Improved Reconstruction Attacks on Encrypted Data Using Range Query Leakage

Marie-Sarah Lacharité, Brice Minaud, Kenny Paterson

Information Security Group

IEEE Symposium on Security and Privacy, May 21, 2018
Outsourcing Data with Search Capabilities

Client

Server
Outsourcing Data with Search Capabilities

Client → Data upload → Server
Outsourcing Data with Search Capabilities

Data upload
Search query
Matching records
For an **encrypted database management system**:

- **Data** = collection of records in a database.
 e.g. health records.

- **Search query examples:**
 - find records with given value.
 e.g. patients aged 57.
 - find records within a given range.
 e.g. patients aged 55-65.
Adversaries:
- **Snapshot**: breaks into server, gets snapshot of memory.
- **Persistent**: corrupts server, sees all communication transcripts. Can be server itself.

Security goal = **privacy**.
→ Adversary learns as little as possible about the client’s data and queries.
• Structure-preserving encryption. Vulnerable to snapshot attackers.
Solutions

• **Structure-preserving encryption.**
 Vulnerable to *snapshot* attackers.

• **Second-generation schemes:**
 Aim to protect against *snapshot* and *persistent* attackers.
Solutions

• **Structure-preserving encryption.**
 Vulnerable to snapshot attackers.

• **Second-generation schemes:**
 Aim to protect against snapshot and persistent attackers.

• **Very active research topic.**

 [AKSX04], [BCLO09], [PKV+14], [BLR+15], [NKW15], [KKNO16], [LW16],
 [FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]…
Schemes Supporting Range Queries

Range = [40, 100]
Schemes Supporting Range Queries

Range = [40, 100]
Schemes Supporting Range Queries

Range = [40, 100]

Client

Server

1 3
45 83

1 2 3 4
45 6 83 28
Most schemes leak set of matching records = access pattern leakage.
OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FJ+15], …
• Most schemes leak set of matching records = **access pattern** leakage.
 OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FJ+15], …

• Some schemes also leak #records below queried endpoints = **rank** leakage.
 FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV, …
Exploiting Leakage

- Most schemes prove that nothing more leaks than their leakage model allows. For example, leakage = access pattern + rank.

What can we really learn from this leakage?
Most schemes prove that nothing more leaks than their leakage model allows. For example, leakage = access pattern + rank.

What can we really learn from this leakage?

Our goal: full reconstruction = recovering the exact value of every record.
Exploiting Leakage

• Most schemes prove that nothing more leaks than their leakage model allows. For example, leakage = access pattern + rank.

What can we really learn from this leakage?

• Our goal: **full reconstruction** = recovering the exact value of every record.

• [KKNO16]: $O(N^2 \log N)$ queries suffice for full reconstruction using only access pattern leakage!
 - where N is the number of possible values (e.g. 125 for age in years).
Assumptions for our Analysis

- Data is **dense**: all values appear in at least one record.

- Queries are **uniformly distributed**.

 Our algorithms don’t actually care though – the assumption is for computing data upper bounds.
Our Main Results

- **Full reconstruction** with $O(N \cdot \log N)$ queries from access pattern leakage
 - in fact, $N \cdot (3 + \log N)$.
Our Main Results

• **Full reconstruction** with $O(N \cdot \log N)$ queries from access pattern leakage
 – in fact, $N \cdot (3 + \log N)$.

• **Approximate reconstruction** with relative accuracy ε with $O(N \cdot (\log 1/\varepsilon))$ queries.
Our Main Results

- **Full reconstruction** with $O(N \cdot \log N)$ queries from access pattern leakage
 – in fact, $N \cdot (3 + \log N)$.

- **Approximate reconstruction** with relative accuracy ε with $O(N \cdot (\log 1/\varepsilon))$ queries.

- **Approximate reconstruction** using an *auxiliary distribution* and access pattern + rank leakage.
Our Main Results

- **Full reconstruction** with $O(N \cdot \log N)$ queries from access pattern leakage
 - in fact, $N \cdot (3 + \log N)$.

- **Approximate reconstruction** with relative accuracy ϵ with $O(N \cdot (\log \frac{1}{\epsilon}))$ queries.

- **Approximate reconstruction** using an auxiliary distribution and access pattern + rank leakage.
Full reconstruction
Assume $N = 7$ values, and 5 queries.

$M_i = \text{set of records matched by } i\text{-th query.}$
Step 1: Partitioning

\[M_1 \]

\[M_2 \]

\[M_3 \]

\[M_4 \]

\[M_5 \]
Step 1: Partitioning

\[M_1 \setminus (M_2 \cup M_3 \cup M_4) \quad \ldots \quad M_1 \cap M_3 \setminus (M_2 \cup M_4) \quad \ldots \]
Step 1: Partitioning

If there are N minimal subsets → each of them correspond to a single value.
Step 2a: Finding an Endpoint

\[M_1 \cup M_3 \text{ cover all but 1 minimal set} \]
Step 2a: Finding an Endpoint

\[M_1 \cup M_3 \text{ cover all but 1 minimal set} \]

Endpoint!
Step 2a: Finding an Endpoint

\[M_1 \cup M_3 \text{ cover all but 1 minimal set} \]

Endpoint!
Step 2b: Propagating

- Intersect
Step 2b: Propagating

- Intersect
- Trim
Step 2b: Propagating

- Intersect
- Trim
Step 2b: Propagating

- Intersect
- Trim

Next point!
Step 2b: Propagating

- Intersect
- Trim

Next point!
Step 2b: Propagating

- Intersect
- Trim
- Intersect
- Trim
• **Generic setting**: only access pattern leakage.
• **Partitioning**, then **sorting** steps.

• Expectation of #queries **sufficient** for reconstruction:
 \[N \cdot (3 + \log N) \quad \text{for } N \geq 26 \]

• Expectation of #queries **necessary** for reconstruction:
 \[\frac{1}{2} \cdot N \cdot \log N – O(N) \]

 for *any* algorithm.

• Our algorithm is **data-optimal**.
Reconstruction with Auxiliary Data + Rank Leakage
Auxiliary Data Attack with Rank Leakage

• Assume access pattern + rank leakage.
• Also assume an approximation to the distribution on values is known.
 “Auxiliary distribution”.
 From aggregate data, or from another reference source.
• We show experimentally that, under these assumptions, far fewer queries are needed.
Assume $N = 125$ values, and 2 queries.

M_i = set of records matched by i-th query.
Partitioning and Matching

\[M_1 \]

\[M_2 \]
Partitioning and Matching
% records below 10%
Partitioning and Matching

% records below

10% 32%

M_1 M_2
Partitioning and Matching

% records below 10% 32% 77%

M_1 M_2
Partitioning and Matching

% records below

10% 32% 77% 85%

M_1 M_2
Partitioning and Matching

Matching with aux. distribution

Age 12

% records below

10% 32% 77% 85%

M_1 M_2
Partitioning and Matching

Matching with aux. distribution

<table>
<thead>
<tr>
<th>Age</th>
<th>% records below 10%</th>
<th>% records below 32%</th>
<th>% records below 77%</th>
<th>% records below 85%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram showing two partitions M_1 and M_2.
Partitioning and Matching

Matching with aux. distribution

Age	% records below 10%	32%	77%	85%
12 | 43 | 60 | |

M_1 and M_2
Partitioning and Matching

% records below 10% 32% 77% 85%
Matching with aux. distribution
Age 12 43 60 72

M_1 M_2
Partitioning and Matching

Matching with aux. distribution

<table>
<thead>
<tr>
<th>Age</th>
<th>% records below 10%</th>
<th>% records below 32%</th>
<th>% records below 77%</th>
<th>% records below 85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>10%</td>
<td>32%</td>
<td>77%</td>
<td>85%</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expectation: 19
Partitioning and Matching

Matching with aux. distribution

% records below
10% 32% 77% 85%

Matching with aux. distribution

Age
12 43 60 72

Expectation
19 50

Expectation
Partitioning and Matching

% records below 10% 32% 77% 85%

Matching with aux. distribution

Age 12 43 60 72

Expectation 19 50 65

\[M_1 \]

\[M_2 \]
Auxiliary Data Attack: Experimental Evaluation

• Ages, $N = 125$.
• Health records from US hospitals (NIS HCUP 2009).
• **Target**: age of individual hospitals' records.
• **Auxiliary data**: aggregate of 200 hospitals' records.
• **Measure of success**: proportion of records with value guessed within ε.
Results with Imperfect Auxiliary Data
Conclusions
Reconstruction Attacks: Conclusions

<table>
<thead>
<tr>
<th>Attack</th>
<th>Leakage</th>
<th>Other req'ts</th>
<th>Suff. # queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKNO16</td>
<td>AP</td>
<td>Density</td>
<td>(O(N^2 \log N))</td>
</tr>
<tr>
<td>Full</td>
<td>AP + rank</td>
<td>Density</td>
<td>(N \cdot (\log N + 2))</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>Density</td>
<td>(N \cdot (\log N + 3))</td>
</tr>
<tr>
<td>(\varepsilon)-approx.</td>
<td>AP</td>
<td>Density</td>
<td>(5/4 N \cdot (\log 1/\varepsilon) + O(N))</td>
</tr>
<tr>
<td>Auxiliary</td>
<td>AP + rank</td>
<td>Auxiliary dist.</td>
<td>Experimental</td>
</tr>
</tbody>
</table>

- **Full reconstruction** \(\approx N \log N\) queries with only access pattern! Efficient, data-optimal algorithms + matching lower bound.

- For \(N = 125\):

 - 800 queries \(\rightarrow\) full reconstruction.
 - 25 queries \(\rightarrow\) majority of records within 5%, using auxiliary distribution + rank.
Reconstruction Attacks: Conclusions

• Many clever schemes have been designed, enabling range queries on encrypted data.
 OPE, ORE schemes, POPE, [HK16], BlindSeer, [Lu12], [FJKNRS15], FH-OPE, Lewi-Wu, Arx, Cipherbase, EncKV,…

• Second-generation schemes defeat the snapshot adversary (with caveats).

• But as our attacks show, no known scheme offers meaningful privacy vs. a persistent adversary (including server itself).

• More research needed!