E} \mathcal{L I}$ retains some nice properties
- canonical model (no case-based reasoning)
- can extend the saturation algorithm to handle $\mathcal{E} \mathcal{L I}$
- may produce an exponential number of concept inclusions
- deduce $A \sqcap D \sqsubseteq \exists R$. $(B \sqcap E)$ from $A \sqsubseteq \exists R . B$ and $\exists R^{-} . D \sqsubseteq E$
- The same holds for $\mathcal{E} \mathcal{L} \mathcal{H}_{\perp}=\mathcal{E} \mathcal{L I}+$ role inclusions $+\perp$

A Saturation Algorithm for $\mathcal{E L} \mathcal{L}$

$$
\begin{gathered}
\mathrm{CR}_{1}^{T} \overline{A \sqsubseteq A} \quad \mathrm{CR}_{2}^{T} \overline{A \sqsubseteq T} \\
\mathrm{CR}_{3}^{T} \frac{\left\{A \sqsubseteq B_{i}\right\}_{i=1}^{n} \quad B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} \quad \mathrm{CR}_{4}^{T} \frac{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime}\right) \quad N \sqsubseteq A}{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime} \sqcap A\right)} \\
\mathrm{CR}_{5}^{T} \frac{M \sqsubseteq \exists S .(N \sqcap A) \quad \exists S \cdot A \sqsubseteq B}{M \sqsubseteq B} \quad \mathrm{CR}_{6}^{T} \frac{M \sqsubseteq \exists S . N \quad \exists \operatorname{inv}(S) \cdot A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S .(N \sqcap B)} \\
\mathrm{CR}_{1}^{A} \overline{\top(a)} \quad \mathrm{CR}_{2}^{A} \frac{A_{1} \sqcap \cdots \sqcap A_{n} \sqsubseteq B \quad\left\{A_{i}(a)\right\}_{i=1}^{n}}{B(a)} \\
\mathrm{CR}_{3}^{A} \frac{\exists R \cdot A \sqsubseteq B \quad R(a, b) \quad A(b)}{B(a)} \\
\mathrm{CR}_{4}^{A} \frac{\exists R^{-} \cdot A \sqsubseteq B \quad R(b, a) \quad A(b)}{B(a)}
\end{gathered}
$$

- R is an atomic role, $S:=R \mid R^{-}, \operatorname{inv}(R)=R^{-}$and $\operatorname{inv}\left(R^{-}\right)=R$
- A, B, A_{i}, B_{i} are atomic concepts or T
- M, N, N^{\prime} are conjunctions of atomic concepts or T, treated as sets (no repetition, the order does not matter)

A Saturation Algorithm for $\mathcal{E L I}$

Example

$$
\mathrm{CR}_{1}^{T} \overline{A \sqsubseteq A} \quad \mathrm{CR}_{2}^{T} \overline{A \sqsubseteq T}
$$

$$
\begin{array}{ccc}
\mathrm{CR}_{3}^{T} \frac{\left\{A \sqsubseteq B_{i}\right\}_{i=1}^{n}}{B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B} \\
A \sqsubseteq B & \mathrm{CR}_{4}^{T} \frac{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime}\right) N \sqsubseteq A}{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime} \sqcap A\right)} \\
\mathrm{CR}_{5}^{T} \frac{M \sqsubseteq \exists S .(N \sqcap A)}{} \frac{\exists S . A \sqsubseteq B}{M \sqsubseteq B} & \mathrm{CR}_{6}^{T} \frac{M \sqsubseteq \exists S . N \exists \operatorname{inv}(S) \cdot A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S .(N \sqcap B)}
\end{array}
$$

$$
\mathcal{T}=\left\{A \sqsubseteq R . B, \exists R^{-} . C \sqsubseteq D, D \sqsubseteq E, \exists R \cdot E \sqsubseteq F, G \sqsubseteq A, G \sqsubseteq C\right\}
$$

A Saturation Algorithm for $\mathcal{E L I}$

Example

$$
\mathrm{CR}_{1}^{T} \overline{A \sqsubseteq A} \quad \mathrm{CR}_{2}^{T} \overline{A \sqsubseteq \top}
$$

$$
\begin{array}{cc}
\mathrm{CR}_{3}^{T} \frac{\left\{A \sqsubseteq B_{i}\right\}_{i=1}^{n} \quad B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} & \mathrm{CR}_{4}^{T} \frac{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime}\right) N \sqsubseteq A}{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime} \sqcap A\right)} \\
\mathrm{CR}_{5}^{T} \frac{M \sqsubseteq \exists S .(N \sqcap A) \quad \exists S . A \sqsubseteq B}{M \sqsubseteq B} & \mathrm{CR}_{6}^{T} \frac{M \sqsubseteq \exists S . N \quad \exists \operatorname{inv}(S) \cdot A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S .(N \sqcap B)}
\end{array}
$$

$$
\mathcal{T}=\left\{A \sqsubseteq R . B, \exists R^{-} \cdot C \sqsubseteq D, D \sqsubseteq E, \exists R . E \sqsubseteq F, G \sqsubseteq A, G \sqsubseteq C\right\}
$$

$$
\frac{A \sqsubseteq \exists R \cdot B \quad \exists R^{-} . C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R \cdot(B \sqcap D)} \quad\left(\mathrm{CR}_{6}^{T}\right)
$$

A Saturation Algorithm for $\mathcal{E L} \mathcal{L}$

Example

$$
\mathrm{CR}_{1}^{T} \overline{A \sqsubseteq A} \quad \mathrm{CR}_{2}^{T} \overline{A \sqsubseteq T}
$$

$$
\begin{array}{ccc}
\mathrm{CR}_{3}^{T} \frac{\left\{A \sqsubseteq B_{i}\right\}_{i=1}^{n} B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} & \mathrm{CR}_{4}^{T} \frac{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime}\right) N \sqsubseteq A}{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime} \sqcap A\right)} \\
\mathrm{CR}_{5}^{T} \frac{M \sqsubseteq \exists S .(N \sqcap A) \quad \exists S . A \sqsubseteq B}{M \sqsubseteq B} & \mathrm{CR}_{6}^{T} & \frac{M \sqsubseteq \exists S . N \quad \exists \operatorname{inv}(S) \cdot A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S .(N \sqcap B)}
\end{array}
$$

$$
\mathcal{T}=\left\{A \sqsubseteq R . B, \exists R^{-} . C \sqsubseteq D, D \sqsubseteq E, \exists R . E \sqsubseteq F, G \sqsubseteq A, G \sqsubseteq C\right\}
$$

$$
\begin{gather*}
\frac{A \sqsubseteq \exists R . B \quad \exists R^{-} . C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R .(B \sqcap D)} \quad\left(\mathrm{CR}_{6}^{T}\right) \\
\frac{A \sqcap C \sqsubseteq \exists R .(B \sqcap D) \quad D \sqsubseteq E}{A \sqcap C \sqsubseteq \exists R .(B \sqcap D \sqcap E)} \quad(\mathrm{CR}, \tag{4}
\end{gather*}
$$

A Saturation Algorithm for $\mathcal{E L} \mathcal{L}$

Example

$$
\mathrm{CR}_{1}^{T} \overline{A \sqsubseteq A} \quad \mathrm{CR}_{2}^{T} \overline{A \sqsubseteq T}
$$

$$
\begin{array}{cc}
\mathrm{CR}_{3}^{T} \frac{\left\{A \sqsubseteq B_{i}\right\}_{i=1}^{n} \quad B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} & \mathrm{CR}_{4}^{T} \frac{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime}\right) N \sqsubseteq A}{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime} \sqcap A\right)} \\
\mathrm{CR}_{5}^{T} \frac{M \sqsubseteq \exists S .(N \sqcap A) \quad \exists S . A \sqsubseteq B}{M \sqsubseteq B} & \mathrm{CR}_{6}^{T} \frac{M \sqsubseteq \exists S . N \quad \exists \operatorname{inv}(S) \cdot A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S .(N \sqcap B)}
\end{array}
$$

$$
\mathcal{T}=\left\{A \sqsubseteq R . B, \exists R^{-} . C \sqsubseteq D, D \sqsubseteq E, \exists R . E \sqsubseteq F, G \sqsubseteq A, G \sqsubseteq C\right\}
$$

$$
\begin{gather*}
\frac{A \sqsubseteq \exists R \cdot B \quad \exists R^{-} \cdot C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R \cdot(B \sqcap D)} \quad\left(\mathrm{CR}_{6}^{T}\right) \\
\frac{A \sqcap C \sqsubseteq \exists R \cdot(B \sqcap D) \quad D \sqsubseteq E}{A \sqcap C \sqsubseteq \exists R \cdot(B \sqcap D \sqcap E)} \quad\left(\mathrm{CR}_{4}^{T}\right) \\
\frac{A \sqcap C \sqsubseteq \exists R \cdot(B \sqcap D \sqcap E) \quad \exists R \cdot E \sqsubseteq F}{A \sqcap C \sqsubseteq F}
\end{gather*}
$$

A Saturation Algorithm for $\mathcal{E L} \mathcal{L}$

Example

$$
\mathrm{CR}_{1}^{T} \overline{A \sqsubseteq A} \quad \mathrm{CR}_{2}^{T} \overline{A \sqsubseteq T}
$$

$$
\begin{array}{cc}
\mathrm{CR}_{3}^{T} \frac{\left\{A \sqsubseteq B_{i}\right\}_{i=1}^{n} \quad B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} & \mathrm{CR}_{4}^{T} \frac{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime}\right) N \sqsubseteq A}{M \sqsubseteq \exists S .\left(N \sqcap N^{\prime} \sqcap A\right)} \\
\mathrm{CR}_{5}^{T} \frac{M \sqsubseteq \exists S .(N \sqcap A) \quad \exists S . A \sqsubseteq B}{M \sqsubseteq B} & \mathrm{CR}_{6}^{T} \frac{M \sqsubseteq \exists S . N \quad \exists \operatorname{inv}(S) \cdot A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S .(N \sqcap B)}
\end{array}
$$

$$
\mathcal{T}=\left\{A \sqsubseteq R . B, \exists R^{-} . C \sqsubseteq D, D \sqsubseteq E, \exists R . E \sqsubseteq F, G \sqsubseteq A, G \sqsubseteq C\right\}
$$

$$
\begin{gathered}
\frac{A \sqsubseteq \exists R \cdot B \quad \exists R^{-} \cdot C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R \cdot(B \sqcap D)} \quad\left(\mathrm{CR}_{6}^{T}\right) \\
\frac{A \sqcap C \sqsubseteq \exists R \cdot(B \sqcap D) D \sqsubseteq E}{A \sqcap C \sqsubseteq \exists R \cdot(B \sqcap D \sqcap E)} \quad\left(\mathrm{CR}_{4}^{T}\right) \\
\frac{A \sqcap C \sqsubseteq \exists R \cdot(B \sqcap D \sqcap E) \quad \exists R \cdot E \sqsubseteq F}{A \sqcap C \sqsubseteq F} \quad\left(\mathrm{CR}_{5}^{T}\right) \\
\frac{G \sqsubseteq A \quad G \sqsubseteq C \quad A \sqcap C \sqsubseteq F}{G \sqsubseteq F}\left(\mathrm{CR}_{3}^{T}\right)
\end{gathered}
$$

References

- Baader, Brandt, Lutz (IJCAI 2005): Pushing the EL Envelope (https://www.ijcai.org/Proceedings/05/Papers/0372.pdf).
- Baader, Brandt, Lutz (OWLED 2008): Pushing the EL Envelope Further (https://ceur-ws.org/Vol-496/owled2008dc_paper_3.pdf).
- Bienvenu and Ortiz (RW 2015): Ontology-Mediated Query Answering with Data-Tractable Description Logics (https://www.labri.fr/perso/meghyn/papers/BieOrt-RW15.pdf)
- Kontchakov, Zakharyaschev (RW 2014): An Introduction to Description Logics and Query Rewriting (https://www.dcs.bbk.ac.uk/~roman/papers/RW12014.pdf)
- Bienvenu (2022): Ontologies \& Description Logics (lecture: https://www.labri.fr/perso/meghyn/teaching/lola-2022/ 3-lola-lightweight-el.pdf)
- Baader (2019): course on Description Logics (lecture: https://tu-dresden.de/ing/informatik/thi/lat/studium/ lehrveranstaltungen/sommersemester-2019/description-logic)

