

Key-Recovery Attacks on ASASA

*Brice Minaud*¹, Patrick Derbez², Pierre-Alain Fouque³, Pierre Karpman⁴

¹ Université Rennes 1
 ² Université du Luxembourg
 ³ Université Rennes 1 et Institut Universitaire de France
 ⁴ Inria et Nanyang Technological University, Singapour

ENS Lyon, May 2017

ASASA Structure

At Asiacrypt 2014, Biryukov, Bouillaguet and Khovratovich considered various applications of the ASASA structure.

ASASA

Three uses cases were proposed in [BBK14]:

- →•1 "black-box" scheme \approx block cipher \times this paper
 - •2 "strong whitebox" schemes ≈ public-key encryption scheme
 - "Expanding S-box" scheme X Crypto'15 [GPT15]
 - " χ -based" scheme X this paper

same

attack!

- →•1 "weak whitebox" scheme ¥ this paper & [DDKL15]
 - 3

Plan

- 1. Public-key ASASA.
- 2. Cryptanalysis.
- **3.** Secret-key ASASA.
- 4. White-Box ASASA.

Public-key ASASA

Multivariate Cryptography

Hard problem: solving a system of random, say, quadratic, equations over some finite field.

→ How to get an encryption scheme $\mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$:

Public key: encryption function **F** given as sequence of *n* quadratic polynomials in *n* variables.

Private key: hidden structure (decomposition) of **F** that makes it easy to invert.

- +: small message space, fast with private key.
- -: slow public-key operations, large key, no reduction.

Many proposed scheme follow an ASA structure.

Matsumoto-Imai, Hidden Field Equations, Oil and Vinegar...

Almost all have been broken.

History of ASASA

Idea already proposed by Goubin and Patarin: "2R" scheme (ICICS'97).

Broken by **decomposition** attacks.

- Introduced by Ding-Feng, Lam Kwok-Yan, and Dai Zong-Duo.
- Developped in a general setting by Faugère et al.

Decomposition attack

Problem: Let **f**, **g** be quadratic polynomials over $x_1, ..., x_n$. Let $h = g \circ f$. Recover **f**, **g** knowing **h**.

Attack:
$$h_{\ell} = \sum \alpha_{i,j} f_i f_j$$
 degree 1
 $\frac{\partial h_{\ell}}{\partial x_k} = \sum \alpha_{i,j} \left(\frac{\partial f_i}{\partial x_k} f_j + \frac{\partial f_j}{\partial x_k} f_i \right)$
 $\in \operatorname{span}\{x_i f_j : i, j \leq n\}$

 \rightarrow We get:

span
$$\left\{\frac{\partial h_{\ell}}{\partial x_k}\right\}$$
 = span $\left\{x_i f_j : i, j \le n\right\}$

→ Yields span{ f_j : $i, j \leq n$ }.

Structure ASASA + P [BBK14]

Note : this is slightly different from BBK14.

Instances of ASASA + P

Two instances were proposed in BBK14 :

• "Expanding S-boxes" : decomposition attack by Gilbert, Plût and Treger, Crypto'15.

• χ -based scheme: using the χ function of Keccak.

χ function of Keccak

Introduced by Daemen in 1995, known for its use in Keccak (SHA-3).

Invertible for odd number of bits.

χ -based instance

Attack!

A cube is an affine subspace [DS08].

Property : Let *f* be a degree-*d* polynomial over binary variables. If *C* is a cube of dimension d+1, then :

$$\sum_{c\in C}f(c)=0$$

Degree deficiency

 \rightarrow c has degree 3. Sums up to 0 over cube of dim 4.

• Let a = product of 2 adjacent bits at the output of χ .

Then *a* has degree 6.

• Let b = product of 2 **non-adjacent** bits at the output of χ .

Then **b** has degree 8.

Let λ_F be an output mask, i.e. we look at $\langle F | \lambda_F \rangle = x \mapsto \langle F(x) | \lambda_F \rangle$.

Then there exists a mask λ_G s.t. $\mathbf{F} \langle F | \lambda_F \rangle = \langle G | \lambda_G \rangle$.

Let λ_F , λ'_F be two output masks, and λ_G , λ'_G the associated masks.

• If λ_G and λ'_G activate single adjacent bits, $\langle F | \lambda_F \rangle \cdot \langle F | \lambda'_F \rangle$ has degree 6.

• Otherwise $\langle F | \lambda_F \rangle \cdot \langle F | \lambda'_F \rangle$ has degree 8.

Goal : Find λ_F , λ'_F such that deg $(\langle F|\lambda_F \rangle \cdot \langle F|\lambda'_F \rangle) = 6$

Let C be a dimension-7 cube. Then : $\sum_{c \in C} \langle F(c) | \lambda_F \rangle \cdot \langle F(c) | \lambda'_F \rangle = 0$

 \rightarrow we get an equation on λ_F , λ'_F .

View λ_F , λ'_F as two vectors of n binary unknowns: $(\lambda_0, \ldots, \lambda_{n-1})$ and $(\lambda'_0, \ldots, \lambda'_{n-1})$. Then:

$$\sum_{c \in C} \langle F(c) | \lambda \rangle \langle F(c) | \lambda' \rangle = \sum_{c \in C} \sum_{i < n} \lambda_i F_i(c) \sum_{j < n} \lambda'_j F_j(c)$$
$$= \sum_{i,j < n} \left(\sum_{c \in C} F_i(c) F_j(c) \right) \lambda_i \lambda'_j$$
$$= 0$$

 \Rightarrow We get a quadratic equation on the λ_i , λ'_i 's.

Each cube yields 1 quadratic equation on the λ_i, λ'_i 's.

Using relinearization, there are $127^2 \approx 2^{14}$ terms $\lambda_i \lambda'_j$ \rightarrow we need 2¹⁴ cubes of dimension 7.

- Step 1: Solve linear system. Yields linear span L of solutions.
- Step 2: Recover vectors of the form $\lambda_i \lambda'_i$ within *L*.

Conclusion: the last layer is recovered using 2²¹ CP, with time complexity $\approx 2^{39}$ (for inverting a binary matrix of size 2¹³). (In general: $n^6/4$ time and $7n^2/2$ data.)

Remaining layers

Remaining layers

Due to the perturbation, it is not possible to simply invert the last χ layer.

χ function of Keccak

Problem 1: Given $P = A \cdot B \oplus C$ for quadratic A, B, C in $\mathbb{F}_2[X_1, \ldots, X_n]/\langle X_i^2 - X_i \rangle$, find A, B, C.

There exists an efficient (heuristic) quadratic algorithm.

Black-box ASASA

SASAS structure

SASAS structure

Analyzed by Biryukov and Shamir at Eurocrypt 2001.

Goal: recover all internal components (affine layers A and S-boxes) with only "black-box" access (KP/CP/CC).

Cryptanalysis of **SASAS**

 \rightarrow linear equations with unknowns $x_i = S_0^{-1}(i)$

Cryptanalysis of **SASAS**

- Repeat until enough equations are gathered.
- Solve linear system of dim. 2^m to recover the final S layer.

By symmetry, we can do the same for the first layer.

Cost: time $k \cdot 2^{3m}$, data $3 \cdot 2^{2m}$, with m = n/k = #S-boxes.

Then ASA can be decomposed by a simple differential attack.

Black-box ASASA [BBK14]

Degree of an S-box = 7.

Let a = product of 2 output bits of a single common S-box.

Then *a* has degree 7x7 = 49.

Let b = product of 2 output bits of two distinct S-boxes.

Then **b** has max degree (127).

Goal : Find λ_F , λ'_F such that deg $(\langle F | \lambda_F \rangle \cdot \langle F | \lambda'_F \rangle) = 49$

Let *C* be a dimension-50 cube. Then: $\sum_{c \in C} \langle F(c) | \lambda_F \rangle \cdot \langle F(c) | \lambda'_F \rangle = 0$

 \rightarrow we get an equation on λ_F , λ'_F .

Conclusion : All internal components are recovered in time and data complexity 2^{63} . In general: $n^2 2^{(m-1)^2}$. For comparison: the distinguisher is in 2^{50} . In general $2^{(m-1)^2+1}$.

Small-block ASASA

White-Box Cryptogaphy

White-Box Cryptography: protection against adversaries having complete access to the implementation of a cipher.

Important topic within industry. No complete solution. Various trade-offs \rightarrow different models.

Incompressible cipher: block cipher with large description.

Goal: impede code lifting and code distribution.

White-box ASASA [BBK14]

Idea: use large S-boxes with secret structure within conventional design.

It may seem that our attack fails because $deg(S)^2 = 49 > 15$.

[DDKL15] (from [BC13]):
$$\deg(F) < n - (k - 1) \left(1 - \frac{1}{m - 1}\right)$$

with *n*: #input bits, *k*: #S-boxes, m = n/k: #input bits per S-box.

Small-block ASASA

Idea: use large S-boxes with secret structure within conventional design.

It may seem that our attack fails because $deg(S)^2 = 49 > 15$.

[DDKL15] (from [BC13]):

$$\deg(F) < n - (k - 1) \left(1 - \frac{1}{m - 1}\right)$$

with *n*: #input bits, *k*: #S-boxes, m = n/k: #input bits per S-box.

The attack in general

In general, all that matters is that the degree of bit products before the last linear layer depend on bit positions.

The attack in general

More generally still, any low-degree polynomial will do.

Cryptanalysis of **SASASASAS**

Short article by Biryukov et Khovratovich: the same attack extends ASASASA and even SASASASAS [BK15].

Indeed the main obstacle is that the overall function must not be full degree.

Conclusion

- A new generic attack on ASASA-type structures.
 - Not presented: LPN-based attack on the χ -based scheme, heuristic attacks on white-box scheme.
 - Regarding multivariate ASASA proposals, [GPT15] and our result are somewhat complementary.
 - •Open problems:
 - Other applications of this type of attack.
 - Secure white-box scheme.

Thank you for your attention!

LPN-based attack

If we differentiate G twice along two arbitrary vectors d_1 , d_2 :

$$G_i''(x) = a_i''(x) \oplus (\overline{a_{i+1}} \cdot a_{i+2})''(x)$$

= $C \oplus P_i(x) \oplus P_i(x \oplus d_1) \oplus P_i(x \oplus d_2) \oplus P_i(x \oplus d_1 \oplus d_2)$
with $P_i = \overline{a_{i+1}} \cdot a_{i+2}$

LPN-based attack

G" is a constant + four products.

▶ Each bit of G" has bias 2⁻⁴ (heuristically).

• Each computation of F"(x) yields a fresh sample of a binary vector a s.t. there exist n (fixed) values s s.t. $a \cdot s$ has bias 2⁻⁴.

→ Can be (heuristically) solved by BKW. (est. 2^{56} time, 2^{50} data).