Description Logics and Reasoning on Data 2: Reasoning in *ALC*

C. Bourgaux, M. Thomazo

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Outline

Reminders

Tableau algorithms

Negation normal form Tableau algorithm for concept satisfiability Tableau algorithm for KB satisfiability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Complexity issues

Concept satisfiability KB satisfiability

Optimizations

References

Reminder: \mathcal{ALC}

The \mathcal{ALC} DL is defined as follows:

- ▶ if A is an atomic concept, then A is an ALC concept
- ▶ if C, D are ALC concepts and R is an atomic role, then the following are ALC concepts:
 - $C \sqcap D$ (conjunction)
 - $C \sqcup D$ (disjunction)
 - $\blacktriangleright \neg C$ (negation)
 - ▶ $\exists R.C$ (existential restriction)
 - ► ∀*R*.*C* (universal restriction)
- an \mathcal{ALC} TBox contains only concept inclusions

Note that $A \sqcap \neg A$ can be abbreviated by \bot and $A \sqcup \neg A$ by \top .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reminder: Concept and KB Satisfiability

• Concept satisfiability w.r.t. an empty TBox: Given a concept C, is there an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$ such that $C^{\mathcal{I}} \neq \emptyset$?

• $A \sqcap B$ is satisfiable, $A \sqcap \neg A$ is not satisfiable

Concept satisfiability w.r.t. a TBox: Given a concept C and a TBox T, is there a model I of T such that C^I ≠ Ø?

• $A \sqcap B$ is not satisfiable w.r.t. $\mathcal{T} = \{A \sqsubseteq \neg B\}$

► KB satisfiability: Given a KB $\langle T, A \rangle$, does $\langle T, A \rangle$ have a model?

$$\langle \{A \sqsubseteq \neg B\}, \{A(a), B(a)\} \rangle \text{ is not satisfiable,} \\ \langle \{A \sqsubseteq \neg B\}, \{A(a), B(b)\} \rangle \text{ is satisfiable}$$

Important in practice to build and debug ontologies

- we usually don't want to use an unsatisfiable concept when defining an ontology
- we may want to check that the model is sufficiently constrained to prevent some situation captured by a concept that should be unsatisfiable w.r.t. the TBox
- an unsatisfiable KB indicates a modelisation problem

Reminder: Reduction Between Reasoning Tasks in \mathcal{ALC}

From subsumption to concept satisfiability: $\mathcal{T} \models C \Box D$ iff $C \Box \neg D$ is not satisfiable w.r.t. \mathcal{T}

▶ note that if *C* and *D* are ALC concepts, so is $C \sqcap \neg D$

- From concept satisfiability to KB satisfiability:
 C is satisfiable w.r.t. T iff ⟨T ∪ {A ⊑ C}, A ∪ {C(a)}⟩ is satisfiable
- From instance checking to KB satisfiability: ⟨*T*, *A*⟩ ⊨ *C*(*a*) iff ⟨*T* ∪ {*C* ⊑ ¬*A*}, *A* ∪ {*A*(*a*)}⟩ is not satisfiable

In this course: Algorithms to decide concept satisfiability w.r.t. an empty TBox and KB satisfiability

 \rightarrow concept satisfiability w.r.t. a non-empty TBox, subsumption and instance checking can be solved via reduction to KB satisfiability

Tableau Algorithms

- Tableau-based methods are used to decide satisfiability of a formula or theory by using rules to construct a model
 - if it succeeds, the theory is satisfiable
 - if it fails, despite having considered all possibilities, the theory is unsatisfiable
- Classical approach used for different kinds of logics (propositional, FOL, modal...)
- Popular approach for reasoning in expressive DLs (ALC and its extensions), implemented in state-of-the-art DL reasoners (with variants and optimizations)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Negation Normal Form

- The algorithms we consider need ALC concepts to be in negation normal form (NNF): An ALC concept C is in NNF if the symbol ¬ appears only in front of atomic concepts:
 - ▶ in NNF: $A \sqcap \neg B$, $\exists R. \neg A$, $A \sqcup B$
 - ▶ not in NNF: $\neg(A \sqcap B)$, $\exists R. \neg(\forall S.B)$, $A \sqcap \neg(B \sqcup C)$
- Every ALC concept C is equivalent to an ALC concept nnf(C) in NNF

•
$$C^{\mathcal{I}} = \operatorname{nnf}(C)^{\mathcal{I}}$$
 for every interpretation \mathcal{I}

nnf(C) can be computed in linear time by "pushing the negation inside" using the following equivalences

$$\neg (C \sqcap D) \equiv \neg C \sqcup \neg D \qquad \neg (\exists R.C) \equiv \forall R.\neg C \qquad \neg (\neg C) \equiv C$$

$$\neg (C \sqcup D) \equiv \neg C \sqcap \neg D \qquad \neg (\forall R.C) \equiv \exists R.\neg C$$

Negation Normal Form

Given an ALC concept C, nnf(C) is computed by the recursive algorithm:

•
$$nnf(A) = A$$
 for A atomic concept

•
$$nnf(\neg A) = \neg A$$
 for A atomic concept

▶
$$nnf(C \sqcap D) = nnf(C) \sqcap nnf(D)$$

$$\mathsf{nnf}(C \sqcup D) = \mathsf{nnf}(C) \sqcup \mathsf{nnf}(D)$$

$$\blacktriangleright \operatorname{nnf}(\exists R.C) = \exists R.\operatorname{nnf}(C)$$

▶
$$nnf(\forall R.C) = \forall R.nnf(C)$$

•
$$nnf(\neg(\neg C)) = nnf(C)$$

▶
$$nnf(\neg(C \sqcap D)) = nnf(\neg C) \sqcup nnf(\neg D)$$

▶
$$nnf(\neg(C \sqcup D)) = nnf(\neg C) \sqcap nnf(\neg D)$$

▶
$$nnf(\neg(\exists R.C)) = \forall R.nnf(\neg C)$$

•
$$nnf(\neg(\forall R.C)) = \exists R.nnf(\neg C)$$

- Take as input an ALC concept C in NNF
- Decide the satisfiability of C by trying to construct an interpretation I such that C^I ≠ Ø
- ▶ Represent an interpretation *I* by an ABox *A_I* such that *a* ∈ *A^I* (resp. (*a*, *b*) ∈ *R^I*) iff *A*(*a*) ∈ *A_I* (resp. *R*(*a*, *b*) ∈ *A_I*)
- ▶ Initialize a set S of ABoxes, containing a single ABox $\{C(a_0)\}$
- At each stage, apply a tableau rule to some A ∈ S (see rules next slide)
- A rule application replaces A by one or two ABoxes that extend A with new assertions
- Stop applying rules when either:
 - 1. every $A \in S$ contains a clash, that is, a pair $\{A(a_i), \neg A(a_i)\}$
 - 2. some $A \in S$ is clash-free and complete, meaning that no rule can be applied to A
- ▶ Return "yes" if some $A \in S$ is clash-free, "no" otherwise

Tableau rules

□-rule:	$ \begin{array}{l} \text{if } (C_1 \sqcap C_2)(a) \in \mathcal{A} \\ \text{and } \{C_1(a), C_2(a)\} \not\subseteq \mathcal{A} \\ \text{replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{C_1(a), C_2(a)\}. \end{array} $	$(C_1 \sqcap C_2)(a)$ $C_1(a)$ $C_2(a)$
⊔-rule:	$ \begin{array}{l} \text{if } (C_1 \sqcup C_2)(a) \in \mathcal{A} \\ \text{and } \{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset \\ \text{replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{C_1(a)\} \text{ and } \mathcal{A} \cup \{ \end{array} $	$(C_1 \sqcup C_2)(a)$
∀-rule:	and $C(b) \notin \mathcal{A}$ replace \mathcal{A} with $\mathcal{A} \cup \{C(b)\}$.	$R(a,b)$ \therefore $\forall R.C(a)$ $C(b)$
∃-rule:	if $\exists R.C(a) \in \mathcal{A}$ and there is no <i>b</i> with $\{R(a, b), C(b)\}$ create a new individual name <i>c</i> and replace \mathcal{A} with $\mathcal{A} \cup \{R(a, c), C(c)\}$.	$\subseteq \mathcal{A} \qquad \stackrel{^{ }}{\underset{C(c)}{\overset{^{ }}{\underset{c(a,c)}{\overset{^{ }}{\underset{c(c)}{\overset{^{ }}{\underset{c(c)}{}{\underset{c(c)}{}{\underset{c(c)}{}{\underset{c(c)}{}{\underset{c(c)}{}{\underset{c(c)}{}{\underset{c(c)}{}{\underset{c(c)}{}{\underset{c(c)}{}{\underset{c(c)}{\underset{c(c)}{}{\underset{c(c)}{\underset{c(c)}{}{\underset{c(c)}{\underset{c(c)}{}{\underset{c(c)}{c(c)}{\underset{c(c)}{c(c)}{\underset{c(c)}{\underset{c(c)}{\underset{c(c)}{\underset{c(c)}{c(c)}{c$

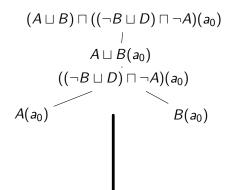
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)(a_0)$

$$(A \sqcup B) \sqcap ((\neg B \sqcup D) \sqcap \neg A)(a_0)$$

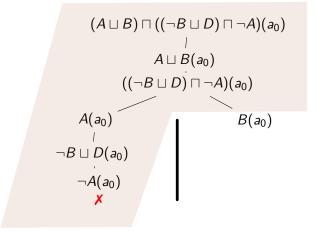
 \downarrow
 $A \sqcup B(a_0)$
 $((\neg B \sqcup D) \sqcap \neg A)(a_0)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

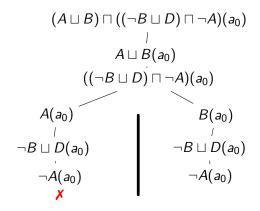


イロト 不得 トイヨト イヨト

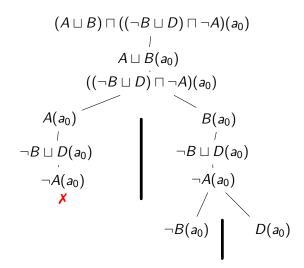
3



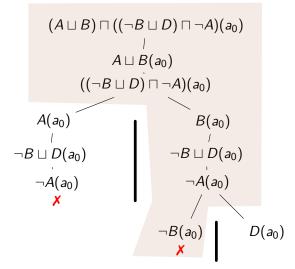
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



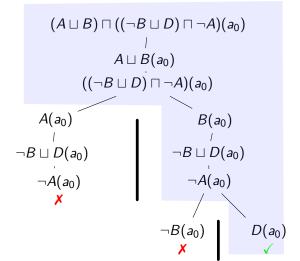
(日) (四) (日) (日) (日)



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … の久(で)



▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ □ のへで

 $(\exists R.A \sqcap \forall R.\neg A)(a_0)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$(\exists R.A \sqcap \forall R.\neg A)(a_0)$$

$$\exists R.A(a_0) \qquad \Box - \mathsf{rule}$$

$$\forall R.\neg A(a_0)$$

(ロ)、(型)、(E)、(E)、 E) の(()

$$(\exists R.A \sqcap \forall R.\neg A)(a_0)$$

$$\exists R.A(a_0)$$

$$\forall R.\neg A(a_0)$$

$$R(a_0, a_1)$$

$$\exists -rule$$

$$A(a_1)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$(\exists R.A \sqcap \forall R.\neg A)(a_0)$$

$$\exists R.A(a_0)$$

$$\forall R.\neg A(a_0)$$

$$R(a_0, a_1)$$

$$A(a_1)$$

$$\neg A(a_1)$$

$$\forall -rule$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Exercise

Use the tableau algorithm to decide which of the following concepts is satisfiable:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- $\blacktriangleright \exists R.(A \sqcap B) \sqcap \forall R.(\neg A \sqcup C) \sqcap \forall R.(\neg B \sqcup \neg C)$
- $\blacktriangleright \exists R.A \sqcap \forall R.(\exists R.A \sqcup \neg A)$

Let us call our tableau algorithm CSat (for concept satisfiability)

Theorem

CSat terminates and it answers yes if and only if the input concept is satisfiable.

To prove this theorem, we must show:

- termination: CSat always terminates
- soundness: if Csat outputs "yes" on input C₀, then the concept C₀ is satisfiable
- \blacktriangleright completeness: if C_0 is satisfiable, then CSat outputs "yes" on input C_0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Subconcepts of a concept

$$sub(A) = \{A\}$$

$$sub(\neg C) = \{\neg C\} \cup sub(C)$$

$$sub(\exists R.C) = \{\exists R.C\} \cup sub(C)$$

$$sub(\forall R.C) = \{\forall R.C\} \cup sub(C)$$

$$sub(C_1 \sqcup C_2) = \{C_1 \sqcup C_2\} \cup sub(C_1) \cup sub(C_2)$$

$$sub(C_1 \sqcap C_2) = \{C_1 \sqcap C_2\} \cup sub(C_1) \cup sub(C_2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Subconcepts of a concept

$$sub(A) = \{A\}$$

$$sub(\neg C) = \{\neg C\} \cup sub(C)$$

$$sub(\exists R.C) = \{\exists R.C\} \cup sub(C)$$

$$sub(\forall R.C) = \{\forall R.C\} \cup sub(C)$$

$$sub(C_1 \sqcup C_2) = \{C_1 \sqcup C_2\} \cup sub(C_1) \cup sub(C_2)$$

$$sub(C_1 \sqcap C_2) = \{C_1 \sqcap C_2\} \cup sub(C_1) \cup sub(C_2)$$

Example

$$sub(\exists R.(A \sqcap \forall S.(B \sqcup \neg C))) = \{ \\ \exists R.(A \sqcap \forall S.(B \sqcup \neg C)), A \sqcap \forall S.(B \sqcup \neg C), A, \\ \forall S.(B \sqcup \neg C), B \sqcup \neg C, B, \neg C, C \\ \}$$

Role depth of a concept

$$depth(A) = 0$$

$$depth(\neg C) = depth(C)$$

$$depth(\exists R.C) = depth(\forall R.C) = depth(C) + 1$$

$$depth(C_1 \sqcup C_2) = depth(C_1 \sqcap C_2) = max(depth(C_1), depth(C_2))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Role depth of a concept

$$depth(A) = 0$$

$$depth(\neg C) = depth(C)$$

$$depth(\exists R.C) = depth(\forall R.C) = depth(C) + 1$$

$$depth(C_1 \sqcup C_2) = depth(C_1 \sqcap C_2) = max(depth(C_1), depth(C_2))$$

Example

$$depth(\exists R.(A \sqcap \forall S.(B \sqcup C))) = 2$$

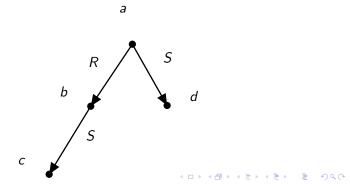
(ロ)、(型)、(E)、(E)、 E) の(()

Tree-shaped ABox

Graph representation of an ABox \mathcal{A} : graph whose vertices are individual names of \mathcal{A} and such that there is a (directed) edge from *a* to *b* labelled by *R* iff $R(a, b) \in \mathcal{A}$. If this graph is a tree, \mathcal{A} is tree-shaped.

Example

 $\{R(a, b), S(b, c), S(a, d)\}$ is tree-shaped



Termination of CSat (Informal Proof)

Suppose we run CSat starting from $S = \{\{C(a_0)\}\}\)$. Let us make the following observations for every ABox A generated by CSat:

- 1. \mathcal{A} is tree-shaped
- The depth of the tree is bounded by the role depth of C: each individual in A is at distance k ≤ depth(C) from a₀
 - if D(b) ∈ A and the unique path from a₀ to b has length k, then depth(D) ≤ depth(C) − k
- 3. The degree of the tree is bounded by the number of existentials in *C*
- The number of concept assertions per individual is bounded by the number of subconcepts |sub(C)|

• if $D(b) \in A$, then $D \in sub(C)$

Hence there is a bound on the size of generated ABoxes. Since CSat only adds assertions to ABoxes, every generated ABox will eventually be complete or contain a clash. Hence CSat terminates.

Assume that CSat returns "yes" on input C.

- Then S must contain a complete and clash-free ABox A.
- Define an interpretation *I* as follows:
 - $\Delta^{\mathcal{I}} = \{a \mid a \text{ is an individual in } \mathcal{A}\}$

$$\blacktriangleright A^{\mathcal{I}} = \{a \mid A(a) \in \mathcal{A}\}$$

$$\blacktriangleright \ R^{\mathcal{I}} = \{(a, b) \mid R(a, b) \in \mathcal{A}\}$$

• Claim: \mathcal{I} is such that $C^{\mathcal{I}} \neq \emptyset$

To show the claim, we prove by induction on the size of concepts that:

 $D(b) \in \mathcal{A} \Rightarrow b \in D^{\mathcal{I}}$

Since the completion algorithm never deletes assertions, $C(a_0) \in \mathcal{A}$ for every $\mathcal{A} \in S$ and the claim follows.

It follows from the claim that C is satisfiable.

Proof of the claim: $D(b) \in \mathcal{A} \Rightarrow b \in D^{\mathcal{I}}$

Base Case: D = A or $D = \neg A$

• If D = A, then $b \in A^{\mathcal{I}}$ by definition of \mathcal{I}

If D = ¬A, then A(b) ∉ A because A is clash-free, hence b ∉ A^I, i.e., b ∈ ¬A^I

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of the claim: $D(b) \in \mathcal{A} \Rightarrow b \in D^{\mathcal{I}}$

Base Case:
$$D = A$$
 or $D = \neg A$

• If
$$D = A$$
, then $b \in A^{\mathcal{I}}$ by definition of \mathcal{I}

Induction Hypothesis: statement holds whenever $|D| \le k$ Induction Step: show statement holds for D with |D| = k + 1

Proof of the claim: $D(b) \in \mathcal{A} \Rightarrow b \in D^{\mathcal{I}}$

Base Case: D = A or $D = \neg A$

• If D = A, then $b \in A^{\mathcal{I}}$ by definition of \mathcal{I}

If D = ¬A, then A(b) ∉ A because A is clash-free, hence b ∉ A^I, i.e., b ∈ ¬A^I

Induction Hypothesis: statement holds whenever $|D| \le k$ Induction Step: show statement holds for D with |D| = k + 1

 D = E □ F: since A is complete, A contains E(b) and F(b). By the induction hypothesis, b ∈ E^T and b ∈ F^T, so b ∈ (E □ F)^T

Proof of the claim: $D(b) \in \mathcal{A} \Rightarrow b \in D^{\mathcal{I}}$

Base Case: D = A or $D = \neg A$

• If D = A, then $b \in A^{\mathcal{I}}$ by definition of \mathcal{I}

If D = ¬A, then A(b) ∉ A because A is clash-free, hence b ∉ A^I, i.e., b ∈ ¬A^I

Induction Hypothesis: statement holds whenever $|D| \le k$ Induction Step: show statement holds for D with |D| = k + 1

- ▶ $D = E \sqcap F$: since \mathcal{A} is complete, \mathcal{A} contains E(b) and F(b). By the induction hypothesis, $b \in E^{\mathcal{I}}$ and $b \in F^{\mathcal{I}}$, so $b \in (E \sqcap F)^{\mathcal{I}}$
- ▶ $D = \exists R.E$: since A is complete, there is some c such that $R(b, c) \in A$ and $E(c) \in A$. Then $(b, c) \in R^{\mathcal{I}}$, and by the induction hypothesis, we get that $c \in E^{\mathcal{I}}$, so $b \in (\exists R.E)^{\mathcal{I}}$

Proof of the claim: $D(b) \in \mathcal{A} \Rightarrow b \in D^{\mathcal{I}}$

Base Case: D = A or $D = \neg A$

• If D = A, then $b \in A^{\mathcal{I}}$ by definition of \mathcal{I}

If D = ¬A, then A(b) ∉ A because A is clash-free, hence b ∉ A^I, i.e., b ∈ ¬A^I

Induction Hypothesis: statement holds whenever $|D| \le k$ Induction Step: show statement holds for D with |D| = k + 1

- D = E □ F: since A is complete, A contains E(b) and F(b). By the induction hypothesis, b ∈ E^I and b ∈ F^I, so b ∈ (E □ F)^I
- ▶ $D = \exists R.E$: since A is complete, there is some c such that $R(b, c) \in A$ and $E(c) \in A$. Then $(b, c) \in R^{\mathcal{I}}$, and by the induction hypothesis, we get that $c \in E^{\mathcal{I}}$, so $b \in (\exists R.E)^{\mathcal{I}}$
- $\blacktriangleright D = E \sqcup F$: left as practice
- ▶ $D = \forall R.E$: left as practice

Completeness of CSat

Suppose that C is satisfiable.

- This implies that the ABox $\{C(a_0)\}$ is satisfiable.
- Claim: Tableau rules are satisfiability-preserving:
 - if an ABox A is satisfiable and A' is the result of applying a rule to A, then A' is also satisfiable
 - ▶ if an ABox A is satisfiable and A₁ and A₂ are obtained when applying a rule to A, then either A₁ or A₂ is satisfiable

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Since ABoxes containing a clash are not satisfiable and we start with the satisfiable ABox {C(a₀)}, CSat will eventually generate a complete satisfiable (thus clash-free) ABox.

Hence CSat returns "yes" on input C.

Completeness of CSat

Proof of the claim: Tableau rules are satisfiability-preserving

Let $\mathcal A$ be a satisfiable ABox and $\mathcal I=(\Delta^{\mathcal I},\cdot^{\mathcal I})$ be a model of $\mathcal A$

- ▶ If \mathcal{A}' is the result of applying the \sqcap -rule to \mathcal{A} , there is $(C_1 \sqcap C_2)(b) \in \mathcal{A}$ and $\mathcal{A}' = \mathcal{A} \cup \{C_1(b), C_2(b)\}$
 - since $b^{\mathcal{I}} \in (C_1 \sqcap C_2)^{\mathcal{I}}$, then $b^{\mathcal{I}} \in C_1^{\mathcal{I}}$ and $b^{\mathcal{I}} \in C_2^{\mathcal{I}}$
 - it follows that \mathcal{I} is a model of \mathcal{A}' , thus \mathcal{A}' is satisfiable
- ▶ If A_1 and A_2 are the result of applying the \sqcup -rule to A, there is $(C_1 \sqcup C_2)(b) \in A$, $A_1 = A \cup \{C_1(b)\}$, and $A_2 = A \cup \{C_2(b)\}$
 - since $b^{\mathcal{I}} \in (C_1 \sqcup C_2)^{\mathcal{I}}$, then $b^{\mathcal{I}} \in C_1^{\mathcal{I}}$ or $b^{\mathcal{I}} \in C_2^{\mathcal{I}}$
 - it follows that I is a model of A₁ or of A₂, thus A₁ or A₂ is satisfiable

- ► ∀-rule: left as practice
- ► ∃-rule: left as practice

CSat produces tree-shaped ABoxes, so we get that for every ALC concept C, if C has a model, then it has a tree-shaped model

This is an important property

- We only need to look at tree-shaped structures when reasoning about ALC concepts
- Trees are computationally "friendly"
- This property exposes a limitation in the expressive power of *ALC* (for example they cannot describe structures with cycles)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Extension to KB Satisfiability

We want to modify CSat to check the satisfiability of a knowledge base $\langle \mathcal{T}, \mathcal{A} \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Adding the ABox is easy:

▶ start from $S = \{A\}$ instead of $S = \{\{C(a)\}\}$

Extension to KB Satisfiability

We want to modify CSat to check the satisfiability of a knowledge base $\langle \mathcal{T}, \mathcal{A} \rangle$

Adding the ABox is easy:

• start from $S = \{A\}$ instead of $S = \{\{C(a)\}\}$

For the TBox, note that $C \sqsubseteq D \equiv \top \sqsubseteq \neg C \sqcup D$ and add the following rule to the tableau rules:

Exercise

Use the tableau algorithm to check whether the following KBs are satisfiable:

where

$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ B \sqsubseteq D, \ \exists R.D \sqsubseteq \neg A \}$$

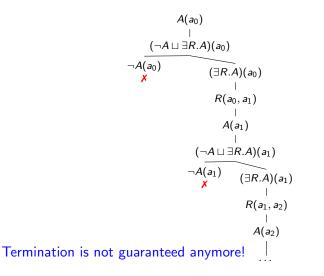
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Exercise

Now try on the following KB: $\langle \{A \sqsubseteq \exists R.A\}, \{A(a_0)\} \rangle$

Exercise

Now try on the following KB: $\langle \{A \sqsubseteq \exists R.A\}, \{A(a_0)\} \rangle$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Making the Algorithm Terminate

Basic idea: if two individuals "look the same", explore only one

Making the Algorithm Terminate

Basic idea: if two individuals "look the same", explore only one Blocking

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

An individual *a* blocks an individual *b* in an ABox A if:

- $\blacktriangleright \ \{C \mid C(b) \in \mathcal{A}\} \subseteq \{C \mid C(a) \in \mathcal{A}\}$
- a was in \mathcal{A} when b has been introduced

An individual b is blocked if some a blocks b

Making the Algorithm Terminate

Basic idea: if two individuals "look the same", explore only one Blocking

An individual *a* blocks an individual *b* in an ABox A if:

- $\blacktriangleright \{C \mid C(b) \in \mathcal{A}\} \subseteq \{C \mid C(a) \in \mathcal{A}\}$
- ▶ a was in A when b has been introduced

An individual b is blocked if some a blocks b

The blocked individual b can use the role successors of a instead of generating new ones

Modify the tableau rules to apply them only to individuals that are not blocked

Tableau rules

- $\sqcap\text{-rule:} \quad \text{if } (C_1 \sqcap C_2)(a) \in \mathcal{A}, \text{ a is not blocked, and } \{C_1(a), C_2(a)\} \not\subseteq \mathcal{A}, \\ \text{replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{C_1(a), C_2(a)\}.$
- $\Box\text{-rule:} \quad \text{if } (C_1 \sqcup C_2)(a) \in \mathcal{A}, \text{ a is not blocked, and } \{C_1(a), C_2(a)\} \cap \mathcal{A} = \emptyset \\ \text{replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{C_1(a)\} \text{ and } \mathcal{A} \cup \{C_2(a)\}.$
- $\forall \text{-rule:} \quad \text{if } \{\forall R.C(a), R(a, b)\} \subseteq \mathcal{A}, \text{ a is not blocked, and } C(b) \notin \mathcal{A}, \\ \text{replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{C(b)\}. \end{cases}$
- $\exists \text{-rule:} \quad \text{if } \exists R.C(a) \in \mathcal{A}, \text{ a is not blocked, and there is no } b \text{ with } \{R(a,b),C(b)\} \subseteq \mathcal{A}, \text{ create a new individual name } c \text{ and } replace \ \mathcal{A} \text{ with } \mathcal{A} \cup \{R(a,c),C(c)\}.$
- TBox-rule: if $C \sqsubseteq D \in \mathcal{T}$, *a* is not blocked, and $(nnf(\neg C \sqcup D))(a) \notin A$, replace A by $A \cup \{(nnf(\neg C \sqcup D)(a))\}$.

Apply blocking to the previous KB: $\langle \{A \sqsubseteq \exists R.A\}, \{A(a_0)\} \rangle$

Apply blocking to the previous KB: $\langle \{A \sqsubseteq \exists R.A\}, \{A(a_0)\} \rangle$

 $A(a_0)$

Apply blocking to the previous KB: $\langle \{A \sqsubseteq \exists R.A\}, \{A(a_0)\} \rangle$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$A(a_0)$$

 $|$
 $(\neg A \sqcup \exists R.A)(a_0)$

Apply blocking to the previous KB: $\langle \{A \sqsubseteq \exists R.A\}, \{A(a_0)\} \rangle$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$A(a_0)$$

$$(\neg A \sqcup \exists R.A)(a_0)$$

$$\neg A(a_0)$$

$$\exists R.A(a_0)$$

Apply blocking to the previous KB: $\langle \{A \sqsubseteq \exists R.A\}, \{A(a_0)\} \rangle$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\begin{array}{c} A(a_0) \\ | \\ (\neg A \sqcup \exists R.A)(a_0) \\ \checkmark \\ A(a_0) \\ \swarrow \\ R(a_0, a_1) \\ A(a_1) \end{array}$$

Apply blocking to the previous KB: $\langle \{A \sqsubseteq \exists R.A\}, \{A(a_0)\} \rangle$

$$\begin{array}{c} A(a_0) \\ (\neg A \sqcup \exists R.A)(a_0) \\ \checkmark \\ A(a_0) \\ \swarrow \\ R(a_0, a_1) \\ A(a_1) \\ \checkmark \\ a_1 \text{ is blocked by } a_0! \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Apply blocking to the previous KB: $\langle \{A \sqsubseteq \exists R.A\}, \{A(a_0)\} \rangle$

$$\begin{array}{c} A(a_0) \\ (\neg A \sqcup \exists R.A)(a_0) \\ \checkmark \\ A(a_0) \\ \swarrow \\ A(a_0) \\ \downarrow \\ R(a_0, a_1) \\ A(a_1) \\ \checkmark \\ a_1 \text{ is blocked by } a_0! \end{array}$$

We obtain a complete, clash-free ABox

Consider

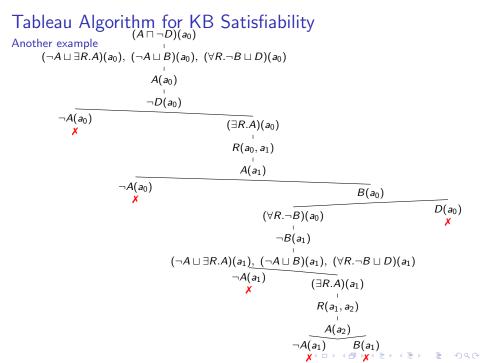
$$\mathcal{T} = \{ A \sqsubseteq \exists R.A, \ A \sqsubseteq B, \ \exists R.B \sqsubseteq D \}$$

We want to test whether $\mathcal{T} \models A \sqsubseteq D$ using the tableau algorithm

 \rightarrow check whether the following KB is satisfiable

 $\langle \mathcal{T}, \{(A \sqcap \neg D)(a_0)\} \rangle$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



Consider

$$\mathcal{T} = \{ A \sqsubseteq \exists R.A, \ A \sqsubseteq B, \ \exists R.B \sqsubseteq D \}$$

We want to test whether $\mathcal{T} \models A \sqsubseteq D$ using the tableau algorithm \rightarrow check whether the following KB is satisfiable

 $\langle \mathcal{T}, \{(A \sqcap \neg D)(a_0)\} \rangle$

 $\langle \mathcal{T}, \{(A \sqcap \neg D)(a_0)\} \rangle$ is unsatisfiable so $\mathcal{T} \models A \sqsubseteq D$

Remark: an individual can be blocked then later become unblocked

Let us call our tableau algorithm KBSat (for KB satisfiability)

Theorem

KBSat terminates and it answers yes if and only if the input KB is satisfiable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Termination of KBSat (Informal Proof)

KBSat terminates on every input $\langle \mathcal{T}, \mathcal{A} \rangle$.

Similar to the proof of termination for CSat: Show that there is a bound on the size of the generated ABoxes

For every ABox \mathcal{A}' generated by KBSat:

- 1. The number of concept assertions per individual is bounded by the total number of subconcepts of concepts that occur in \mathcal{A} or in $\{nnf(\neg C \sqcup D) \mid C \sqsubseteq D \in \mathcal{T}\}$
- 2. The individuals generated by the \exists -rule form trees whose roots are individuals from \mathcal{A}
- Blocking ensures that the depth of each tree is finite (bounded by the number of sets of subconcepts of concepts that occur in A or in {nnf(¬C ⊔ D) | C ⊑ D ∈ T})
- 4. The degree of each tree is bounded by the number of existentials in $\ensuremath{\mathcal{T}}$

If KBSat returns "yes" on input $\langle \mathcal{T}, \mathcal{A} \rangle$, then $\langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable.

- ▶ Build a model \mathcal{I} from a complete and clash-free ABox \mathcal{A}'
- Difference with CSat: deal with the blocked individuals
 - $\Delta^{\mathcal{I}} = \{a \mid a \text{ is an individual in } \mathcal{A}' \text{ which is not blocked}\}$
 - $\blacktriangleright A^{\mathcal{I}} = \{a \mid A(a) \in \mathcal{A}', a \text{ not blocked}\}$

 - $R(a,c) \in \mathcal{A}', a ext{ not blocked}, c ext{ blocked by } b, b ext{ not blocked} \}$

• Claim: \mathcal{I} is a model of $\langle \mathcal{T}, \mathcal{A} \rangle$

If KBSat returns "yes" on input $\langle \mathcal{T}, \mathcal{A} \rangle$, then $\langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable.

- ▶ Build a model \mathcal{I} from a complete and clash-free ABox \mathcal{A}'
- Difference with CSat: deal with the blocked individuals
 - $\Delta_{-}^{\mathcal{I}} = \{a \mid a \text{ is an individual in } \mathcal{A}' \text{ which is not blocked}\}$
 - $\blacktriangleright A^{\mathcal{I}} = \{a \mid A(a) \in \mathcal{A}', a \text{ not blocked}\}$
 - ▶ $R^{\mathcal{I}} = \{(a, b) \mid R(a, b) \in \mathcal{A}', a, b \text{ not blocked}\} \cup \{(a, b) \mid R(a, c) \in \mathcal{A}', a \text{ not blocked}, c \text{ blocked by } b, b \text{ not blocked}\}$
- Claim: \mathcal{I} is a model of $\langle \mathcal{T}, \mathcal{A} \rangle$
 - Since individuals from \mathcal{A} are never blocked, $\mathcal{I} \models \mathcal{A}$
 - Let $C \sqsubseteq D \in \mathcal{T}$ and $b \in C^{\mathcal{I}}$
 - since b is not blocked in A' and A' is complete, nnf(¬C ⊔ D)(b) ∈ A' (TBox-rule) so nnf(¬C)(b) or nnf(D)(b) is in A' (⊔-rule)
 - we prove that E(b) ∈ A' and b not blocked ⇒ b ∈ E^I for every concept E by induction on the size of E

- ▶ since $b \in C^{\mathcal{I}}$ (so that $b \notin nnf(\neg C)^{\mathcal{I}}$), it follows that $nnf(\neg C)(b) \notin \mathcal{A}'$
- thus nnf(D)(b) is in \mathcal{A}' and $b \in nnf(D)^{\mathcal{I}} = D^{\mathcal{I}}$
- It follows that $\mathcal{I} \models C \sqsubseteq D$
- Hence $\mathcal{I} \models \mathcal{T}$

Proof of the claim: $E(b) \in \mathcal{A}'$ and b not blocked $\Rightarrow b \in E^{\mathcal{I}}$

Base Case: E = A or $E = \neg A$

▶ If
$$E = A$$
, then $b \in A^{\mathcal{I}}$, by definition of \mathcal{I}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof of the claim: E(b) ∈ A' and b not blocked ⇒ b ∈ E^I
Base Case: E = A or E = ¬A
If E = A, then b ∈ A^I, by definition of I
If E = ¬A, then A(b) ∉ A' because A' is clash-free, hence b ∈ ¬A^I

Induction Hypothesis: statement holds whenever $|E| \le k$ Induction Step: show statement holds for |E| = k + 1

Proof of the claim: $E(b) \in \mathcal{A}'$ and b not blocked $\Rightarrow b \in E^{\mathcal{I}}$

Base Case: E = A or $E = \neg A$

▶ If
$$E = A$$
, then $b \in A^{\mathcal{I}}$, by definition of \mathcal{I}

If E = ¬A, then A(b) ∉ A' because A' is clash-free, hence b ∈ ¬A^I

Induction Hypothesis: statement holds whenever $|E| \le k$

Induction Step: show statement holds for |E| = k + 1

- ► $E = \exists R.F$: since A' is complete and b is not blocked, there is some c such that $R(b, c) \in A'$ and $F(c) \in A'$
 - if c is not blocked, (b, c) ∈ R^I, and by the induction hypothesis, c ∈ F^I, so b ∈ (∃R.F)^I
 - if c is blocked, it must be blocked by some d which is not blocked, so (b, d) ∈ R^I, and F(d) ∈ A' so by the induction hypothesis, d ∈ F^I, so b ∈ (∃R.F)^I

Proof of the claim: $E(b) \in \mathcal{A}'$ and b not blocked $\Rightarrow b \in E^{\mathcal{I}}$

Base Case: E = A or $E = \neg A$

- If E = A, then $b \in A^{\mathcal{I}}$, by definition of \mathcal{I}
- If E = ¬A, then A(b) ∉ A' because A' is clash-free, hence b ∈ ¬A^I

Induction Hypothesis: statement holds whenever $|E| \le k$

Induction Step: show statement holds for |E| = k + 1

- ► $E = \exists R.F$: since A' is complete and b is not blocked, there is some c such that $R(b, c) \in A'$ and $F(c) \in A'$
 - if c is not blocked, (b, c) ∈ R^I, and by the induction hypothesis, c ∈ F^I, so b ∈ (∃R.F)^I
 - if c is blocked, it must be blocked by some d which is not blocked, so (b, d) ∈ R^I, and F(d) ∈ A' so by the induction hypothesis, d ∈ F^I, so b ∈ (∃R.F)^I

- $E = \forall R.F$: left as practice
- $E = F \sqcap G$: left as practice
- $E = F \sqcup G$: left as practice

Completeness of KBSat

If $\langle T, A \rangle$ is satisfiable, then KBSat returns "yes" on input $\langle T, A \rangle$. Similar to the proof of completeness of CSat: Show that tableau rules are satisfiability-preserving

Let $\langle \mathcal{T}, \mathcal{A} \rangle$ be a satisfiable KB and $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be a model of $\langle \mathcal{T}, \mathcal{A} \rangle$

- For the new TBox-rule: If A' is the result of applying the TBox-rule to A, there is C □ D ∈ T and A' = A ∪ {(nnf(¬C ⊔ D)(a))}
 if a^T ∉ (¬C)^T, i.e., a^T ∈ C^T, since I ⊨ T, then a^T ∈ D^T
 hence a^T ∈ (¬C)^T ∪ D^T, i.e., a^T ∈ (¬C ⊔ D)^T
 it follows that I ⊨ ⟨T, A'⟩, thus ⟨T, A'⟩ is satisfiable
- Adding the condition that a is not blocked only restricts the rules applicability

Forest Model Property

An interpretation *I* is forest-shaped if the graph whose vertices are the domain elements and edges are

$$\{(d, d') \mid (d, d') \in R^{\mathcal{I}} \text{ for some } R \text{ and} \\ d, d' \notin \{a^{\mathcal{I}} \mid a \text{ individual name}\}\}$$

is a set of (disconnected) trees

- The model built in the proof of tableau algorithm soundness need not be forest-shaped because of the way it handles blocked individuals
- It can be shown that every satisfiable ALC KB has a forest-shaped model
- Unlike the case of ALC concepts, trees may be infinite

Tableau Algorithm for Expressive DLs

Tableau algorithm can be modified to handle extensions of \mathcal{ALC} (with number restrictions, role inclusions, transitive roles...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- additional tableau rule for each constructor
- new types of clashes
- different blocking conditions

Complexity Issues

 \blacktriangleright CSat decides whether an \mathcal{ALC} concept is satisfiable

- ► KBSat decides whether an *ALC* KB is satisfiable
 - also concept satisfiability w.r.t. a TBox, subsumption and instance checking via polynomial reduction

Two questions for each case:

- What is the complexity of the algorithm?
 - what amount of ressources (time, memory) is required to run the algorithm, expressed as a function of the input size, in the worst possible case?
- What is the complexity of the decision problem solved?
 - what is the complexity of the best algorithms that solve the problem?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Complexity of CSat

CSat needs exponential time and space:

► Due to the □-rule, exponentially many complete ABoxes may be generated

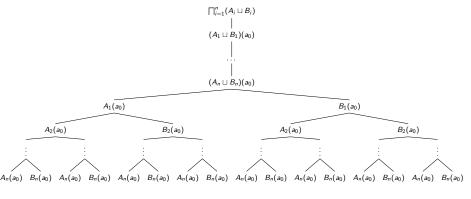
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• consider $C = \prod_{i=1}^{n} (A_i \sqcup B_i)$

Complexity of CSat

CSat needs exponential time and space:

- ► Due to the □-rule, exponentially many complete ABoxes may be generated
 - consider $C = \prod_{i=1}^{n} (A_i \sqcup B_i)$
 - |C| is linear w.r.t. n and CSat(C) generates 2ⁿ complete ABoxes



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

CSat needs exponential time and space:

► Due to the □-rule, exponentially many complete ABoxes may be generated

• consider $C = \prod_{i=1}^{n} (A_i \sqcup B_i)$

► Due to the interaction of ∀- and ∃-rules, complete ABoxes may be exponentially large

• consider
$$C = \prod_{i=0}^{n} \underbrace{\forall R.... \forall R}_{i=1} (\exists R.B \sqcap \exists R.\neg B)$$

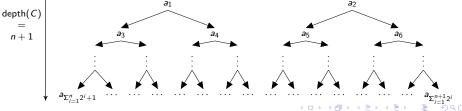
i times

CSat needs exponential time and space:

- \blacktriangleright Due to the \sqcup -rule, exponentially many complete ABoxes may be generated
 - consider $C = \prod_{i=1}^{n} (A_i \sqcup B_i)$
- Due to the interaction of ∀- and ∃-rules, complete ABoxes may be exponentially large
 - consider $C = \prod_{i=0}^{n} \forall R... \forall R (\exists R.B \sqcap \exists R.\neg B)$ i times

|C| is polynomial w.r.t. n and CSat(C) generates a complete ABox with $2^{n+2} - 1$ individuals

an



CSat can be modified so that it runs in polynomial space

- Keep only one ABox in memory at a time:
 - \blacktriangleright when applying the $\sqcup\text{-rule},$ first examine $\mathcal{A}_1,$ then afterwards examine \mathcal{A}_2
 - keep in memory that the second disjunct needs to be checked

CSat can be modified so that it runs in polynomial space

- Keep only one ABox in memory at a time:
 - when applying the ⊔-rule, first examine A₁, then afterwards examine A₂

keep in memory that the second disjunct needs to be checked

• Keep at most depth(C) + 1 individuals in memory:

- explore the children of an individual one at a time, in a depth-first manner
- possible because no interaction between individuals in different branches
- store which $\exists R.C$ have been explored and which are left to do

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complexity of ALC Concept Satisfiability (No TBox)

- CSat runs in polynomial space so the problem of deciding whether an ALC concept is satisfiable is in PSPACE
- Any hope for better algorithms?

 $\mathrm{PTime} \subseteq \mathrm{NP} \subseteq \mathbf{PSpace} \subseteq \mathrm{ExpTime} \subseteq \mathrm{NExpTime} \subseteq \mathrm{ExpSpace}$

inclusions are believed to be strict

- It can be shown that deciding whether an ALC concept is satisfiable is PSPACE-hard
 - reduction from a PSPACE-complete problem (for instance deciding whether a quantified Boolean formula is valid)

Theorem

Checking the satisfiability of an \mathcal{ALC} concept in the absence of a TBox is $\mathrm{PSPACE}\text{-}\mathsf{complete}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We cannot make KBSat run in polynomial space as we did for CSat because we may need to generate exponentially many individuals on a single "branch"

• consider
$$\mathcal{A} = \{F_1(a_0), \dots, F_n(a_0)\}$$
 and
 $\mathcal{T} = \{\bigsqcup_{i=1}^n F_i \sqsubseteq \exists R. \top\} \cup \{F_i \sqsubseteq \neg T_i \mid 1 \le i \le n\}$
 $\cup \{T_1 \sqcap \dots \sqcap T_{k-1} \sqcap F_k \sqsubseteq$
 $\forall R. (F_1 \sqcap \dots \sqcap F_{k-1} \sqcap T_k) \sqcap$
 $\prod_{k+1 \le \ell \le n} ((T_\ell \sqcap \forall R. T_\ell) \sqcup (F_\ell \sqcap \forall R. F_\ell)) \mid 1 \le k \le n\}$

What is the complexity of KB satisfiability?

Theorem

Checking the satisfiability of an \mathcal{ALC} KB is ExpTIME-complete.

- we will next show membership
- hardness can be shown by reduction from an EXPTIME-complete problem (for instance the problem of deciding the existence of a winning strategy for infinite Boolean games)

EXPTIME membership

▶ Show that concept satisfiability w.r.t. a TBox is in EXPTIME

to decide whether a KB ⟨T, A⟩ is satisfiable, let $T' = T \cup \{C_a \sqsubseteq A \mid A(a) \in A\} \cup \{C_a \sqsubseteq \exists R. C_b \mid R(a, b) \in A\}$ and decide whether ⊓_{a individual of A}∃S. C_a is satisfiable w.r.t. T'
where S and all C_a are fresh role and concept names

EXPTIME membership

▶ Show that concept satisfiability w.r.t. a TBox is in EXPTIME

to decide whether a KB ⟨T, A⟩ is satisfiable, let $T' = T \cup \{C_a \sqsubseteq A \mid A(a) \in A\} \cup \{C_a \sqsubseteq \exists R. C_b \mid R(a, b) \in A\}$ and decide whether ⊓_{a individual of A}∃S. C_a is satisfiable w.r.t. T'
where S and all C_a are fresh role and concept names

▶ We consider an atomic concept *A*₀

• *C* is satisfiable w.r.t. \mathcal{T} iff A_0 is satisfiable w.r.t. $\mathcal{T} \cup \{A_0 \sqsubseteq C\}$

• We assume that \mathcal{T} contains a single axiom of the form $\top \sqsubseteq C_{\mathcal{T}}$ with $C_{\mathcal{T}}$ an \mathcal{ALC} concept in NNF

• A_0 is satisfiable w.r.t. \mathcal{T} iff A_0 is satisfiable w.r.t.

$$\Box \top \sqsubseteq \mid \mid_{C \sqsubseteq D \in \mathcal{T}} \mathsf{nnf}(\neg C \sqcup D) \}$$

• We assume that $A_0 \in sub(C_T)$

• otherwise A_0 is satisfiable w.r.t. $\{\top \sqsubseteq C_{\mathcal{T}}\}$ iff $C_{\mathcal{T}}$ is satisfiable

Type elimination algorithm

We use a type elimination algorithm to decide whether A_0 is satisfiable w.r.t. $\{\top \sqsubseteq C_T\}$

• A \mathcal{T} -type is a set of concepts $\tau \subseteq \operatorname{sub}(C_{\mathcal{T}})$ such that

•
$$C \in \tau$$
 implies $nnf(\neg C) \notin \tau$ for all $C \in sub(C_{\mathcal{T}})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $C \sqcap D \in \tau$ implies $C \in \tau$ and $D \in \tau$
- $\blacktriangleright \ C \sqcup D \in \tau \text{ implies } C \in \tau \text{ or } D \in \tau$

 $\blacktriangleright \quad C_{\mathcal{T}} \in \tau$

• There are at most $2^{|\operatorname{sub}(C_{\mathcal{T}})|}$ types

Type elimination algorithm

We use a type elimination algorithm to decide whether A_0 is satisfiable w.r.t. $\{\top \sqsubseteq C_T\}$

- A \mathcal{T} -type is a set of concepts $\tau \subseteq \operatorname{sub}(C_{\mathcal{T}})$ such that
 - $C \in \tau$ implies $nnf(\neg C) \notin \tau$ for all $C \in sub(C_{\mathcal{T}})$
 - $C \sqcap D \in \tau$ implies $C \in \tau$ and $D \in \tau$
 - $C \sqcup D \in \tau$ implies $C \in \tau$ or $D \in \tau$
 - $\blacktriangleright \quad C_{\mathcal{T}} \in \tau$
- There are at most $2^{|\mathsf{sub}(C_T)|}$ types
- The algorithm starts with the set of all types and iteratively removes the bad types that contain some existential restriction that cannot be satisfied in models of T
 - Given a set of types *T*, *τ* is bad in *T* if there exists ∃*R*.*C* ∈ *τ* such that the set {*C*} ∪ {*D* | ∀*R*.*D* ∈ *τ*} is not a subset of any type in *T*

If at the end of the algorithm there remains some type that contains A₀, return "satisfiable", otherwise return "not satisfiable"

Type elimination algorithm: Complexity

The type elimination algorithm runs in exponential time w.r.t. the size of C_T

- At most 2^{|sub(C_T)|} iterations and |sub(C_T)| is linear in the size of C_T
- Each step takes polynomial time in the number of remaining types, thus is in O(2^{|sub(CT)|})

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Hence the algorithm runs in $O(2^{2*|\text{sub}(C_T)|})$

Type elimination algorithm: Soundness

The type elimination algorithm is sound

- Assume that the algorithm returns "satisfiable"
- At the end of the algorithm, T is a set of types such that every $\tau \in T$ is good in T and there exists $\tau_0 \in T$ such that $A_0 \in \tau_0$
- Let $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ with

$$\Delta^{\mathcal{I}} = 7$$

$$A^{\mathcal{I}} = \{ \tau \mid A \in \tau \}$$

 $\blacktriangleright R^{\mathcal{I}} = \{(\tau_1, \tau_2) \mid \exists R.C \in \tau_1, \{C\} \cup \{D \mid \forall R.D \in \tau_1\} \subseteq \tau_2\}$

- Since $A_0 \in \tau_0$, $\tau_0 \in A_0^{\mathcal{I}}$ and $A_0^{\mathcal{I}} \neq \emptyset$
- Claim: $\mathcal{I} \models \top \sqsubseteq C_{\mathcal{T}}$
- Hence A_0 is satisfiable w.r.t. $\{\top \sqsubseteq C_T\}$

Type elimination algorithm: Soundness - Proof of the claim

$$\mathcal{I} = (\Delta^{\mathcal{I}}, {}^{\mathcal{I}}) \text{ with } \Delta^{\mathcal{I}} = T, \ A^{\mathcal{I}} = \{\tau \mid A \in \tau\} \text{ and } R^{\mathcal{I}} = \{(\tau_1, \tau_2) \mid \exists R. C \in \tau_1, \{C\} \cup \{D \mid \forall R. D \in \tau_1\} \subseteq \tau_2$$

Show by induction that for every concept *E*, for every *τ* ∈ *T* such that *E* ∈ *τ*, *τ* ∈ *E*^{*I*}

• Base case:
$$E = A$$
 or $E = \neg A$.

- if E = A, $A \in \tau$ implies $\tau \in A^{\mathcal{I}}$ by definition of \mathcal{I}
- if $E = \neg A$, $\neg A \in \tau$ implies that $A \notin \tau$ because τ is a type, so $\tau \notin A^{\mathcal{I}}$

Type elimination algorithm: Soundness - Proof of the claim

$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}) \text{ with } \Delta^{\mathcal{I}} = T, \ A^{\mathcal{I}} = \{\tau \mid A \in \tau\} \text{ and } R^{\mathcal{I}} = \{(\tau_1, \tau_2) \mid \exists R. C \in \tau_1, \{C\} \cup \{D \mid \forall R. D \in \tau_1\} \subseteq \tau_2$$

- Show by induction that for every concept *E*, for every *τ* ∈ *T* such that *E* ∈ *τ*, *τ* ∈ *E*^{*I*}
 - Base case: E = A or $E = \neg A$.
 - if E = A, $A \in \tau$ implies $\tau \in A^{\mathcal{I}}$ by definition of \mathcal{I}
 - if $E = \neg A$, $\neg A \in \tau$ implies that $A \notin \tau$ because τ is a type, so $\tau \notin A^{\mathcal{I}}$

Induction step:

- if $E = C \sqcap D$, since τ is a type, then C and D are in τ , and by induction hypothesis, $\tau \in C^{\mathcal{I}}$ and $\tau \in D^{\mathcal{I}}$ so $\tau \in (C \sqcap D)^{\mathcal{I}}$
- if $E = \exists R.C$, since τ is good in T, there exists τ' such that $(\tau, \tau') \in R^{\mathcal{I}}$ and $C \in \tau'$, so by induction hypothesis $\tau' \in C^{\mathcal{I}}$ so $\tau \in \exists R.C^{\mathcal{I}}$
- $E = C \sqcup D$: left as practice
- \blacktriangleright *E* = $\forall R.C$: left as practice

Type elimination algorithm: Soundness - Proof of the claim

$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}) \text{ with } \Delta^{\mathcal{I}} = T, \ A^{\mathcal{I}} = \{\tau \mid A \in \tau\} \text{ and } R^{\mathcal{I}} = \{(\tau_1, \tau_2) \mid \exists R. C \in \tau_1, \{C\} \cup \{D \mid \forall R. D \in \tau_1\} \subseteq \tau_2$$

- Show by induction that for every concept *E*, for every *τ* ∈ *T* such that *E* ∈ *τ*, *τ* ∈ *E*^{*I*}
 - Base case: E = A or $E = \neg A$.
 - if E = A, $A \in \tau$ implies $\tau \in A^{\mathcal{I}}$ by definition of \mathcal{I}
 - if $E = \neg A$, $\neg A \in \tau$ implies that $A \notin \tau$ because τ is a type, so $\tau \notin A^{\mathcal{I}}$

Induction step:

- if $E = C \sqcap D$, since τ is a type, then C and D are in τ , and by induction hypothesis, $\tau \in C^{\mathcal{I}}$ and $\tau \in D^{\mathcal{I}}$ so $\tau \in (C \sqcap D)^{\mathcal{I}}$
- if $E = \exists R.C$, since τ is good in T, there exists τ' such that $(\tau, \tau') \in R^{\mathcal{I}}$ and $C \in \tau'$, so by induction hypothesis $\tau' \in C^{\mathcal{I}}$ so $\tau \in \exists R.C^{\mathcal{I}}$
- $E = C \sqcup D$: left as practice
- $E = \forall R.C$: left as practice

For every $\tau \in T$, since τ is a \mathcal{T} -type, then $C_{\mathcal{T}} \in \tau$ so $\tau \in C_{\mathcal{T}}^{\mathcal{I}}$ Hence $\mathcal{I} \models \top \sqsubseteq C_{\mathcal{T}}$

Type elimination algorithm: Completeness

The type elimination algorithm is complete

- Assume that A_0 is satisfiable w.r.t. $\{\top \sqsubseteq C_T\}$
- ► There is a model $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ of $\top \sqsubseteq C_{\mathcal{T}}$ such that $A_0^{\mathcal{I}} \neq \emptyset$
- ► Claim: $T = \{\tau \mid e \in \Delta^{\mathcal{I}}, \tau = \{C \mid C \in \mathsf{sub}(C_{\mathcal{T}}), e \in C^{\mathcal{I}}\}\}$ is a set of \mathcal{T} -types such that there is $\tau \in T$ with $A_0 \in \tau$ and the type elimination algorithm does not remove any of the types in T

Type elimination algorithm: Completeness - Proof of the claim

$$\mathcal{T} = \{ au \mid e \in \Delta^{\mathcal{I}}, au = \{ \mathcal{C} \mid \mathcal{C} \in \mathsf{sub}(\mathcal{C}_{\mathcal{T}}), e \in \mathcal{C}^{\mathcal{I}} \} \}$$

- Since $A_0^{\mathcal{I}} \neq \emptyset$, there is $\tau \in T$ such that $A_0 \in \tau$
- T is a set of T-types: for every $\tau \in T$
 - $e \in C^{\mathcal{I}}$ implies $e \notin nnf(\neg C)^{\mathcal{I}}$, so $C \in \tau$ implies $nnf(\neg C) \notin \tau$

- $e \in (C \sqcap D)^{\mathcal{I}}$ implies $e \in C^{\mathcal{I}}$ and $e \in D^{\mathcal{I}}$, so $C \sqcap D \in \tau$ implies $C \in \tau$ and $D \in \tau$
- similarly for $C \sqcup D$

•
$$\mathcal{I} \models \top \sqsubseteq C_{\mathcal{T}}$$
, so $C_{\mathcal{T}} \in \tau$

Type elimination algorithm: Completeness - Proof of the claim

$$\mathcal{T} = \{ au \mid e \in \Delta^{\mathcal{I}}, au = \{ \mathcal{C} \mid \mathcal{C} \in \mathsf{sub}(\mathcal{C}_{\mathcal{T}}), e \in \mathcal{C}^{\mathcal{I}} \} \}$$

- Since $A_0^{\mathcal{I}} \neq \emptyset$, there is $\tau \in T$ such that $A_0 \in \tau$
- T is a set of \mathcal{T} -types: for every $\tau \in T$
 - $e \in C^{\mathcal{I}}$ implies $e \notin nnf(\neg C)^{\mathcal{I}}$, so $C \in \tau$ implies $nnf(\neg C) \notin \tau$
 - $e \in (C \sqcap D)^{\mathcal{I}}$ implies $e \in C^{\mathcal{I}}$ and $e \in D^{\mathcal{I}}$, so $C \sqcap D \in \tau$ implies $C \in \tau$ and $D \in \tau$
 - ▶ similarly for $C \sqcup D$
 - $\mathcal{I} \models \top \sqsubseteq C_{\mathcal{T}}$, so $C_{\mathcal{T}} \in \tau$
- Every $au \in T$ is good in T
 - let $\tau \in T$ and $\exists R.C \in \tau$
 - there is $e \in \Delta^{\mathcal{I}}$ such that $\tau = \{C \mid C \in sub(C_{\mathcal{T}}), e \in C^{\mathcal{I}}\}$
 - ► $e \in \exists R.C^{\mathcal{I}}$ so there is $d \in \Delta^{\mathcal{I}}$ s.t. $(e, d) \in R^{\mathcal{I}}$ and $d \in C^{\mathcal{I}}$
 - ▶ for every *D* such that $\forall R.D \in \tau$, $e \in (\forall R.D)^{\mathcal{I}}$ so $d \in D^{\mathcal{I}}$
 - ▶ the type $\tau_d = \{E \mid E \in \text{sub}(C_T), d \in E^I\}$ is such that $\{C\} \cup \{D \mid \forall R.D \in \tau\} \subseteq \tau_d$ and belongs to T

► The type elimination algorithm never removes any type τ ∈ T: by induction on the number of iterations

Tableau algorithms are implemented and work well in practice

- type elimination algorithm has optimal worst-case complexity but its best-case complexity is exponential!
- However, good performances crucially depends on optimizations
 - explore only one branch of one ABox at a time
 - strategies/heuristics for choosing next rule to apply
 - caching of results to reduce redundant computation
 - examine source of conflicts to prune search space
 - ▶ reduce numbers of □'s created by TBox inclusions
 - reduce number of satisfiability checks during classification

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Absorption: reduce number of disjunctions

If $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}$, for each individual *a*, the TBox-rule builds *n* disjunctions nnf $(\neg C_i \sqcup D_i)(a)$

 \rightarrow Try to reduce this number

- ▶ When *C_i* or *D_i* is an atomic concept, trigger the TBox-rule only when we have information about this concept
 - For inclusions A ⊑ D with atomic left-hand side, replace the TBox-rule by
 - TBox-atomic-left-rule: if $A(a) \in A$, a is not blocked,
 - $A \sqsubseteq D \in \mathcal{T}$ (A atomic), and $D(a) \notin A$, replace A with $\mathcal{A} \cup \{D(a)\}$.
 - For inclusions D ⊑ A with atomic right-hand side, replace the TBox-rule by

TBox-atomic-right-rule: if $\neg A(a) \in A$, *a* is not blocked, $D \sqsubseteq A \in \mathcal{T}$ (*A* atomic), and $\neg D(a) \notin A$, replace A with $A \cup \{\neg D(a)\}$.

Absorption: reduce number of disjunctions

Preprocess the TBox

to decrease the number of concept inclusions with non-atomic left- and right-hand sides

$$(A \sqcap C \sqsubseteq D) \equiv (A \sqsubseteq \neg C \sqcup D)$$
$$(D \sqsubseteq A \sqcup C) \equiv (D \sqcap \neg C \sqsubseteq A)$$
$$\ldots$$

to obtain a single concept inclusion per atomic concept with this concept as right- or left-hand side ("absorption")

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\blacktriangleright A \sqsubseteq C_1, A \sqsubseteq C_2 \Rightarrow A \sqsubseteq C_1 \sqcap C_2$$

 $\blacktriangleright C_1 \sqsubseteq A, C_2 \sqsubseteq A \Rightarrow C_1 \sqcup C_2 \sqsubseteq A$

Classification: reduce number of satisfiability checks

Classification consists in finding all pairs of atomic concepts A, B such that $\mathcal{T} \models A \sqsubseteq B$

- Naïve approach: test satisfiability of A □ ¬B w.r.t. T for every pair A, B
- Reduce the number of satisfiability checks
 - some subsumptions are obvious
 - $\blacktriangleright A \sqsubseteq A$
 - $A \sqsubseteq B \in \mathcal{T}$
 - use simple reasoning to obtain new (non-)subsumptions
 - if we found that $\mathcal{T} \models A \sqsubseteq B$ and $\mathcal{T} \models B \sqsubseteq C$, then $\mathcal{T} \models A \sqsubseteq C$
 - if we found that $\mathcal{T} \models A \sqsubseteq B$ and $\mathcal{T} \not\models A \sqsubseteq C$, then $\mathcal{T} \not\models B \sqsubseteq C$

References

- Baader, Calvanese, McGuinness, Nardi, Patel-Schneider (2003): The Description Logic Handbook: Theory, Implementation, and Applications (book, can be found online)
- Bienvenu (2022): Ontologies & Description Logics (lecture: https://www.labri.fr/perso/meghyn/teaching/lola-2022/ 2-lola-tableau.pdf)
- Baader (2019): course on Description Logics (lecture: https://tu-dresden.de/ing/informatik/thi/lat/studium/ lehrveranstaltungen/sommersemester-2019/description-logic)
- Ortiz (2012): course on Declarative Knowledge Processing (lecture: http://www.kr.tuwien.ac.at/education/dekl_slides/ws12/)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・