 EMSEC

The Iterated Random Permutation Problem

with Applications to Cascade Encryption

Brice Minaud ${ }^{1,2}$, Yannick Seurin ${ }^{1}$

${ }^{1}$ ANSSI, France
2 Université Rennes 1, France

CRYPTO 2015

Plan

1. Motivation.
2. The Iterated Permutation Problem.
3. Main theorem.
4. Matching attack.
5. Conclusion.

A Simple Question

Assume you do not trust AES $_{k}$ as is.
A simple heuristic strengthening: $\mathbf{A E S}_{\mathbf{k}} \circ \mathrm{AES}_{\mathbf{k}}$.
Assuming AES $_{k}$ is secure, is this secure?
Can we prove it?

Strong Pseudo-Randomness

We measure "security" by the strong pseudorandomness notion:

$$
\begin{aligned}
\mathbf{A d v}_{E}^{\text {sprp }}(\mathcal{D})= & \mid \operatorname{Pr}\left[P \leftarrow_{\$} \operatorname{Perm}(S): \mathcal{D}^{P, P^{-1}}=1\right] \\
& -\operatorname{Pr}\left[k \leftarrow_{\Phi} K: \mathcal{D}^{E_{k},\left(E_{k}\right)^{-1}=1}\right] \mid
\end{aligned}
$$

\rightarrow standard adaptive, two-sided adversary trying to distinguish E_{k} from a random permutation.

Cascade encryption

Independent keys \Rightarrow security amplification.

Many results in the computational, informationtheoretic and ideal cipher models.

Cascade encryption

Non-independent keys \Rightarrow ?

Virtually no result when keys are not independent.
We consider the case where a single key is repeated.

Cascade encryption

If F is an Even-Mansour construction...

Cascade encryption

If F is an Even-Mansour construction...

Main result

Iterating a block cipher a constant number of times has a negligible effect on its SPRP security:

$$
\mathbf{A d v}_{E_{r}}^{\text {sprp }}(q, t) \leq \mathbf{A d v}_{E}^{\text {sprp }}\left(r q, t^{\prime}\right)+\frac{(2 r+1) q}{N}
$$

E : block cipher
N : size of the message space
r : number of rounds
q : number of queries

Main result

Iterating a block cipher a constant number of times has a negligible effect on its SPRP security:

$$
\operatorname{Adv}_{E r^{\prime}}^{\text {sprp }}(q, t) \leq \operatorname{Adv}_{E}^{\text {sprp }}\left(r q, t^{\prime}\right)+\frac{(2 r+1) q}{N}
$$

Iterated Random Permutation Problem

Iterated Random Permutation Problem:

Number of queries to distinguish P from Pr?
l.e. bound $\mathbf{A d v}_{P, p r}(q)$.

This problem shows up in a few places [CLLSS14] [BAC12] [GJMN15].

This is really a problem about unlabeled permutations. I.e. only cycle structure matters.

Main theorem

$$
\begin{aligned}
& \boldsymbol{A d v}_{P, P r}(q) \leq \frac{(2 r+1) q}{N} \\
& \boldsymbol{A d v}_{P, P r}(q)=\Theta\left(\frac{q}{N}\right)
\end{aligned}
$$

E.g. for $r=2$:

$$
0.5 \frac{q}{N}-\frac{2}{N} \leq \operatorname{Adv}_{P, P^{2}}(q) \leq 5 \frac{q}{N}
$$

Iterated permutations

Core result: $\operatorname{Adv}_{P, \operatorname{Pr}}(q) \leq \frac{(2 r+1) q}{N}$

$G(P): \quad$ access to $P, P^{-1} \quad$ for $P \leftarrow_{\$}$ Permutations (N)
$G(P r): \quad$ access to $P^{r},\left(P^{-1}\right)^{r} \quad$ for $P \leftarrow_{\$}$ Permutations (N)
$G(C): \quad$ access to $C, C^{-1} \quad$ for $C \leftarrow_{\$} \operatorname{Cycles}(N)$
$\mathrm{G}\left(\mathrm{C}^{r}\right)$: access to C^{r}, $\left(C^{-1}\right)^{r} \quad$ for $C \leftarrow_{\$} \operatorname{Cycles}(N)$

From P to C

$$
\mathrm{G}(\mathrm{P}) \underset{\mathrm{Adv} \leq \frac{q}{N}}{\longleftrightarrow \mathrm{G}(\mathrm{C}) \longleftrightarrow \mathrm{G}(\mathrm{Cr}) \longleftrightarrow \mathrm{G}(\mathrm{Pr})}
$$

- Game $G(P) \Leftrightarrow$ picking unif. random unpicked point

- Game $\mathrm{G}(\mathrm{C}) \Leftrightarrow$ same + source point is forbidden

From Cr to Pr

$\mathrm{G}(\mathrm{P}) \underset{\mathrm{Adv} \leq \frac{q}{N}}{\longleftrightarrow} \mathrm{G}(\mathrm{C}) \longleftrightarrow \mathrm{G}(\mathrm{Cr}) \longleftrightarrow \underset{\mathrm{Adv} \leq \frac{r q}{N}}{\longleftrightarrow} \mathrm{G}(\mathrm{Pr})$

Querying $G(P r) \Leftrightarrow$ querying $G(P)$ along chain of length r
Querying $G(C r) \Leftrightarrow$ querying $G(C)$ along chain of length r

Distinguisher between $\mathrm{G}(\mathrm{Pr})$ and $\mathrm{G}\left(\mathrm{C}^{r}\right)$
\Rightarrow distinguisher between $G(P)$ and $G(C)$

From C to Cr

$\mathrm{G}(\mathrm{P}) \longleftrightarrow \mathrm{G}(\mathrm{C})$ $\boldsymbol{A d v} \leq \frac{q}{N}$ $\operatorname{Adv} \leq \frac{r q}{N}$

If $\operatorname{gcd}(\mathrm{N}, \mathrm{r})=1, \mathrm{Cr}$ still has a single cycle.

$\Rightarrow \mathrm{C} \longmapsto \mathrm{Cr}$ is a permutation of $\operatorname{Perm}(\mathrm{N}) \Rightarrow \boldsymbol{A d v}_{C, C^{r}}=0$

From C to Cr

$$
\mathrm{G}(\mathrm{P}) \underset{\mathrm{Adv} \leq \frac{q}{N}}{\longleftrightarrow} \mathrm{G}(\mathrm{C}) \underset{\mathrm{Adv} \leq \frac{r q}{N}}{\longleftrightarrow} \mathrm{G}(\mathrm{Cr}) \longleftrightarrow \mathrm{Adv} \leq \frac{r q}{N} \mathrm{G}(\mathrm{Pr})
$$

C

1 cycle redirect $d \leqslant r$ points $\quad d=\operatorname{gcd}(N, r)$ cycles

Summing up

$$
\mathrm{G}(\mathrm{P}) \underset{\operatorname{Adv} \leq \frac{q}{N}}{\longleftrightarrow} \mathrm{G}(\mathrm{C}) \underset{\operatorname{Adv} \leq \frac{r q}{N}}{\longleftrightarrow} \mathrm{G}(\mathrm{Cr}) \underset{\operatorname{Adv} \leq \frac{r q}{N}}{\longleftrightarrow} \mathrm{G}(\mathrm{Pr})
$$

Conclusion: $\quad \boldsymbol{A d v}_{P, \operatorname{Pr}}(q) \leq \frac{(2 r+1) q}{N}$

Matching Attack

Make q queries along a chain

- If there is a cycle $\rightarrow \rightarrow$: guess Pr
- Otherwise $\quad \rightarrow \rightarrow \rightarrow \cdots \rightarrow$: guess P

Advantage $\approx C(r) \frac{q}{N} \quad$ with $C(r)=\sum_{d \mid r} \frac{\phi(d)}{d}-1 \geq \frac{1}{2}$

$$
\geq \frac{q}{2 N}
$$

Conclusion

- Upper bound on the iterated permutation problem + matching attack for constant r in the end: $\boldsymbol{A d v}_{P, P r}(q)=\Theta\left(\frac{q}{N}\right)$
- Direct application to cascade encryption with the same key:

$$
\operatorname{Adv}_{E r}^{\text {sprp }}(q, t) \leq \mathbf{A d v}_{E}^{\text {sprp }}\left(r q, t^{\prime}\right)+\frac{(2 r+1) q}{N}
$$

- Open problem: security amplification under some hypotheses?

Conclusion

Thank you for your attention!

Questions?

