Key-Recovery Attacks on ASASA

Brice Minaud ${ }^{1}$, Patrick Derbez², Pierre-Alain Fouque ${ }^{3}$, Pierre Karpman ${ }^{4}$
${ }^{1}$ Université Rennes 1
${ }^{2}$ Université du Luxembourg
${ }^{3}$ Université Rennes 1 et Institut Universitaire de France
${ }^{4}$ Inria et Nanyang Technological University, Singapour

ENS Lyon, May 2017

ASASA Structure

At Asiacrypt 2014, Biryukov, Bouillaguet and Khovratovich considered various applications of the ASASA structure.

Affine layer
Nonlinear layer e.g. S-boxes

Three uses cases were proposed in [BBK14]:
$\rightarrow \bullet 1$ "black-box" scheme \approx block cipher \boldsymbol{x} this paper
$\cdot 2$ "strong whitebox" schemes \approx public-key encryption scheme

- "Expanding S-box" scheme X Crypto'15 [GPT15]
- " x-based" scheme
\boldsymbol{x} this paper
$\rightarrow \bullet 1$ "weak whitebox" scheme \boldsymbol{x} this paper \& [DDKL15]

Plan

1. Public-key ASASA.
2. Cryptanalysis.
3. Secret-key ASASA.
4. White-Box ASASA.

Public-key ASASA

Multivariate Cryptography

Hard problem: solving a system of random, say, quadratic, equations over some finite field.
\rightarrow How to get an encryption scheme $\mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$:
Public key: encryption function F given as sequence of n quadratic polynomials in n variables.

Private key: hidden structure (decomposition) of F that makes it easy to invert.
+: small message space, fast with private key.
-: slow public-key operations, large key, no reduction.

Many proposed scheme follow an ASA structure.
Matsumoto-Imai, Hidden Field Equations, Oil and Vinegar...
Almost all have been broken.

ASASA
\mathbb{F}_{q}^{n}

History of ASASA

Idea already proposed by Goubin and Patarin: "2R" scheme (ICICS'97).

Broken by decomposition attacks.

- Introduced by Ding-Feng, Lam Kwok-Yan, and Dai Zong-Duo.
- Developped in a general setting by Faugère et al.

Decomposition attack

Problem: Let f, g be quadratic polynomials over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$. Let $\mathrm{h}=\mathrm{g}$ of. Recover f, g knowing h .

Attack: $h_{\ell}=\sum \alpha_{i, j} f_{i} f_{j}$

$$
\begin{aligned}
\frac{\partial h_{l}}{\partial x_{k}} & =\sum \alpha_{i, j}\left(\frac{\partial f_{i}}{\partial x_{k}} f_{j}+\frac{\partial f_{j}}{\partial x_{k}} f_{i}\right) \\
& \in \operatorname{span}\left\{x_{i} f_{j}: i, j \leq n\right\}
\end{aligned}
$$

\rightarrow We get:

$$
\operatorname{span}\left\{\frac{\partial h_{l}}{\partial x_{k}}\right\}=\operatorname{span}\left\{x_{i} f_{j}: i, j \leq n\right\}
$$

\rightarrow Yields $\operatorname{span}\left\{f_{j}: i, j \leq n\right\}$.

Structure ASASA + P [BBK14]

$$
\mathbb{F}_{2}^{p} \quad \mathbb{F}_{2}^{n-p}
$$

Perturbation: random polynomials of degree 4

Note : this is slightly different from BBK14.

Instances of ASASA + P

Two instances were proposed in BBK14 :
-"Expanding S-boxes" : decomposition attack by Gilbert, Plût and Treger, Crypto'15.

- χ-based scheme: using the χ function of Keccak.

χ function of Keccak

Introduced by Daemen in 1995, known for its use in Keccak (SHA-3).

Invertible for odd number of bits.

χ-based instance

Random degree-4 polynomials

Random invertible affine layers

Attack!

Cubes

A cube is an affine subspace [DS08].

Property : Let f be a degree- d polynomial over binary variables. If C is a cube of dimension $d+1$, then :

$$
\sum_{c \in C} f(c)=0
$$

Degree deficiency

$\rightarrow c$ has degree 3 . Sums up to 0 over cube of dim 4 .

ASASA Cryptanalysis

- Let $a=$ product of 2 adjacent bits at the output of χ.

Then a has degree 6.

- Let $b=$ product of 2 non-adjacent bits at the output of χ.

Then b has degree 8.

ASASA Cryptanalysis

ASASA Cryptanalysis

masks $\lambda_{F}, \lambda_{F}^{\prime}$

Let $\lambda_{F}, \lambda_{F}^{\prime}$ be two output masks, and $\lambda_{G}, \lambda_{G}^{\prime}$ the associated masks.

- If λ_{G} and λ_{G}^{\prime} activate single adjacent bits, $\left\langle F \mid \lambda_{F}\right\rangle \cdot\left\langle F \mid \lambda_{F}^{\prime}\right\rangle$ has degree 6.
- Otherwise $\left\langle F \mid \lambda_{F}\right\rangle \cdot\left\langle F \mid \lambda_{F}^{\prime}\right\rangle$ has degree 8.

ASASA Cryptanalysis

Goal : Find $\lambda_{F}, \lambda_{F}^{\prime}$ such that

$$
\operatorname{deg}\left(\left\langle F \mid \lambda_{F}\right\rangle \cdot\left\langle F \mid \lambda_{F}^{\prime}\right\rangle\right)=6
$$

Let C be a dimension-7 cube. Then :

$$
\Sigma_{c \in C}\left\langle F(c) \mid \lambda_{F}\right\rangle \cdot\left\langle F(c) \mid \lambda_{F}^{\prime}\right\rangle=0
$$

\rightarrow we get an equation on $\lambda_{F}, \lambda_{F}^{\prime}$.
masks $\lambda_{F}, \lambda_{F}^{\prime}$

ASASA Cryptanalysis

View $\lambda_{F}, \lambda_{F}^{\prime}$ as two vectors of n binary unknowns: $\left(\lambda_{0}, \ldots, \lambda_{n-1}\right)$ and $\left(\lambda_{0}^{\prime}, \ldots, \lambda_{n-1}^{\prime}\right)$. Then:

$$
\begin{aligned}
\sum_{c \in C}\langle F(c) \mid \lambda\rangle\left\langle F(c) \mid \lambda^{\prime}\right\rangle & =\sum_{c \in C} \sum_{i<n} \lambda_{i} F_{i}(c) \sum_{j<n} \lambda_{j}^{\prime} F_{j}(c) \\
& =\sum_{i, j<n}\left(\sum_{c \in C} F_{i}(c) F_{j}(c)\right) \lambda_{i} \lambda_{j}^{\prime} \\
& =0
\end{aligned}
$$

\Rightarrow We get a quadratic equation on the $\lambda_{i}, \lambda_{j}^{\prime \prime}$'s.

ASASA Cryptanalysis

Each cube yields 1 quadratic equation on the $\lambda_{i}, \lambda_{j}^{\prime}$'s.
Using relinearization, there are $127^{2} \approx 2^{14}$ terms $\lambda_{i} \lambda_{j}^{\prime}$
\rightarrow we need 2^{14} cubes of dimension 7 .

- Step 1: Solve linear system. Yields linear span L of solutions.
- Step 2: Recover vectors of the form $\lambda_{i} \lambda_{j}^{\prime}$ within L.

Conclusion: the last layer is recovered using $2^{21} \mathrm{CP}$, with time complexity $\approx 2^{39}$ (for inverting a binary matrix of size 2^{13}). (In general: $n^{6 / 4}$ time and $7 n^{2 / 2}$ data.)

Remaining layers

Remaining layers

Due to the perturbation, it is not possible to simply invert the last χ layer.

χ function of Keccak

Problem 1: Given $P=A \cdot B \oplus C$ for quadratic A, B, C in $\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left\langle X_{i}^{2}-X_{i}\right\rangle$, find A, B, C.

- There exists an efficient (heuristic) quadratic algorithm.

Black-box ASASA

SASAS structure

\mathbb{F}_{2}^{n}

SSSSSSSS Independent random m-bit S-boxes

Random Affine layer on n bits

SSSSSSS空

\rightarrow «Large» permutation over n bits from «small» permutations over k bits.

SASAS structure

\mathbb{F}_{2}^{n}

A

A

S/S S S S/S S S

Analyzed by Biryukov and Shamir at Eurocrypt 2001.

Goal: recover all internal components (affine layers A and S-boxes) with only "black-box" access (KP/CP/CC).

Cryptanalysis of SASAS

Fixed value All 2^{m} values

SSSSSSSSS

$\longmapsto \longmapsto$ Idem, in particular dim-m cube
A
Cube of dimension m

SSSSMSSS

$$
\longmapsto \sum S_{0}^{-1}\left(C_{i}\right)=0
$$

\rightarrow linear equations with unknowns $x_{i}=S_{0}^{-1}(i)$

Cryptanalysis of SASAS

"Repeat until enough equations are gathered.

A
-Solve linear system of dim. 2^{m} to recover the final S layer.
By symmetry, we can do the same for the first layer.

Cost: time $k \cdot 2^{3 m}$, data $3 \cdot 2^{2 m}$, with $\mathrm{m}=\mathrm{n} / \mathrm{k}=\#$-boxes.

Then ASA can be decomposed by a simple differential attack.

Black-box ASASA [BBK14]

\mathbb{F}_{2}^{128}

A
Random Affine layer over 128 bits.

SSSSSSSSS 16 random independent S-boxes

shsessis

Goal : recover all internal components.

Note: degree ≤ 49
\Rightarrow distinguisher w. $2^{50} \mathrm{CP}$

ASASA cryptanalysis

Degree of an S-box $=7$.

- Let $a=$ product of 2 output bits of a single common S-box.
Then a has degree $7 \times 7=49$.
- Let $b=$ product of 2 output bits of two distinct S-boxes.

Then b has max degree (127).

ASASA Cryptanalysis

masks $\lambda_{G}, \lambda_{G}^{\prime}$

A

Goal : Find $\lambda_{F}, \lambda_{F}^{\prime}$ such that

$$
\operatorname{deg}\left(\left\langle F \mid \lambda_{F}\right\rangle \cdot\left\langle F \mid \lambda_{F}^{\prime}\right\rangle\right)=49
$$

Let C be a dimension-50 cube. Then:

$$
\Sigma_{c \in C}\left\langle F(c) \mid \lambda_{F}\right\rangle \cdot\left\langle F(c) \mid \lambda_{F}^{\prime}\right\rangle=0
$$

\rightarrow we get an equation on $\lambda_{F}, \lambda_{F}^{\prime}$.

Conclusion : All internal components are recovered in time and data complexity 2^{63}. In general: $n^{22(m-1)^{2}}$.
For comparison: the distinguisher is in 2^{50}. In general $2^{(m-1)^{2}+1}$.

Small-block ASASA

White-Box Cryptogaphy

White-Box Cryptography: protection against adversaries having complete access to the implementation of a cipher.

Important topic within industry. No complete solution. Various trade-offs \rightarrow different models.

Incompressible cipher: block cipher with large description.
Goal: impede code lifting and code distribution.

White-box ASASA [BBK14]

\mathbb{F}_{2}^{16}

Idea: use large S-boxes with secret structure within conventional design.

It may seem that our attack fails because $\operatorname{deg}(S)^{2}=49>15$.
8 bits
[DDKL15] (from [BC13]):

$$
\operatorname{deg}(F)<n-(k-1)\left(1-\frac{1}{m-1}\right)
$$

with n : \#input bits, k : \#S-boxes, $m=n / k$: \#input bits per S-box.

Small-block ASASA

$\mathbb{F}_{2}^{2 n}$

A

n-2

Idea: use large S-boxes with secret structure within conventional design.

It may seem that our attack fails because $\operatorname{deg}(S)^{2}=49>15$.
n bits
[DDKL15] (from [BC13]):

$$
\operatorname{deg}(F)<n-(k-1)\left(1-\frac{1}{m-1}\right)
$$

with n : \#input bits, k : \#S-boxes, $m=n / k$: \#input bits per S-box.

The attack in general

In general, all that matters is that the degree of bit products before the last linear layer depend on bit positions.

The attack in general

More generally still, any low-degree polynomial will do.

Cryptanalysis of SASASASAS

Short article by Biryukov et Khovratovich: the same attack extends ASASASA and even SASASASAS [BK15].

Indeed the main obstacle is that the overall function must not be full degree.

Conclusion

- A new generic attack on ASASA-type structures.
- Not presented: LPN-based attack on the χ-based scheme, heuristic attacks on white-box scheme.
- Regarding multivariate ASASA proposals, [GPT15] and our result are somewhat complementary.
-Open problems:
Other applications of this type of attack.
Secure white-box scheme.
Thank you for your attention!

LPN-based attack

If we differentiate G twice along two arbitrary vectors d_{1}, d_{2} :

$$
\begin{aligned}
G_{i}^{\prime \prime}(x)= & a_{i}^{\prime \prime}(x) \oplus\left(\overline{a_{i+1}} \cdot a_{i+2}\right)^{\prime \prime}(x) \\
= & C \oplus P_{i}(x) \oplus P_{i}\left(x \oplus d_{1}\right) \oplus P_{i}\left(x \oplus d_{2}\right) \oplus P_{i}\left(x \oplus d_{1} \oplus d_{2}\right) \\
& \text { with } P_{i}=\overline{a_{i+1}} \cdot a_{i+2}
\end{aligned}
$$

LPN-based attack

G" is a constant + four products.

- Each bit of G" has bias 2-4 (heuristically).
- Each computation of $\mathrm{F}^{\prime \prime}(\mathrm{x})$ yields a fresh sample of a binary vector a s.t. there exist n (fixed) values s s.t. a•s has bias 2-4.
\rightarrow Can be (heuristically) solved by BKW. (est. 2^{56} time, 2^{50} data).

