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Ontology-mediated query answering

Knowledge base: K = (D, T )
D dataset
T (consistent) logical theory (DL ontology, database constraints...)

Conjunctive query: q(x⃗) = ∃y⃗φ with φ conjunction of atoms

K |= q(⃗a) if q(⃗a) holds in every model of K

blabl
Data

Data
Data

q(x) =
∃y hasDisease(x , y)
∧ LungCancer(y)

Query
Ontology
T

Cancer ⊓ ∃primaryTumor.Lung ⊑ LungCancer
SmallCellCarcinoma ⊑ Cancer

Data
D

hasDisease(bob, d1)
SmallCellCarcinoma(d1)
primaryTumor(d1, o1)
Lung(o1)
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Handling inconsistent data

Problem: if K is inconsistent, K |= q for every BCQ q

Cancer ⊓ ∃primaryTumor.Lung ⊑ LungCancer
SmallCellCarcinoma ⊑ Cancer
Adenocarcinoma ⊑ Cancer
Adenocarcinoma ⊓ SmallCellCarcinoma ⊑ ⊥
(functional primaryTumor)
Lung ⊓ Breast ⊑ ⊥

hasDisease(bob, d1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

primaryTumor(d1, o1) primaryTumor(d1, o2)
Lung(o1) Breast(o2)

K |= ∃yhasDisease(x) ∧ LungCancer(x) for x ∈ {bob, d1, d2, o1, o2}
⇒ Use inconsistency-tolerant semantics
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Handling inconsistent data

Cancer ⊓ ∃primaryTumor.Lung ⊑ LungCancer
SmallCellCarcinoma ⊑ Cancer
Adenocarcinoma ⊑ Cancer
Adenocarcinoma ⊓ SmallCellCarcinoma ⊑ ⊥
(functional primaryTumor)
Lung ⊓ Breast ⊑ ⊥

hasDisease(bob, d1)

SmallCellCarcinoma(d1) Adenocarcinoma(d1)

primaryTumor(d1, o1) primaryTumor(d1, o2)
Lung(o1) Breast(o2)

(Subset) repair: inclusion-maximal R ⊆ D such that (R, T ) ̸|= ⊥

IAR semantics: queries that hold in the intersection of all repairs

∃y hasDisease(bob, y) surest
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Handling inconsistent data
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Adding priorities

When information about relative reliability of facts is available, define
priorities between conflicting facts

Examples of possible preferences
prefer more recent (updated) or older (curated) facts

Fact Date
primaryTumor(d1, o1) 08.10.2023
primaryTumor(d1, o2) 05.22.2023

most recent fact gives the last, revised, diagnosis
⇒ primaryTumor(d1, o1) ≻ primaryTumor(d1, o2)

prefer facts that come from some source (process, user...)
take into account presence or absence of other facts in the dataset
...

hasDisease(bob, d1)

SmallCellCarcinoma(d1) ≻ Adenocarcinoma(d1)

primaryTumor(d1, o1) ≻ primaryTumor(d1, o2)≻
≻

Lung(o1) ≻ Breast(o2)
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primaryTumor(d1, o2), Breast(o2),
gotSurgery(bob, s), BronchialDebridement(s)

the dataset indicates that the patient got a surgery common in the
case of lung cancer but nothing about a breast cancer treatment
⇒ primaryTumor(d1, o1), Lung(o1) ≻ primaryTumor(d1, o2),Breast(o2)

...
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Adding priorities

Formally:

Conflict: inclusion-minimal C ⊆ D such that (C, T ) |= ⊥
Priority relation ≻: acyclic binary relation over D such that α ≻ β
implies {α, β} ⊆ C for some conflict C

A prioritized KB K≻ is a KB K = (D, T ) with a priority relation ≻ for K

hasDisease(bob, d1)

SmallCellCarcinoma(d1) ≻ Adenocarcinoma(d1)

primaryTumor(d1, o1) ≻ primaryTumor(d1, o2)≻
≻

Lung(o1) ≻ Breast(o2)

≻ is total if for all α ̸= β such that {α, β} ⊆ C for some conflict C,
either α ≻ β or β ≻ α
Completion of ≻: total priority relation ≻′ ⊇ ≻

example: complete ≻ with primaryTumor(d1, o1) ≻′ Lung(o1) and
primaryTumor(d1, o2) ≻′ Breast(o2)
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Optimal repairs

Import three notions of optimal repair from database setting
[Staworko, Chomicki, and Marcinkowski, 2012]

Let R be a repair of K (R ∈ SRep(K))

A Pareto improvement of R is a T -consistent B ⊆ D such that
there is β ∈ B \ R with β ≻ α for every α ∈ R \ B
R is Pareto-optimal (R ∈ PRep(K≻)) if there is no Pareto
improvement of R

δ ϵ
β1 ≻ α1

≻

α2 β2

{α1, α2, δ, ϵ} ∈ SRep(K)

{β1, δ, ϵ} Pareto improvement
⇒ {α1, α2, δ, ϵ} /∈ PRep(K≻)

CRep(K≻) ⊆ GRep(K≻) ⊆ PRep(K≻) ⊆ SRep(K)

If ≻ is score-structured (i.e., can be induced by assigning scores to facts),
then CRep(K≻) = GRep(K≻) = PRep(K≻)

hasDisease(bob, d1)

SmallCellCarcinoma(d1) ≻ Adenocarcinoma(d1)

primaryTumor(d1, o1) ≻ primaryTumor(d1, o2)≻
≻

Lung(o1) ≻ Breast(o2)

{hasDisease(bob, d1),SmallCellCarcinoma(d1), primaryTumor(d1, o1), Lung(o1),

primaryTumor(d1, o2)}
{hasDisease(bob, d1),SmallCellCarcinoma(d1), primaryTumor(d1, o1), Lung(o1),

Breast(o2)}
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Inconsistency-tolerant semantics

Use optimal repairs instead of subset repairs

X-AR: every X-optimal repair

K≻ |=X
AR q ⇔ ∀R ∈ XRep(K≻), (R, T ) |= q

X-brave: some X-optimal repair

K≻ |=X
brave q ⇔ ∃R ∈ XRep(K≻), (R, T ) |= q

X-IAR: intersection of all X-optimal repairs

K≻ |=X
IAR q ⇔ (R∩, T ) |= q, R∩ =

⋂
R∈XRep(K≻)

R

K≻ |=X
IAR q ⇒ K≻ |=X

AR q ⇒ K≻ |=X
brave q

8 / 38



Complexity of reasoning with optimal repairs

Data complexity of query entailment

Globally-optimal Pareto-optimal Completion-optimal

AR Πp
2-complete coNP-complete coNP-complete

IAR Πp
2-complete coNP-complete coNP-complete

Brave Σp
2-complete NP-complete NP-complete

Upper bounds hold for conjunctive queries and FOL fragments with
PTime consistency checking/PTime query entailment

Lower bounds hold for atomic queries and any fragment that
extends functional dependencies, DL-Litecore, or EL⊥

[Staworko, Chomicki, and Marcinkowski, 2012,

Bienvenu and Bourgaux, 2020, 2022]
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Practical SAT-based approaches

Pareto- and completion-optimal repairs: NP/coNP data complexity

⇒ Reduction to propositional satisfiability: use SAT encodings to decide
whether a candidate answer holds under a given semantics

[Bienvenu and Bourgaux, 2022]
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Practical SAT-based approaches

Existing SAT-based systems

CQAPri: DL-LiteR ontologies, X-AR/X-IAR/X-brave with subset and
optimal repairs based on priority levels

[Bienvenu, Bourgaux, and Goasdoué, 2014]
CAvSAT: databases + denial constraints, S-AR

[Dixit and Kolaitis, 2019]

CQAPri and CAvSAT employ SAT solvers in different ways

CQAPri makes a single SAT call for each candidate query answer
CAvSAT treats all candidate answers at the same time via calls to a
weighted MaxSAT solver
+ slight difference in the way of encoding the fact that a repair does
not contain any cause for a query answer

⇒ Compare SAT-based approaches (different algorithms, different
encodings) for inconsistency-tolerant query answering
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⇒ Compare SAT-based approaches (different algorithms, different
encodings) for inconsistency-tolerant query answering

11 / 38



Practical SAT-based approaches

Implementation: ORBITS system

Case where conflicts contain at most two facts: conflicts and priority
relation can be represented as a directed graph such that there is an edge
from α to β if {α, β} is a conflict and α ̸≻ β

Input: directed conflict graph + potential answers and their causes
(minimal sets of facts that support the answer)

Output: answers that hold under the required semantics

High-level algorithm:

Filter answers that are trivially X-IAR in polynomial time: those
which have causes without any fact with outgoing edge in the
directed conflict graph

Check remaining potential answers using a SAT solver
possibility to choose among several algorithms and encoding variants
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Practical SAT-based approaches
SAT encodings to decide X-AR, X-IAR or X-brave entailment

High-level ideas underlying SAT encodings

Try to build a subset of D that fulfills some conditions: assigning
variable xα to true means that fact α belongs to the subset

Consider only relevant facts

X-AR: build a set of facts that can be extended to an X-optimal
repair that does not contain any cause for the query

X-brave: build a set of facts that contains a cause of the query and
can be extended to an X-optimal repair

X-IAR: for each cause, find a set of facts that does not contain it
and can be extended to an X-optimal repair
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Practical SAT-based approaches
SAT encodings to decide X-AR, X-IAR or X-brave entailment

Modular encodings with basic building blocks:

Absence of a cause

two variants: neg1 and neg2, following encodings used by CQAPri
and CAvSAT respectively

Presence of a cause

Consistency of selected facts

Extension to X-optimal repair

two variants for Pareto-optimal repairs: P1 and P2
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Practical SAT-based approaches
Algorithms

Four generic algorithms, applicable to X-AR, X-brave and X-IAR

one makes a single SAT call for each candidate answer
the others treat all candidate answers together (global encoding with
soft clauses representing answers) with different reasoning modes

Another algorithm for X-brave and X-IAR

check cause by cause

Two algorithms for X-IAR keeping track of X-IAR / non X-IAR facts

cause by cause and fact by fact
all relevant facts together
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Practical SAT-based approaches
Some experimental results

Comparing semantics w.r.t computation time

X-AR vs X-brave vs X-IAR: depends

priority vs no priority (for AR): depends

completion-optimal repairs: challenging (often timeout or oom)

finer priority relation (compare more facts): lower running times

Comparing algorithms/encoding variants for a given semantics

Impact on running time can be huge

No clear winner: depends on dataset, query, semantics...

X-IAR: one algorithm (‘fact by fact’) is generally better

Pareto-optimal repairs:
P1- generally better than P2-encoding (with noteworthy exceptions)
P2-encoding works better with one way of encoding absence of a
cause (neg1) than the other (neg2)

Score-structured case: P-encodings are much better than C-encoding
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Practical SAT-based approaches
Some experimental results

q1 q2 q3 q4 q5 q6

Alg. 1
P1 417 141 350 12,799 224 4,009
P2 804 142 379 326,594 213 8,684
C 252,694 179 550 oom 284 t.o

Alg. 2
P1 268 166 326 1,730 214 11,263
P2 502 163 333 2,961 221 10,833
C oom 632 t.o t.o 551 oom

Alg. 3
P1 272 154 313 t.o 211 245,804
P2 466 146 281 t.o 201 241,030
C oom 624 t.o t.o 550 oom

Alg. 4
P1 362 166 997 42,544 281 559,923
P2 566 193 972 36,923 304 546,199
C oom 764 t.o t.o 846 oom

Alg. 5
P1 383 135 335 8,192 211 3,419
P2 565 157 309 225,170 207 5,963
C 192,429 164 544 oom 238 t.o

Query answer filtering time in ms under X-brave semantics on Physicians
dataset (8M facts, 2% facts in conflicts) with score-structured priority (2 levels).
Best time in bold red and ‘close to best’ (i.e., not exceeding best by more than
50ms or 10%) on grey.
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Practical SAT-based approaches
Some experimental results

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

∼CQAPri

P1
neg1 t.o 232,386 2,622 t.o 846 4,772 2,602 713 370,340 1,983
neg2 t.o 224,840 2,672 t.o 863 4,919 2,453 718 365,374 1,901

P2
neg1 t.o 949,967 7,942 t.o 1,819 15,963 5,375 1,862 t.o 4,932

(single ans.) neg2 t.o 1,045,755 9,208 t.o 1,915 16,437 6,940 1,834 t.o 5,638
C neg1/neg2 t.o t.o oom t.o t.o t.o oom oom t.o t.o

∼CAvSAT

P1
neg1 135,263 84,826 456 oom 1,155 434 2,060 369 t.o 1,043
neg2 208,831 50,469 379 oom 1,109 504 1,909 364 t.o 1,275

P2
neg1 119,041 65,627 966 oom 2,025 942 3,484 828 t.o 2,180

(multiple ans.) neg2 oom 75,688 1,050 oom 2,229 1,000 3,700 816 t.o 2,397
C neg1/neg2 oom oom oom oom oom oom oom oom oom oom

q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

∼CQAPri

P1
neg1 10,004 71,135 21,990 5,822 113,593 t.o 2,696 86,121 2,460 1,762
neg2 10,069 62,227 21,038 5,830 115,590 t.o 2,551 88,288 2,378 1,702

P2
neg1 34,912 323,386 84,726 19,074 508,810 t.o 7,194 359,410 6,188 4,470

(single ans.) neg2 35,362 284,407 84,111 20,755 586,030 t.o 7,555 391,599 6,410 4,399
C neg1/neg2 t.o oom t.o t.o oom t.o oom t.o oom oom

∼CAvSAT

P1
neg1 t.o t.o t.o 11,765 20,432 180,360 1,942 23,016 2,806 332
neg2 t.o t.o t.o 27,760 18,523 214,750 2,047 46,767 2,626 287

P2
neg1 t.o t.o t.o 12,102 37,935 225,307 3,796 30,600 5,439 763

(multiple ans.) neg2 t.o t.o t.o 30,375 65,737 oom 4,007 123,690 6,334 744
C neg1/neg2 oom oom oom oom oom oom oom oom oom oom

Query answer filtering time in ms under X-AR semantics on u20c50 (2M facts,
46% facts in conflicts) with score-structured priority (5 levels). Best time in bold
red, ‘close to best’ (not exceeding best by more than 50ms or 10%) on grey.
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Relationships with other frameworks

Pareto-optimal, globally-optimal or completion-optimal: how to choose?

CRep(K≻) ⊆ GRep(K≻) ⊆ PRep(K≻) ⊆ SRep(K)

completion: more X-IAR and X-AR answers, less X-brave answers
Pareto: less X-IAR and X-AR answers, more X-brave answers

Complexity of reasoning: higher for globally-optimal

Experimental comparison: completion-optimal challenging (but
maybe we just need to find the right method...)

But which notion is the ‘most natural’?

⇒ Study links with other formalisms

[Bienvenu and Bourgaux 2020, 2023]
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Connections with argumentation

Abstract argumentation: well-known framework to deal with
contradictory information in AI

An (abstract) argumentation framework (AF) is a pair (Args,⇝) where

Args is a finite set of arguments

⇝⊆ Args × Args is the attack relation: α attacks β if α⇝ β

Semantics based on extensions (sets of arguments that represent
coherent points of view) + inference mechanism (skeptical or credulous)
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Connections with argumentation

Several different notions of extension, in particular:

Preferred extension: ⊆-maximal conflict-free self-defending set
(i.e., attacks all arguments that attack some of its arguments)

Stable extension: conflict-free set attacking all excluded arguments

Preferred: {α}, {β, δ}

Stable: {β, δ}

Stable extensions are also preferred extensions

Coherent AF: stable and preferred extensions coincide
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Connections with argumentation

Many variants of AF have been studied, in particular:

Preference-based AF (PAF)

preference relation ≻ between arguments
refines the attack relation: β ⇝≻ α if β ⇝ α and α ̸≻ β

Set-based AF (SETAF)

collective attacks S ⇝ α with S finite set of arguments

Combined into PSETAF (Args,⇝,≻)

S ⇝≻ α if S ⇝ α and α ̸≻ β for every β ∈ S
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Connections with argumentation
Translation

Translation of a prioritized KB K≻ = (D, T ,≻) into a PSETAF FK,≻

Use D as the arguments

Use ≻ as the preference relation

Define attacks by C \ {α}⇝ α for every conflict C and α ∈ C
⇒ C \ {α}⇝≻ α if α ̸≻ β for every β ∈ C

hasDisease(bob, d1)

SmallCellCarcinoma(d1) ≻ Adenocarcinoma(d1)

primaryTumor(d1, o1) ≻ primaryTumor(d1, o2)≻
≻

Lung(o1) ≻ Breast(o2)
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Connections with argumentation
Translation

R is a Pareto-optimal repair of K≻
iff

R is a stable extension of FK,≻

If ≻ is transitive or if K has only binary conflicts, then FK,≻ is coherent:
R is a Pareto-optimal repair of K≻

iff
R is a preferred extension of FK,≻

No notion of extension corresponds to globally- or completion-optimal

24 / 38



Connections with argumentation
Grounded semantics

The grounded extension of a (PSET)AF is the minimal conflict-free set
of arguments that contains all arguments that it defends

Add all arguments with no incoming attacks

Iteratively add arguments defended by the selected arguments

⇒ Grounded semantics for prioritized KB: query grounded extension of FK,≻

PTime-complete data complexity for DL-Lite KBs

Under-approximation of P-IAR
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Connections with active integrity constraints

In the database setting, active integrity constraints state how to resolve
constraint violations: high-level similarities with prioritized databases

Example of denial constraint and active denial constraint:

Child(x) ∧ Adult(x) → ⊥
Child(x) ∧ Adult(x) → {−Child(x)}

Example of universal constraint and active universal constraint:

Lung(x) ∧ ¬LeftLg(x) ∧ ¬RightLg(x) → ⊥
Lung(x) ∧ ¬LeftLg(x) ∧ ¬RightLg(x) → {+LeftLg(x),+RightLg(x)}

A ground active integrity constraint (AIC) is a formula of the form

α1 ∧ · · · ∧ αn ∧ ¬β1 ∧ · · · ∧ ¬βm → {A1, . . . ,Ak}

with update actions Ai of the form −αj or +βj
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Connections with active integrity constraints

Semantics based on repair updates: U set of update actions such that
D ◦ U is a repair, where D ◦ U = D \ {α | −α ∈ U} ∪ {α | +α ∈ U}

Several different notions of repair update, in particular:

Founded: for every A ∈ U , there is an AIC r with update action A
and D ◦ U \ {A} ̸|= r

Well-founded: there exists a sequence of actions A1, . . . ,An such
that U = {A1, . . . ,An}, and for every 1 ≤ i ≤ n, there is ri with
update action Ai and D ◦ {A1, . . . ,Ai−1} ̸|= ri

Grounded (for normalized AICs: single update action): for every
V ⊊ U , there is r whose update action is in U \ V and D ◦ V ̸|= r

Justified...

Grounded Founded

Justified Well-Founded
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Connections with active integrity constraints
Prioritized databases with universal constraints

Focus on prioritized databases + extend setting to universal constraints

Kind of constraints also relevant for DL with closed predicates

T is a set of constraints of the form
∀x⃗(α1 ∧ · · · ∧ αn ∧ ¬β1 ∧ · · · ∧ ¬βm → ⊥)

May add facts to repair the database

symmetric difference repairs: R such that R |= T and there is no
R′ |= T such that R′∆D ⊊ R∆D
conflicts may contain absent facts of the form ¬α: minimal sets of
literals such that I |= C implies I ̸|= T

Priority relation ≻ over literals in conflicts

Pareto-, globally- and completion-optimal repair definitions extended
by viewing databases as sets of literals
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Connections with active integrity constraints
Prioritized databases with universal constraints

S(x , y) ∧ S(x , z) ∧ y ̸= z → ⊥ S(x , y) ∧ ¬A(x) → ⊥
R(x , y) ∧ R(x , z) ∧ y ̸= z → ⊥ S(x , y) ∧ ¬B(x) → ⊥
R(y , x) ∧ S(z , x) → ⊥

D = {S(a, b), S(a, c),R(d , b),R(d , c)}

R(d , b) ≻ S(a, b) ≻ ¬A(a)

R(d , c) ≺ S(a, c) ≻ ¬B(a)

CRep(K≻) =
{
{S(a, c),R(d , b),A(a),B(a)}

}
GRep(K≻) =CRep(K≻) ∪

{
{R(d , b)}

}
PRep(K≻) =GRep(K≻) ∪

{
{R(d , c)}, {R(d , c),S(a, b),A(a),B(a)}

}
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Connections with active integrity constraints
Translation

Translation of a prioritized database K≻ = (D, T ,≻) into ground AICs

ηT≻ = {rC | C ∈ Conf (D, T )} where fix(α) = −α, fix(¬α) = +α and
rC :=

∧
λ∈C λ → {fix(λ) | λ ∈ C,∀µ ∈ C, λ ̸≻ µ}

Conflicts fixed by modifying least preferred literals according to ≻

R(d , b) ≻ S(a, b) ≻ ¬A(a)

R(d , c) ≺ S(a, c) ≻ ¬B(a)

S(a, b) ∧ S(a, c) → {−S(a, b),−S(a, c)}
R(d , b) ∧ R(d , c) → {−R(d , b),−R(d , c)}
R(d , b) ∧ S(a, b) → {−S(a, b)}
R(d , c) ∧ S(a, c) → {−R(d , c)}
S(a, b) ∧ ¬A(a) → {+A(a)}
S(a, c) ∧ ¬A(a) → {−S(a, c),+A(a)}
S(a, b) ∧ ¬B(a) → {−S(a, b),+B(a)}
S(a, c) ∧ ¬B(a) → {+B(a)}

For denial constraints: data-independent reduction to non-ground AICs
(assuming the priority relation is stored in the database)
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Connections with active integrity constraints
Translation

Pareto ≡ Founded ≡ Grounded ≡ Justified ⇒ Well-Founded

R = D ◦ U is a Pareto-optimal repair of K≻
iff

U is a founded repair update of D w.r.t. ηT≻
iff

U is a grounded repair update of D w.r.t. ηT≻
iff

U is a justified repair update of D w.r.t. ηT≻
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Connections with active integrity constraints
Translation

In the other direction: from AICs to prioritized database

Translation for a restricted class of ‘well-behaved’ AICs

such that founded, grounded and justified repair updates coincide

Binary conflicts: Founded ≡ Grounded ≡ Justified ≡ Pareto

Non-binary conflicts: Founded ≡ Grounded ≡ Justified ⇒ Pareto
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Comparison with other approaches for prioritized KBs

Many proposals to handle inconsistent KBs with some sort of preference
between facts

⇒ How do they compare with prioritized KBs and optimal repair-based
semantics ?
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Comparison with other approaches for prioritized KBs

Two main settings that both reduce to prioritized KBs
D partitioned into priority levels S1, . . . ,Sn

defines a score-structured priority relation ≻:
α ≻ β iff {α, β} ∈ C for some conflict C, α ∈ Si and β ∈ Sj with i < j

Preordered KBs: � reflexive and transitive binary relation over D
defines a transitive priority relation ≻:
α ≻ β iff {α, β} ∈ C for some conflict C, α� β and β ̸ �α

Two main approaches

Preferred repairs based on priority levels: R is a ⊆P -repair if R |= T
and there is no R′ |= T such that there is 1 ≤ i ≤ n such that
R∩ Si ⊊ R′ ∩ Si and R∩ Sj = R′ ∩ Sj for 1 ≤ j < i

[Bienvenu, Bourgaux, and Goasdoué, 2014]
coincide with optimal repairs (CRep(K≻) = GRep(K≻) = PRep(K≻)
for score-structured priority)

Select a single consistent set of facts to query
[Benferhat, Bouraoui, and Tabia, 2015,

Belabbes, Benferhat, and Chomicki, 2021]
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Comparison with other approaches for prioritized KBs
Selection of a single consistent set of facts to query

Preordered KBs [Belabbes, Benferhat, and Chomicki, 2021]

Elected facts Elect(K≻): α is elected iff for every conflict C, α ∈ C
implies α ≻ β for some β ∈ C

Elect(K≻) ⊆ grounded(K≻)
inclusion can be strict

α ≻ β ≻ γ
Elect(K≻) = {α}

grounded(K≻) = {α, γ}

Preferred repair PartialPR(K≻): union of
⋂

R∈XRep(K≻≥ )R for all

total preorders ≥ extending � (with ≻≥ priority relation that
corresponds to ≥)

PartialPR(K≻) =
⋂

R∈CRep(K≻) R

Elect(K≻) ⊆ grounded(K≻) ⊆
⋂

R∈PRep(K≻)

R ⊆
⋂

R∈GRep(K≻)

R ⊆
⋂

R∈CRep(K≻)

R = PartialPR(K≻)
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Comparison with other approaches for prioritized KBs
Selection of a single consistent set of facts to query

Priority levels (score-structured) [Benferhat, Bouraoui, and Tabia, 2015]

Possibilistic repair π(K≻): S1 ∪ · · · ∪ Sinc(K≻)−1 where inc(K≻) is
the inconsistency degree of K≻

Non-defeated repair nd(K≻): union of the intersections of the
(subset) repairs of S1, S1 ∪ S2,..., S1 ∪ · · · ∪ Sn

has been shown to coincide with Elect(K≻)

Prioritized inclusion-based non-defeated repair pind(K≻): as
non-defeated but using optimal repairs (intractable!)

has been shown to coincide with
⋂

R∈XRep(K≻) R

S1 S2 S3 S4

α ≻ γ ≻ δ
β ≻

λ ≻ µ ≻ ν ϵ

π(K≻) ={λ}

nd(K≻) ={λ, ϵ}
grounded(K≻) ={λ, ν, ϵ}

pind(K≻) ={λ, ν, δ, ϵ}

π(K≻) ⊆ nd(K≻) ⊆ grounded(K≻) ⊆ pind(K≻) =
⋂

R∈XRep(K≻)

R
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Conclusion

Take into account preference between facts to refine repairs

three kinds of optimal repair, coincide for score-structured priority

SAT-based approaches promising for Pareto-optimal repairs

question of the choice of the algorithm and SAT encoding

Translations to argumentation framework or active integrity
constraints

get Pareto-optimal repairs analogous
grounded semantics inspired by argumentation

Some of the next steps

Help users to define priorities

Implement algorithms for non-binary conflicts

Universal constraints for DL KBs

Thank you for your attention !
Questions ?
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