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Settings: Databases and knowledge bases
Terminology and syntax

Database or knowledge base (KB): K = ⟨D, T ⟩
D dataset: set of facts (ground atoms)

T logical theory: set of formulas in some language

integrity constraint language (database case)

denial constraints: ∀x⃗(β [⃗x ] ∧ ϵ[⃗x ]→ ⊥)
with β [⃗x ] conjunction of relational atoms
and ϵ[⃗x ] conjunction of inequality atoms

universal constraints: ∀x⃗(β [⃗x ] ∧ ϵ[⃗x ]→
∨k

i=1 ηi [⃗x ])
...

ontology language (KB case)

description logic
Datalog± fragment
...

Conjunctive query: q(x⃗) = ∃y⃗φ(x⃗ , y⃗) with φ(x⃗ , y⃗) conjunction of atoms
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Settings: Databases and knowledge bases
Semantics

Interpretation I = (∆I , ·I)
Constant a interpreted as aI ∈ ∆I

a ̸= b implies aI ̸= bI if unique name assumption is made
aI = a if standard name assumption is made

Predicate P of arity n interpreted as a set PI of n-tuples of ∆I

Database: closed world assumption

Special interpretation ID: P(c1, . . . , cn) ∈ D iff (c1, . . . , cn) ∈ PID

K is consistent if ID |= T
K |= q(⃗a) if ID |= q(⃗a)

KB: open world assumption

Models: interpretations that satisfy all facts in D and formulas in T
K is consistent if it has some model

K |= q(⃗a) if q(⃗a) holds in every model of K
Database versus KB

D = {A(a)} is inconsistent with constraint A(x)→ B(x)

D = {A(a)} and ontological axiom A(x)→ B(x) entail B(a)
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Settings: Databases and knowledge bases
Example

Example of description logic ontology

Cancer ⊓ ∃primaryTumor.Lung ⊑ LungCancer

SmallCellCarcinoma ⊑ Cancer

Adenocarcinoma ⊑ Cancer

Adenocarcinoma ⊓ SmallCellCarcinoma ⊑ ⊥
(functional primaryTumor)

Lung ⊓ Breast ⊑ ⊥

Ontology translation in first-order logic OR database integrity constraints

Cancer(x) ∧ primaryTumor(x , y) ∧ Lung(y)→ LungCancer(x)

SmallCellCarcinoma(x)→ Cancer(x)

Adenocarcinoma(x)→ Cancer(x)

Adenocarcinoma(x) ∧ SmallCellCarcinoma(x)→ ⊥
primaryTumor(x , y) ∧ primaryTumor(x , z) ∧ y ̸= z → ⊥
Lung(x) ∧ Breast(x)→ ⊥
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Settings: Databases and knowledge bases
Languages

FO

∨-TGD UC

full ∨-TGDTGD DC

full TGD EGD

FD

key

lav TGD

ID

Datalog±

WS⊥ WG⊥

WA⊥ S⊥

F⊥ A⊥

G⊥

L⊥ DL-LiteR,⊓

DL-LiteR

DL-Litecore

EL⊥

ALC

SHIQ

SROIQ

Figure: Hierarchies of database integrity contraint languages (left)
[Arming et al., 2016, Fig. 1] and of some ontology languages (right).
There is a downward path from L1 to L2 if any set of integrity constraints
(resp. any ontology) in L2 can be rewritten into an equivalent set of integrity
constraints (resp. ontology) in L1.
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Handling inconsistent data
Motivation

In real world, data often contains errors: human errors, automatic extraction,

outdated information...

⇒ D is likely to be inconsistent with T (“T -inconsistent”)
(focus on the case where T is consistent and reliable)

Standard semantics when K = ⟨D, T ⟩ is inconsistent:
KB case: no model of K ⇒ everything is entailed!

Database case: query results may be inconsistent with T

It is not always possible to resolve the inconsistencies (lack of information, time,

permission...)

Alternative semantics: meaningful answers to queries despite inconsistencies
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Handling inconsistent data
Example (KB case)

Cancer(x) ∧ primaryTumor(x , y) ∧ Lung(y)→ LungCancer(x)

SmallCellCarcinoma(x)→ Cancer(x)

Adenocarcinoma(x)→ Cancer(x)

Adenocarcinoma(x) ∧ SmallCellCarcinoma(x)→ ⊥
primaryTumor(x , y) ∧ primaryTumor(x , z)→ y = z

Lung(x) ∧ Breast(x)→ ⊥

hasDisease(bob, d1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

primaryTumor(d1, o1) primaryTumor(d1, o2)

Lung(o1) Breast(o2)

K |= ∃yhasDisease(x , y) ∧ LungCancer(y) for x ∈ {bob, d1, d2, o1, o2}

⇒ Use inconsistency-tolerant semantics

Ideas? What would you“reasonably” infer about Bob?
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Intersection semantics: queries that hold in the intersection of all repairs

∃y hasDisease(bob, y) surest
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Handling inconsistent data
Example (KB case)
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(Subset) repair: inclusion-maximal R ⊆ D such that R is T -consistent
Brave semantics: queries that hold in some repair

∃y hasDisease(bob, y) ∧ LungCancer(y) possible

Intersection semantics: queries that hold in the intersection of all repairs

∃y hasDisease(bob, y) surest
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Dataset repairs: Definition

Subset repair (⊆-repair): inclusion-maximal T -consistent R ⊆ D
Superset repair (⊇-repair): inclusion-minimal T -consistent R ⊇ D
Symmetric difference repair (∆-repair): T -consistent R such that there is

no T -consistent R′ with R′∆D ⊊ R∆D
Notation: S-Repx(K) = S-Repx(D, T ) : set of all x-repairs of K = ⟨D, T ⟩

primaryTumor(x , y)→ Cancer(x)

SmallCellCarcinoma(x)→ Cancer(x)

Adenocarcinoma(x)→ Cancer(x)

Adenocarcinoma(x) ∧ SmallCellCarcinoma(x)→ ⊥

primaryTumor(d1, o1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

S-Rep∆(K) = {∅, {primaryTumor(d1, o1),SmallCellCarcinoma(d1),Cancer(d1)},
{primaryTumor(d1, o1),Adenocarcinoma(d1),Cancer(d1)}}

K inconsistent KB or database with denial constraints ⇒ S-Rep⊇(K) = ∅ and
S-Rep∆(K) = S-Rep⊆(K) = S-Rep(K)
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Dataset repairs: Characterization via conflict hypergraph

Case of a KB or database with denial constraints

Conflict: inclusion-minimal T -inconsistent C ⊆ D
⇒ Conflict hypergraph G: vertices = D, edges = conflicts of K

hasDisease(bob, d1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

primaryTumor(d1, o1) primaryTumor(d1, o2)

Lung(o1) Breast(o2)

R ∈ S-Rep⊆(K) iff R is a maximal independent set of G
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Dataset repairs: Characterization via conflict hypergraph

Case of a database with universal constraints: conflicts may contain absent facts

Relevant facts: FactsTD = D∪{P(c1, . . . , cn) |P occurs in T , c1, . . . , cn occur in D}
Literals of D: LitsTD = D ∪ {¬α | α ∈ FactsTD \ D}

Conflict: inclusion-minimal C ⊆ LitsTD such that I |= C implies I ̸|= T
⇒ Conflict hypergraph G: vertices = LitsTD, edges = conflicts of K

primaryTumor(d1, o1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

¬Cancer(d1)

R ∈ S-Rep∆(K) iff IntD(R) is a maximal independent set of G
where IntD(R) = (R∩D) ∪ {¬α | α ∈ FactsTD \ (R∪D)} is the set of literals

upon which R and D agree
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Dataset repairs: Connections with abstract argumentation

Abstract argumentation: well-known framework to deal with contradictory

information in AI

An (abstract) argumentation framework (AF) is a pair (Args,⇝) where

Args is a finite set of arguments

⇝⊆ Args × Args is the attack relation: α attacks β if α⇝ β

+ variant of AF with collective attacks: set-based AF (SETAF)

collective attacks S ⇝ α with S finite set of arguments

Semantics based on extensions (sets of arguments that represent coherent

points of view) + inference mechanism (skeptical or credulous)
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Dataset repairs: Connections with abstract argumentation

Several different notions of extension, in particular:

Näıve extension: ⊆-maximal conflict-free set of arguments

Preferred extension: ⊆-maximal conflict-free self-defending set

(i.e., attacks all arguments that attack some of its arguments)

Stable extension: conflict-free set attacking all excluded arguments

Näıve: {α, γ}, {α, δ}, {α, ϵ},
{β, δ}, {β, ϵ}

Preferred: {α}, {β, δ}

Stable: {β, δ}

Stable extensions are also preferred extensions

Coherent (SET)AF: stable and preferred extensions coincide
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Dataset repairs: Connections with abstract argumentation

Translation of a KB (or database with denial constraints) K = ⟨D, T ⟩ without
self-conflicting fact into a SETAF FK

Use D as the arguments

Define attacks by C \ {α}⇝ α for every conflict C and α ∈ C

R ∈ S-Rep(K) iff R is a näıve/preferred/stable extension of FK

Possible to adapt this translation to databases with universal constraints by

considering literals instead of facts

For integrity constraints with existential quantifier in the head, conflicts are not

defined but a connection between ⊆-repairs of databases with dependencies of

the form P(x⃗)→ ∃y⃗Q [⃗x , y⃗ ] and P(x⃗) ∧ P(y⃗) ∧
∧

i∈I xi = yi →
∧

j∈J xj = yj and

AF extensions has been shown [Mahmood et al., 2024]
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Repair-based inconsistency-tolerant semantics
CQA, intersection and brave semantics

a⃗ is an answer to q(x⃗) over K = ⟨D, T ⟩ under CQA semantics iff

⟨R, T ⟩ |= q(⃗a) for every R ∈ S-Rep(K)
a⃗ is an answer to q(x⃗) over K = ⟨D, T ⟩ under intersection semantics iff

⟨R∩, T ⟩ |= q(⃗a) where R∩ =
⋂

R∈S-Rep(K)R
a⃗ is an answer to q(x⃗) over K = ⟨D, T ⟩ under brave semantics iff

⟨R, T ⟩ |= q(⃗a) for some R ∈ S-Rep(K)

[Arenas et al., 1999, Lembo et al., 2010, Bienvenu and Rosati, 2013]

CQA is the most well-known and accepted semantics

CQA is usually intractable (coNP-complete in data complexity even for

very basic ontology/constraint languages)

Intersection and brave: under- and over- approximations of CQA:

intersection→ CQA→ brave

Intersection and brave are tractable for denial constraints and some simple

ontology languages
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Repair-based inconsistency-tolerant semantics
Overview of other repair-based semantics

brave = 0-defeater

majority

CQA

non-objection

1-defeater

. . .

k-defeater

ICR

intersection=1-support

k-support

. . .

2-support

Semantics with the property

Consistent Support all

Consistent Results intersection, ICR, k-support,

CQA, non-objection

Unique Base intersection, ICR

Consistent Support: for every ⟨D, T ⟩,
q(x⃗) and a⃗, if ⟨D, T ⟩ |=Sem q(⃗a), then

there exists a T -consistent subset S
of D such that ⟨S, T ⟩ |= q(⃗a).

Consistent Results: for every ⟨D, T ⟩,
there exists a model I of T such that

for every q(x⃗) and a⃗,

⟨D, T ⟩ |=Sem q(⃗a) implies I |= q(⃗a).

Unique Base: for every ⟨D, T ⟩, there
exists a T -consistent dataset D′ such

that for every q(x⃗) and a⃗,

⟨D, T ⟩ |=Sem q(⃗a) iff ⟨D′, T ⟩ |= q(⃗a).

Figure: (left) Relationships between repair-based semantics (adapted from
[Bienvenu, 2020]): Sem→ Sem′ means that K |=Sem q(⃗a) implies K |=Sem′ q(⃗a).
(right) Properties of repair-based semantics (adapted from [Bienvenu, 2020]).
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Preferred repairs

In many scenarios, define preferred repairs based on some preference information

Relative or absolute reliability of facts

Preference rules

...

Impact of using preferred repairs on repair-based semantics

More answers hold under CQA/intersection

Less answers hold under brave

Relationships between semantics are preserved

hasDisease(bob, d1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

primaryTumor(d1, o1) primaryTumor(d1, o2)

Lung(o1) Breast(o2)

Assume two preferred repairs below, which consequences ?

{hasDisease(bob, d1),SmallCellCarcinoma(d1), primaryTumor(d1, o1), Lung(o1)}
{hasDisease(bob, d1),Adenocarcinoma(d1), primaryTumor(d1, o1), Lung(o1)}
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Preferred repairs based on a preorder over datasets

Generalization of the definition of dataset repairs

Strictly ⊆-monotone preorder ⪯: reflexive and transitive binary relation over

datasets such that B ⊂ B′ implies B ≺ B′

⪯-optimal ⊆-repair: T -consistent dataset R ⊆ D such that there is no

T -consistent R′ ⊆ D such that R ≺ R′

⪯-optimal ∆-repair: T -consistent dataset R such that there is no

T -consistent R′ such that R′∆D ≺ R∆D

⪯ strictly ⊆-monotone implies that ⪯-optimal ⊆-repairs are indeed ⊆-repairs,
and ⪯-optimal ∆-repairs are ∆-repairs
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Preferred repairs based on a preorder over datasets
≤-optimal repairs

Cardinality-based repairs: [Lopatenko and Bertossi, 2007]

B ≤ B′ iff |B| ≤ |B′|

Fewest modifications

Appropriate when all facts/literals have same probability of being erroneous

primaryTumor(d1, o1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

¬Cancer(d1)

S-Rep∆(K) = {∅, {primaryTumor(d1, o1),SmallCellCarcinoma(d1),Cancer(d1)},
{primaryTumor(d1, o1),Adenocarcinoma(d1),Cancer(d1)}}

≤-optimal: {primaryTumor(d1, o1),SmallCellCarcinoma(d1),Cancer(d1)}
{primaryTumor(d1, o1),Adenocarcinoma(d1),Cancer(d1)}
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Preferred repairs based on a preorder over datasets
≤w -optimal repairs

Weight-based repairs: function w assigns weights to facts [Du et al., 2013]

B ≤w B′ iff Σα∈Bw(α) ≤ Σα∈B′w(α)

Model the reliability of facts of D: the higher weight, the more reliable
∆-repair case: w assigns weights to all possible facts

example: same weight to all facts that do not belong to D

primaryTumor(d1, o1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

¬Cancer(d1)

S-Rep∆(K) = {∅, {primaryTumor(d1, o1),SmallCellCarcinoma(d1),Cancer(d1)},
{primaryTumor(d1, o1),Adenocarcinoma(d1),Cancer(d1)}}

Let w(Cancer) = 5, w(SmallCell) = 4 and w(primary) = w(Adeno) = 1

≤w -optimal: ∅
{primaryTumor(d1, o1),SmallCellCarcinoma(d1),Cancer(d1)}
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Preferred repairs based on a preorder over datasets
⊆P - and ≤P -optimal repairs

Two kinds of repairs based on priority levels

Prioritization P = ⟨P1, . . . ,Pn⟩: disjoint datasets such that D =
⋃n

i=1 Pi

P1: most reliable, Pn: least reliable

Facts coming from different sources, part of the dataset already validated

versus recent additions, relative reliability of predicates...

Best suited when there is a significant difference in the perceived reliability

∆-repair case: prioritization of literals (LitsTD)
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Preferred repairs based on a preorder over datasets
⊆P -optimal repairs

Prioritized set inclusion: [Bienvenu et al., 2014]

B ⊆P B′ iff either B ∩ Pi = B′ ∩ Pi for every 1 ≤ i ≤ n,

or there is some 1 ≤ i ≤ n such that

B ∩ Pi ⊊ B′ ∩ Pi and B ∩ Pj = B′ ∩ Pj for 1 ≤ j < i

primaryTumor(d1, o1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

¬Cancer(d1)

S-Rep∆(K) = {∅, {primaryTumor(d1, o1),SmallCellCarcinoma(d1),Cancer(d1)},
{primaryTumor(d1, o1),Adenocarcinoma(d1),Cancer(d1)}}

Let P1 = {SmallCell,¬Cancer}, P2 = {Adeno, primary}

⊆P -optimal: ∅
{primaryTumor(d1, o1),SmallCellCarcinoma(d1),Cancer(d1)}
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Preferred repairs based on a preorder over datasets
≤P -optimal repairs

Prioritized cardinality: [Bienvenu et al., 2014]

B ≤P B′ iff either |B ∩ Pi | = |B′ ∩ Pi | for every 1 ≤ i ≤ n,

or there is some 1 ≤ i ≤ n such that

|B ∩ Pi | < |B′ ∩ Pi | and |B ∩ Pj | = |B′ ∩ Pj | for 1 ≤ j < i

primaryTumor(d1, o1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

¬Cancer(d1)

S-Rep∆(K) = {∅, {primaryTumor(d1, o1),SmallCellCarcinoma(d1),Cancer(d1)},
{primaryTumor(d1, o1),Adenocarcinoma(d1),Cancer(d1)}}

Let P1 = {SmallCell,¬Cancer}, P2 = {Adeno, primary}

≤P -optimal: {primaryTumor(d1, o1),SmallCellCarcinoma(d1),Cancer(d1)}
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Preferred repairs based on a preorder over datasets
≤-, ≤w -, ⊆P - and ≤P -optimal repairs

Properties and relationships

Weight-based repairs generalize cardinality-based repairs

let w assign the same weight to every fact

Weight-based repairs generalize repairs based on prioritized cardinality

let u = (maxni=1|Pi |) + 1 and w(α) = un−i for every α ∈ Pi

If P = ⟨P1⟩, then ⊆P -optimal = standard and ≤P -optimal = ≤-optimal
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Optimal repairs based on a priority relation
KB or denial constraints case

When information about relative reliability of facts is available, define priorities

between conflicting facts

Examples of possible preferences [Bienvenu et al., 2025]
Prefer more recent (updated) or older (curated) facts

Fact Date
primaryTumor(d1, o1) 08.10.2023
primaryTumor(d1, o2) 05.22.2023

most recent fact gives the last, revised, diagnosis
⇒ primaryTumor(d1, o1) ≻ primaryTumor(d1, o2)

Prefer facts that come from some source (process, user...)

Take into account presence or absence of other facts in the dataset

...

hasDisease(bob, d1)

SmallCellCarcinoma(d1) ≻ Adenocarcinoma(d1)

primaryTumor(d1, o1) ≻ primaryTumor(d1, o2)≻
≻

Lung(o1) ≻ Breast(o2)
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the dataset indicates that the patient got a surgery common in the
case of lung cancer but nothing about a breast cancer treatment
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...
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Optimal repairs based on a priority relation
KB or denial constraints case

Formally:

Priority relation ≻: acyclic binary relation over D such that α ≻ β implies

{α, β} ⊆ C for some conflict C
Prioritized KB (or database with denial constraints) K≻ = (K,≻)

hasDisease(bob, d1)

SmallCellCarcinoma(d1) ≻ Adenocarcinoma(d1)

primaryTumor(d1, o1) ≻ primaryTumor(d1, o2)≻
≻

Lung(o1) ≻ Breast(o2)

≻ is total if for all α ̸= β such that {α, β} ⊆ C for some conflict C, either
α ≻ β or β ≻ α

Completion of ≻: total priority relation ≻′ ⊇ ≻
example: complete ≻ with primaryTumor(d1, o1) ≻′ Lung(o1) and
primaryTumor(d1, o2) ≻′ Breast(o2)
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Optimal repairs based on a priority relation
KB or denial constraints case

Three notions of optimal repair [Staworko et al., 2012]

Let R be a repair of K (R ∈ S-Rep(K))
A Pareto improvement of R is a T -consistent B ⊆ D such that there is

β ∈ B \ R with β ≻ α for every α ∈ R \ B
R is Pareto-optimal (R ∈ P-Rep(K≻)) if there is no Pareto improvement

of R

δ ϵ

β1 ≻ α1

≻

α2 β2

{α1, α2, δ, ϵ} ∈ S-Rep(K)

{β1, δ, ϵ} Pareto improvement

⇒ {α1, α2, δ, ϵ} /∈ P-Rep(K≻)

C -Rep(K≻) ⊆ G -Rep(K≻) ⊆ P-Rep(K≻) ⊆ S-Rep(K)

If ≻ is score-structured (i.e., can be induced by assigning scores to facts and

from which we can obtain a prioritization P of D), then
C -Rep(K≻) = G -Rep(K≻) = P-Rep(K≻) =⊆P -Rep(K)

hasDisease(bob, d1)

SmallCellCarcinoma(d1) ≻ Adenocarcinoma(d1)

primaryTumor(d1, o1) ≻ primaryTumor(d1, o2)≻
≻

Lung(o1) ≻ Breast(o2)

{hasDisease(bob, d1),SmallCellCarcinoma(d1), primaryTumor(d1, o1), Lung(o1),

primaryTumor(d1, o2)}
{hasDisease(bob, d1),SmallCellCarcinoma(d1), primaryTumor(d1, o1), Lung(o1),

Breast(o2)}
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Optimal repairs based on a priority relation
KB or denial constraints case

Three notions of optimal repair [Staworko et al., 2012]

Let R be a repair of K (R ∈ S-Rep(K))
A global improvement of R is a T -consistent B ⊆ D such that B ̸= R and

for every α ∈ R \ B, there is β ∈ B \ R such that β ≻ α

R is globally-optimal (R ∈ G -Rep(K≻)) if there is no global improvement

of R

δ ϵ

β1 ≻ α1

α2 ≺ β2

{α1, α2, δ, ϵ} ∈ P-Rep(K≻)

{β1, β2, δ, ϵ} global improvement

⇒ {α1, α2, δ, ϵ} /∈ G -Rep(K≻)

C -Rep(K≻) ⊆ G -Rep(K≻) ⊆ P-Rep(K≻) ⊆ S-Rep(K)
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Optimal repairs based on a priority relation
KB or denial constraints case

Three notions of optimal repair [Staworko et al., 2012]

Let R be a repair of K (R ∈ S-Rep(K))
R is completion-optimal (R ∈ C -Rep(K≻)) if R is globally-optimal w.r.t.

some completion ≻′ of ≻
Equivalently: obtained by greedily selecting some fact maximal w.r.t. ≻
among those not yet considered, and keeping it if still consistent

α ≻ β

γ ≻ δ

Subset repairs

S-Rep(K) =
{
{α}, {γ}, {β, δ}

}
Pareto- and globally-optimal

P-Rep(K≻) = G -Rep(K≻) =
{
{α}, {γ}, {β, δ}

}
Completion-optimal

C -Rep(K≻) =
{
{α}, {γ}

}

C -Rep(K≻) ⊆ G -Rep(K≻) ⊆ P-Rep(K≻) ⊆ S-Rep(K)

If ≻ is score-structured (i.e., can be induced by assigning scores to facts and
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Optimal repairs based on a priority relation
Database with universal constraints case

All definitions and results extend to database with universal constraints by

considering literals from LitsTD instead of facts from D
[Bienvenu and Bourgaux, 2023]
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Optimal repairs based on a priority relation
Links with abstract argumentation

Preference-based set based argumentation framework (PSETAF)

Preference relation ≻ between arguments

Refines the attack relation: S ⇝≻ α if S ⇝ α and α ̸≻ β for every β ∈ S

Translation of a prioritized KB K≻ = (K,≻) into a PSETAF FK,≻

Use D as the arguments

Use ≻ as the preference relation

Define attacks by C \ {α}⇝ α for every conflict C and α ∈ C
⇒ C \ {α}⇝≻ α if α ̸≻ β for every β ∈ C

hasDisease(bob, d1)

SmallCellCarcinoma(d1) ≻ Adenocarcinoma(d1)

primaryTumor(d1, o1) ≻ primaryTumor(d1, o2)≻
≻

Lung(o1) ≻ Breast(o2)
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Optimal repairs based on a priority relation
Links with abstract argumentation

R is a Pareto-optimal repair of K≻
iff

R is a stable extension of FK,≻

If ≻ is transitive or if K has only binary conflicts, then FK,≻ is coherent:

R is a Pareto-optimal repair of K≻
iff

R is a preferred extension of FK,≻

No notion of extension corresponds to globally- or completion-optimal

[Bienvenu and Bourgaux, 2020]
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Optimal repairs based on a priority relation
Links with abstract argumentation

The grounded extension of a (PSET)AF is the minimal conflict-free set of

arguments that contains all arguments that it defends

Add all arguments with no incoming attacks

Iteratively add arguments defended by the selected arguments

⇒ Grounded semantics for prioritized KB: query grounded extension of FK,≻

P-complete data complexity for DL-Lite KBs

Under-approximation of intersection semantics based on Pareto-optimal

repairs

“Grounded repair”: in the line of research that aims at selecting a single

consistent set of facts to query (“unique repair”) from a prioritized KB (with ≻
often induced by prioritization P = ⟨P1, . . . ,Pn⟩)
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Optimal repairs based on a priority relation
Relationships with“unique repairs”

pind(K≻) = PartialPR(K≻) =
⋂

R∈X -Rep(K≻)R

grounded(K≻)

nd(K≻) = Elect(K≻)

π(K≻)

ℓ(K≻) ℓnd(K≻)

Polynomial computation:

given the conflict hypergraph and ≻,
the repair can be computed in

polynomial time

=⇒ holds for all but pind(K≻)

Complete w.r.t. isolated vertices:

contains all facts that do not belong

to any conflict (i.e., includes

R∩ =
⋂

R∈S-Rep(K)R)
=⇒ holds for all but π(K≻), ℓ(K≻)

Sound w.r.t. prioritized intersection:

included in the intersection of

optimal repairs

=⇒ holds for all but ℓ(K≻),

ℓnd(K≻)

Figure: (left) Relationships between“unique repairs”when ≻ is induced by a
prioritization: an arrow X → Y means that X ⊆ Y
[Benferhat et al., 2015, Belabbes et al., 2021, Bienvenu and Bourgaux, 2020]
(right) Relevant properties [Benferhat et al., 2015, Bienvenu and Bourgaux, 2020]
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Optimal repairs based on a priority relation
Links with active integrity constraints

In the database setting, active integrity constraints state how to resolve

constraint violations: high-level similarities with prioritized databases

Example of denial constraint and active denial constraint:

Child(x) ∧ Adult(x)→ ⊥
Child(x) ∧ Adult(x)→ {−Child(x)}

Example of universal constraint and active universal constraint:

Lung(x) ∧ ¬LeftLg(x) ∧ ¬RightLg(x)→ ⊥
Lung(x) ∧ ¬LeftLg(x) ∧ ¬RightLg(x)→ {+LeftLg(x),+RightLg(x)}

A ground active integrity constraint (AIC) is a formula of the form

α1 ∧ · · · ∧ αn ∧ ¬β1 ∧ · · · ∧ ¬βm → {A1, . . . ,Ak}

with update actions Ai of the form −αj or +βj
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Optimal repairs based on a priority relation
Links with active integrity constraints

Semantics based on repair updates: U set of update actions such that D ◦U is a

repair, where D ◦ U = D \ {α | −α ∈ U} ∪ {α | +α ∈ U}

Several different notions of repair update, in particular:

Founded: for every A ∈ U , there is an AIC r with update action A and

D ◦ U \ {A} ̸|= r

Well-founded: there exists a sequence of actions A1, . . . ,An such that

U = {A1, . . . ,An}, and for every 1 ≤ i ≤ n, there is ri with update action

Ai and D ◦ {A1, . . . ,Ai−1} ̸|= ri

Grounded (for normalized AICs: single update action): for every V ⊊ U ,
there is r whose update action is in U \ V and D ◦ V ̸|= r

Justified...

Grounded Founded

Justified Well-Founded
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Optimal repairs based on a priority relation
Links with active integrity constraints

Translation of prioritized database (univ. constraints) K≻ into ground AICs

ηT≻ = {rC | C conflict} where fix(α) = −α, fix(¬α) = +α and

rC :=
∧

λ∈C λ→ {fix(λ) | λ ∈ C,∀µ ∈ C, λ ̸≻ µ}
Conflicts fixed by modifying least preferred literals according to ≻

R(d , b) ≻ S(a, b) ≻ ¬A(b)

R(d , c) ≺ S(a, c) ≻ ¬A(c)

S(a, b) ∧ S(a, c)→ {−S(a, b),−S(a, c)}
R(d , b) ∧ R(d , c)→ {−R(d , b),−R(d , c)}
R(d , b) ∧ S(a, b)→ {−S(a, b)}
R(d , c) ∧ S(a, c)→ {−R(d , c)}
S(a, b) ∧ ¬A(b)→ {+A(b)}
S(a, c) ∧ ¬A(c)→ {+A(c)}

For denial constraints: data-independent reduction to non-ground AICs

(assuming the priority relation is stored in the database)
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Optimal repairs based on a priority relation
Links with active integrity constraints

Pareto ≡ Founded ≡ Grounded ≡ Justified ⇒ Well-Founded

R = D ◦ U is a Pareto-optimal repair of K≻
iff

U is a founded repair update of D w.r.t. ηT≻
iff

U is a grounded repair update of D w.r.t. ηT≻
iff

U is a justified repair update of D w.r.t. ηT≻

[Bienvenu and Bourgaux, 2023]
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Preferred repairs based on preference rules
Definition

Define preference rules that must be maximally satisfied by the repairs

Preference program Π: set of preference rules of form
P [⃗x ] ≻ Q[y⃗ ]← ∃z⃗φ[⃗z , w⃗ ]

Lung(x) ≻ Breast(x)← ∃y primaryTumor(y , x) ∧ LungCancer(y)

B satisfies ground preference rule P (⃗a) ≻ Q(b⃗)← ∃z⃗φ[⃗z , c⃗] if
⟨B, T ⟩ |= ∃z⃗φ[⃗z , c⃗] implies that ⟨B, T ⟩ ̸|= Q(b⃗) or ⟨B, T ⟩ |= P (⃗a)

{primaryTumor(d , o), LungCancer(d),Breast(o)} ✗
{primaryTumor(d , o), LungCancer(d), Lung(o)} ✓
{primaryTumor(d , o), LungCancer(d)} ✓
∅ ✓

For � ∈ {⊆,≤}, repair R is Π�-preferred iff there is no repair R′ such

that GrSat(R,KΠ)� GrSat(R′,KΠ), where GrSat(B,KΠ) denotes the set

of ground instances of preference rules satisfied by B

[Calautti et al., 2022]

41 / 60



Preferred repairs based on preference rules
Example

Lung(x) ≻ Breast(x)←∃y primaryTumor(y , x) ∧ LungCancer(y)

Breast(x) ≻ Lung(x)←∃y primaryTumor(y , x) ∧ BreastCancer(y)

Lung(x) ∧ Breast(x)→ ⊥
LungCancer(x) ∧ BreastCancer(x)→ ⊥

primaryTumor(d , o)

Lung(o) Breast(o)

LungCancer(d) BreastCancer(d)

S-Rep(K) = {{primaryTumor(d , o), Lung(o), LungCancer(d)},
{primaryTumor(d , o),Breast(o), LungCancer(d)},
{primaryTumor(d , o), Lung(o),BreastCancer(d)},
{primaryTumor(d , o),Breast(o),BreastCancer(d)}}

Π⊆-preferred / Π≤-preferred: {primaryTumor(d , o), Lung(o), LungCancer(d)},
{primaryTumor(d , o),Breast(o),BreastCancer(d)}
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Complexity considerations
Decision problems and complexity measures

Decision problems (parametrized by the kind of repair considered):

(Preferred) repair checking

input: K = ⟨D, T ⟩, R
output: ‘yes’ if R is a (preferred) repair of K, ‘no’ otherwise

Boolean conjunctive query entailment under (preferred repair-based) CQA
(resp. intersection, brave) semantics

input: K = ⟨D, T ⟩, q
output: ‘yes’ if q is entailed by K under (preferred repair-based) CQA
(resp. intersection, brave) semantics, ‘no’ otherwise

Complexity measures:

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of D only
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Complexity considerations
Standard repair checking

Data complexity Combined complexity

DLs
S-Rep(K)

DL-LiteR in L NL
DL-LiteR,⊓ in L P
EL⊥ P P
ALC DP Exp
SHIQ DP Exp

Datalog±

S-Rep(K)

L⊥ in L PSpace
A⊥ in L DExp
G⊥ P 2Exp
S⊥ in L Exp
F⊥ P Exp

ICs
S-Rep(K)

FD in L in L
DC in L DP

ICs
S-Rep∆(K)

full TGD P DP
UC coNP ΠP

2

TGD coNP ΠP
3
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Complexity considerations
Standard repair checking

Data complexity Combined complexity

DLs
S-Rep(K)

DL-LiteR in L NL
DL-LiteR,⊓ in L P
EL⊥ P P
ALC DP Exp
SHIQ DP Exp

Datalog±

S-Rep(K)

L⊥ in L PSpace
A⊥ in L DExp
G⊥ P 2Exp
S⊥ in L Exp
F⊥ P Exp

ICs
S-Rep(K)

FD in L in L
DC in L DP

ICs
S-Rep∆(K)

full TGD P DP
UC coNP ΠP

2

TGD coNP ΠP
3

Main algorithms:

Non-deterministic algorithm

check that R is T -consistent
to show that R does not minimally differ from D, guess R′ such that
⟨R′, T ⟩ ̸|= ⊥ and R′∆D ⊊ R∆D

Deterministic algorithm for ⊆-repairs (KB / denial constraints)

check that R ⊆ D and R is T -consistent
check that for each α ∈ D \ R, ⟨R ∪ {α}, T ⟩ |= ⊥
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Complexity considerations
BCQ entailment under CQA (resp. intersection, brave) semantics

Data complexity Combined complexity
CQA Int. brave CQA Int. brave

DLs
S-Rep(K)

DL-LiteR coNP in AC0 in AC0 ΠP
2 NP NP

DL-LiteR,⊓ coNP in AC0 in AC0 ΠP
2 ΘP

2 NP
EL⊥ coNP coNP NP ΠP

2 ΘP
2 NP

ALC ΠP
2 ΠP

2 ΣP
2 Exp Exp Exp

SHIQ ΠP
2 ΠP

2 ΣP
2 2Exp 2Exp 2Exp

Datalog±

S-Rep(K)

L⊥ coNP in AC0 in AC0 PSpace PSpace PSpace
A⊥ coNP in AC0 in AC0 PNExp PNExp PNExp

G⊥ coNP coNP NP 2Exp 2Exp 2Exp
S⊥ coNP in AC0 in AC0 Exp Exp Exp
F⊥ coNP coNP NP Exp Exp Exp

ICs
S-Rep(K)

FD coNP in AC0 in AC0 ΠP
2

DC coNP in AC0 in AC0 ΠP
2

ICs
S-Rep∆(K)

full TGD coNP coNP P Exp

UC ΠP
2 ΠP

2 ΣP
2 ΠExp

2
TGD undec. undec.
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Complexity considerations
BCQ entailment under CQA (resp. intersection, brave) semantics

Data complexity Combined complexity
CQA Int. brave CQA Int. brave

DLs
S-Rep(K)

DL-LiteR coNP in AC0 in AC0 ΠP
2 NP NP

DL-LiteR,⊓ coNP in AC0 in AC0 ΠP
2 ΘP

2 NP
EL⊥ coNP coNP NP ΠP

2 ΘP
2 NP

ALC ΠP
2 ΠP

2 ΣP
2 Exp Exp Exp

SHIQ ΠP
2 ΠP

2 ΣP
2 2Exp 2Exp 2Exp

Datalog±

S-Rep(K)

L⊥ coNP in AC0 in AC0 PSpace PSpace PSpace
A⊥ coNP in AC0 in AC0 PNExp PNExp PNExp

G⊥ coNP coNP NP 2Exp 2Exp 2Exp
S⊥ coNP in AC0 in AC0 Exp Exp Exp
F⊥ coNP coNP NP Exp Exp Exp

ICs
S-Rep(K)

FD coNP in AC0 in AC0 ΠP
2

DC coNP in AC0 in AC0 ΠP
2

ICs
S-Rep∆(K)

full TGD coNP coNP P Exp

UC ΠP
2 ΠP

2 ΣP
2 ΠExp

2
TGD undec. undec.

Main algorithms:

Brave/not CQA: guess repair R such that ⟨R, T ⟩ |= q / ⟨R, T ⟩ ̸|= q

Not intersection: guess B = {α1, . . . , αn} and repairs R1, . . . ,Rn such

that αi /∈ Ri and ⟨D \ B, T ⟩ ̸|= q

AC0 upper bounds via FO rewriting

T = {A ⊑ B,A ⊑ ¬C}, q(x) = B(x) ⇒ qT∩ (x) = B(x) ∨ (A(x) ∧ ¬C (x))
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Complexity considerations
Impact of using preferred repairs on data complexity

Repair checking CQA Intersection Brave

≤-optimal coNP ΘP
2 ΘP

2 ΘP
2

≤w -optimal coNP ∆P
2

† ∆P
2

† ∆P
2

†

≤P -optimal coNP ∆P
2

† ∆P
2

† ∆P
2

†

⊆P -optimal in P coNP coNP NP

Pareto-optimal in P coNP coNP NP
Completion-optimal in P coNP coNP NP
Globally-optimal coNP ΠP

2 ΠP
2 ΣP

2

Π⊆-preferred coNP ΠP
2 ΠP

2 ΣP
2

Π≤-preferred coNP ΘP
2 ΘP

2 ΘP
2

†: ΘP
2 if there is a data-independent bound on the weights/number of priority

levels

Upper bounds: ⊆-repairs and languages with consistency checking/BCQ

entailment in P

Lower bounds: DL-Litecore, functional dependencies, or negative constraints
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Impact of using preferred repairs on data complexity

Repair checking CQA Intersection Brave

≤-optimal coNP ΘP
2 ΘP

2 ΘP
2

≤w -optimal coNP ∆P
2

† ∆P
2

† ∆P
2

†

≤P -optimal coNP ∆P
2

† ∆P
2

† ∆P
2

†

⊆P -optimal in P coNP coNP NP
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Globally-optimal coNP ΠP

2 ΠP
2 ΣP

2

Π⊆-preferred coNP ΠP
2 ΠP

2 ΣP
2

Π≤-preferred coNP ΘP
2 ΘP

2 ΘP
2

†: ΘP
2 if there is a data-independent bound on the weights/number of priority levels

Upper bounds: ⊆-repairs and languages with consistency checking/BCQ entailment in P

Lower bounds: DL-Litecore, functional dependencies, or negative constraints

Three cases:

Repair checking/CQA have same complexity as with standard repairs:

“local”preference, no need to guess/compute another preferred repair

Can compute the value of a global parameter (weight...) and use it to

check that a T -consistent subset of D is a preferred repair

No better option than relying on the näıve guess-and-check algorithm to

decide whether a repair is (not) preferred
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Implementations of (preferred) repair-based semantics

Existing implementations

Target different settings: database with different kinds of constraints and

queries, knowledge bases in different languages

Target different semantics: CQA, intersection, brave, others, based on

standard or different kinds of preferred repairs

Often rely on external solvers (SAT, ASP, BIP...) for hard problems

Often use rewriting techniques for simpler problems
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Implementations of (preferred) repair-based semantics
Example of SAT-based approach: the ORBITS system

Semantics considered by ORBITS:

CQA, intersection and brave semantics

Standard, Pareto- and completion-optimal repairs

Setting: prioritized KB (or database with denial constraints) K≻

Case where conflicts contain at most two facts: conflicts and priority

relation can be represented as a directed graph such that there is an edge

from α to β if {α, β} is a conflict and α ̸≻ β

Input: directed conflict graph + potential answers and their causes

(minimal sets of facts that support the answer)

Output: answers that hold under the required semantics

[Bienvenu and Bourgaux, 2022]

53 / 60



Implementations of (preferred) repair-based semantics
Example of SAT-based approach: the ORBITS system

High-level algorithm:

Filter answers that trivially holds under (preferred repair-based)

intersection semantics in polynomial time: those which have causes

without any fact with outgoing edge in the directed conflict graph

Check remaining potential answers using a SAT solver

possibility to choose among several algorithms and encoding variants
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Implementations of (preferred) repair-based semantics
Example of SAT-based approach: the ORBITS system

High-level ideas underlying SAT encodings:

Try to build a subset of D that fulfills some conditions: assigning variable

xα to true means that fact α belongs to the subset

Consider only relevant facts

X-CQA: build a set of facts that can be extended to an X-optimal repair

that does not contain any cause for the query

X-brave: build a set of facts that contains a cause of the query and can be

extended to an X-optimal repair

X-intersection: for each cause, find a set of facts that does not contain it

and can be extended to an X-optimal repair
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Implementations of (preferred) repair-based semantics
Example of SAT-based approach: the ORBITS system

Modular SAT encodings with basic building blocks:

Absence of a cause (two encoding variants)

Presence of a cause

Consistency of selected facts

Extension to X-optimal repair (two variants for Pareto-optimal repairs)

Example: CQA based on Pareto-optimal repairs

ΦP-CQA(q) = (
∧

C∈Causes(q,K)

φ¬C) ∧ φP-max(F ) ∧ φcons(F
′) where:

φ¬C =
∨
α∈C

∨
α⊥β,α ̸≻β

xβ φP-max(F ) =
∧

α∈R(F )

(xα ∨
∨

α⊥β,α ̸≻β

xβ)

φcons(F
′) =

∧
α,β∈F ′,α⊥β

(¬xα ∨ ¬xβ)

F = {β | xβ occurs in
∧

C∈Causes(q,K) φ¬C}, F ′ = {β | xβ occurs in φP-max(F )},
and R(F ) is the set of facts reachable from F in the directed conflict graph
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Implementations of (preferred) repair-based semantics
Example of SAT-based approach: the ORBITS system

Algorithms

Four generic algorithms, applicable to X-CQA, X-brave and X-intersection

one makes a single SAT call for each candidate answer
the others treat all candidate answers together (global encoding with
soft clauses representing answers) with different reasoning modes

Another algorithm for X-brave and X-intersection

check cause by cause

Two algorithms for X-intersection keeping track of facts in the intersection
of X-optimal repairs

cause by cause and fact by fact
all relevant facts together

Encouraging experimental results but the choice of algorithm/encoding variant

for a given semantics may make a significant difference

Runtimes of query answering under CQA with standard versus optimal repairs:

depend of the specific problem
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Conclusion

Many inconsistency-tolerant semantics, most of them based on repairs

Different kinds of preferred repairs

Some repairs related to other formalisms for inconsistency-handling

(abstract argumentation, active integrity constraints)

Using preferred repairs often increases the computational complexity of

reasoning but not always

Implemented systems, often based on reductions and use of solvers
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Outlook

Inconsistency-handling with (preferred) repairs is an active line of research

Practical algorithms and implementations still lacking for many cases

Extensions of repair-based semantics to new settings

RDF graphs and SHACL constraints
graph databases
temporal databases/KBs
...

Reasoning tasks beyond query answering

query result explanations (why/why not true under a given semantics)
abduction
...
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