

The Iterated Random Permutation Problem with Applications to Cascade Encryption

Brice Minaud^{1,2}, Yannick Seurin¹

¹ ANSSI, France ² Université Rennes 1, France

CRYPTO 2015

Plan

- **1.** Motivation.
- 2. The Iterated Permutation Problem.
- **3.** Main theorem.
- 4. Matching attack.
- **5.** Conclusion.

A Simple Question

Assume you do not trust AES_k as is.

A simple heuristic strengthening: $AES_k \circ AES_k$.

Assuming **AES**_k is secure, *is this secure?*

Can we prove it?

Strong Pseudo-Randomness

We measure "security" by the strong pseudorandomness notion:

$$\mathbf{Adv}_{E}^{\mathsf{sprp}}(\mathcal{D}) = \left| \Pr\left[P \leftarrow_{\$} \operatorname{Perm}(S) : \mathcal{D}^{P,P^{-1}} = 1 \right] - \Pr\left[k \leftarrow_{\$} K : \mathcal{D}^{E_{k},(E_{k})^{-1}=1} \right] \right|$$

 \rightarrow standard adaptive, two-sided adversary trying to distinguish *E_k* from a random permutation.

Independent keys \Rightarrow security amplification.

Many results in the computational, informationtheoretic and ideal cipher models.

Non-independent keys \Rightarrow ?

Virtually no result when keys are not independent.

We consider the case where a single key is repeated.

If F is an Even-Mansour construction...

If F is an Even-Mansour construction...

Main result

Iterating a block cipher a *constant* number of times has a negligible effect on its SPRP security:

$$\mathbf{Adv}_{E^{r}}^{\mathsf{sprp}}(q,t) \leq \mathbf{Adv}_{E}^{\mathsf{sprp}}(rq,t') + \frac{(2r+1)q}{N}$$

E: block cipher

- *N*: size of the message space
- *r* : number of rounds
- q: number of queries

Main result

Iterating a block cipher a *constant* number of times has a negligible effect on its SPRP security:

$$\mathbf{Adv}_{E^{r}}^{\mathsf{sprp}}(q,t) \leq \mathbf{Adv}_{E}^{\mathsf{sprp}}(rq,t') + \frac{(2r+1)q}{N}$$

Iterated Random Permutation Problem

Iterated Random Permutation Problem:

Number of queries to distinguish P from P^r? I.e. bound $Adv_{P,P^r}(q)$.

This problem shows up in a few places [CLLSS14] [BAC12] [GJMN15].

This is really a problem about unlabeled permutations. I.e. only cycle structure matters.

Iterated Random Permutation Problem

Main theorem

$$\operatorname{Adv}_{P,P^{r}}(q) \leq \frac{(2r+1)q}{N}$$
$$\operatorname{Adv}_{P,P^{r}}(q) = \Theta\left(\frac{q}{N}\right)$$

E.g. for r = 2: $0.5 \frac{q}{N} - \frac{2}{N} \le \mathbf{Adv}_{P,P^2}(q) \le 5 \frac{q}{N}$

Iterated permutations

Core result: $\operatorname{Adv}_{P,P'}(q) \leq \frac{(2r+1)q}{N}$ G(P) G(P') f

- G(P): access to P, P^{-1}
- G(Pr): access to Pr, $(P^{-1})^r$
- G(C): access to C, C^{-1}
- G(C^r): access to C^r, $(C^{-1})^{r}$

- for *P* ←_{\$} *Permutations(N)*
- for *P* ←_{\$} *Permutations(N)*
- for $C \leftarrow S Cycles(N)$
- for $C \leftarrow S Cycles(N)$

From P to C

$$G(\mathbf{P}) \longleftrightarrow G(\mathbf{C}) \longleftrightarrow G(\mathbf{C}^{r}) \longleftrightarrow G(\mathbf{P}^{r})$$

$$Adv \leq \frac{q}{N}$$

Game G(P) ⇔ picking unif.
 random unpicked point

- Game $G(C) \Leftrightarrow$ same +
 - source point is forbidden

From Cr to Pr

$$G(\mathbf{P}) \longleftrightarrow G(\mathbf{C}) \longleftrightarrow G(\mathbf{C}^{r}) \longleftrightarrow G(\mathbf{P}^{r})$$

$$Adv \leq \frac{q}{N}$$

$$Adv \leq \frac{rq}{N}$$

Querying $G(\mathbf{P}^r) \Leftrightarrow$ querying $G(\mathbf{P})$ along chain of length r Querying $G(\mathbf{C}^r) \Leftrightarrow$ querying $G(\mathbf{C})$ along chain of length r

Distinguisher between $G(\mathbf{P}^r)$ and $G(\mathbf{C}^r)$ \Rightarrow distinguisher between $G(\mathbf{P})$ and $G(\mathbf{C})$

From C to Cr

$$G(\mathbf{P}) \longleftrightarrow G(\mathbf{C}) \longleftrightarrow G(\mathbf{C}) \longleftrightarrow G(\mathbf{C})$$

$$\mathbf{Adv} \leq \frac{q}{N}$$

$$\mathbf{Adv} \leq \frac{rq}{N}$$

If gcd(N,r) = 1, **C**^r still has a single cycle.

 \Rightarrow C \mapsto C^r is a permutation of Perm(N) \Rightarrow Adv_{C,C^r} = 0

From C to Cr

1 cycle redirect $d \le r$ points d = gcd(N,r) cycles

Summing up

$$\begin{array}{cccc} \mathbf{G}(\mathbf{P}) & \longleftarrow & \mathbf{G}(\mathbf{C}) & \longleftarrow & \mathbf{G}(\mathbf{C}^{r}) & \longleftarrow & \mathbf{G}(\mathbf{P}^{r}) \\ \mathbf{Adv} \leq \frac{q}{N} & \mathbf{Adv} \leq \frac{rq}{N} & \mathbf{Adv} \leq \frac{rq}{N} \end{array}$$

Conclusion: $\operatorname{Adv}_{P,P^r}(q) \leq \frac{(2r+1)q}{N}$

Matching Attack

Make q queries along a chain

- If there is a cycle + ... + : guess Pr
- Otherwise →→→ : guess P

Advantage
$$\approx C(r)\frac{q}{N}$$
 with $C(r) = \sum_{d|r} \frac{\phi(d)}{d} - 1 \ge \frac{1}{2}$

$$\geq \frac{q}{2N}$$

Conclusion

- Upper bound on the iterated permutation problem + matching attack for constant *r* in the end: $\operatorname{Adv}_{P,P^r}(q) = \Theta\left(\frac{q}{N}\right)$
- Direct application to cascade encryption with the same key:

$$\mathbf{Adv}_{E^{r}}^{\mathsf{sprp}}(q,t) \leq \mathbf{Adv}_{E}^{\mathsf{sprp}}(rq,t') + \frac{(2r+1)q}{N}$$

 Open problem: security amplification under some hypotheses?

Thank you for your attention!

Questions ?