Improved Reconstruction Attacks on Encrypted Data Using Range Query Leakage

Marie-Sarah Lacharité, Brice Minaud, Kenny Paterson

Information Security Group

IEEE Symposium on Security and Privacy, May 21, 2018

Client

Server

Client

Data upload

Server

Client

Server

Client

For an **encrypted database management system**:

- Data = collection of records in a database. e.g. health records.
- Search query examples:
 - find records with given value.
 - find records within a given range.

Server

e.g. patients aged 57. e.g. patients aged 55-65.

Security of Data Outsourcing Solutions

Client

Adversaries:

- Snapshot: breaks into server, gets snapshot of memory.
- Persistent: corrupts server, sees all communication transcripts. Can be server itself.

Security goal = privacy.

Adversarial server

 \rightarrow Adversary learns as little as possible about the client's data and queries.

Solutions

Structure-preserving encryption. • Vulnerable to snapshot attackers.

- 4

Solutions

- Structure-preserving encryption. lacksquareVulnerable to snapshot attackers.
- **Second-generation schemes:** • Aim to protect against snapshot and persistent attackers.

Solutions

- Structure-preserving encryption. Vulnerable to snapshot attackers.
- Second-generation schemes: Aim to protect against snapshot and persistent attackers.
- Very active research topic. [FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]...

[AKSX04], [BCLO09], [PKV+14], [BLR+15], [NKW15], [KKNO16], [LW16],

Client

 Most schemes leak set of matching records = access pattern leakage. OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FJ+15], ...

- Most schemes leak set of matching records = access pattern leakage. OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FJ+15], ...
- Some schemes also leak #records below queried endpoints = rank leakage. FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV, ...

Exploiting Leakage

For example, leakage = access pattern + rank. What can we really learn from this leakage?

Most schemes prove that nothing more leaks than their leakage model allows.

Exploiting Leakage

- Most schemes prove that nothing more leaks than their leakage model allows. • For example, leakage = access pattern + rank. What can we really learn from this leakage?
- **Our goal: full reconstruction** = recovering the exact value of every record. \bullet

Exploiting Leakage

- Most schemes prove that nothing more leaks than their leakage model allows. For example, leakage = access pattern + rank. What can we really learn from this leakage?
- **Our goal: full reconstruction** = recovering the exact value of every record. \bullet
- [KKNO16]: O(N² log N) queries suffice for full reconstruction using only access \bullet pattern leakage!

- where N is the number of possible values (e.g. 125 for age in years).

Assumptions for our Analysis

- Data is **dense:** all values appear in at least one record.
- Queries are **uniformly distributed**. computing data upper bounds.

Our algorithms don't actually care though – the assumption is for

Full reconstruction with O(N·logN) queries from access pattern leakage - in fact, $N \cdot (3 + \log N)$.

- - in fact, $N \cdot (3 + \log N)$.
- queries.

Full reconstruction with O(N·logN) queries from access pattern leakage

Approximate reconstruction with relative accuracy ε with O(N · (log 1/ ε))

- **Full reconstruction** with $O(N \cdot \log N)$ queries from access pattern leakage - in fact, $N \cdot (3 + \log N)$.
- Approximate reconstruction with relative accuracy ε with O(N · (log 1/ ε)) queries.
- Approximate reconstruction using an *auxiliary distribution* and access pattern + rank leakage.

- - in fact, $N \cdot (3 + \log N)$.
- queries.
- pattern + rank leakage.

Full reconstruction with O(N·logN) queries from access pattern leakage

Approximate reconstruction with relative accuracy ε with O(N · (log 1/ ε))

Approximate reconstruction using an *auxiliary distribution* and access

Full Reconstruction Algorithm

Assume N = 7 values, and 5 queries. M_i = set of records matched by *i*-th query.

Step 1: Partitioning

Step 1: Partitioning

Step 1: Partitioning

If there are N minimal subsets \rightarrow each of them correspond to a single value.

Step 2a: Finding an Endpoint

 $M_1 \cup M_3$ cover all but 1 minimal set

Step 2a: Finding an Endpoint

Endpoint!

Step 2a: Finding an Endpoint

 $M_1 \cup M_3$ cover all but 1 minimal set

Endpoint!

• Intersect

- Intersect
- Trim

Done!

- Intersect
- Trim

Full Reconstruction: Conclusion

- Generic setting: only access pattern leakage.
- **Partiotioning**, then **sorting** steps.
- Expectation of #queries sufficient for reconstruction: $N \cdot (3 + \log N)$ for $N \ge 26$
- Expectation of #queries necessary for reconstruction: $1/2 \cdot N \cdot \log N - O(N)$

for *any* algorithm.

Our algorithm is data-optimal.

Auxiliary Data Attack with Rank Leakage

- Assume access pattern + rank leakage.
- Also assume an approximation to the distribution on values is known. "Auxiliary distribution". From aggregate data, or from another reference source.
- We show experimentally that, under these assumptions, far fewer queries are needed.

Auxiliary Data Attack Algorithm

Assume N = 125 values, and 2 queries. M_i = set of records matched by *i*-th query.

B <i>4</i>	
M_2	

M_2	
<i>M</i> ₂	
<i>M</i> ₂	
<i>M</i> ₂	
M ₂	
M ₂	
<i>M</i> ₂	

M_2	
<i>M</i> ₂	
<i>M</i> ₂	
<i>M</i> ₂	
M ₂	
M ₂	
<i>M</i> ₂	

M_2	
<i>M</i> ₂	
<i>M</i> ₂	
<i>M</i> ₂	
M ₂	
M ₂	
<i>M</i> ₂	

M_2	
<i>M</i> ₂	
<i>M</i> ₂	
<i>M</i> ₂	
M ₂	

77%

Auxiliary Data Attack: Experimental Evaluation

- Ages, N = 125.
- Health records from US hospitals (NIS HCUP 2009).
- **Target:** age of individual hospitals' records.
- Auxiliary data: aggregate of 200 hospitals' records.
- Measure of success: proportion of records with value guessed within ε .

Results with Imperfect Auxiliary Data

Num. queries

- 5 10 15 25
- 50

 $\rightarrow \infty$ ·····

Reconstruction Attacks: Conclusions

Attack	Leakage	Other req'ts	Suff. # queries
KKNO16	AP	Density	O(N ² log N)
Full	AP + rank	Density	N · (log N + 2)
	AP	Density	N · (log N + 3)
ε-approx.	AP	Density	5/4 N·(log 1/ε) + O(N)
Auxiliary	AP + rank	Auxiliary dist.	Experimental

- For N = 125 : **800** queries \rightarrow full reconstruction.

• Full reconstruction $\approx N \log N$ queries with only access pattern! Efficient, data-optimal algorithms + matching lower bound.

25 queries \rightarrow majority of records within 5%, using auxiliary distribution + rank.

Reconstruction Attacks: Conclusions

 Many clever schemes have been designed, enabling range queries on encrypted data.

OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FJKNRS15], FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV,...

- persistent adversary (including server itself).
- More research needed!

Second-generation schemes defeat the snapshot adversary (with caveats).

• But as our attacks show, no known scheme offers meaningful privacy vs. a

