Learning to Reconstruct

Statistical Learning Theory and Encrypted Database Attacks

Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, Kenny Paterson

C2 seminar, Rennes, 2019
Sensitive data → encryption needed.

An encrypted database is of little use if it cannot be searched.

→ Searchable Encryption.

Searchable Encryption

Adversary: **honest-but-curious** host server.

Security goal: **confidentiality** of data and queries.

Very active topic in research and industry.

[AKSX04], [BCLO09], [PKV+14], [BLR+15], [NKW15], [KKNO16], [LW16], [FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]…
Generic solutions (FHE) are infeasible at scale → for efficiency reasons, some **leakage** is allowed.

Security model: parametrized by a **leakage function** L.

Server learns **nothing** except for the output of the leakage function.
Security Model

Real world

Client → Adversary

Server → Adversary

Query q

Ideal world

L → Adversary

L(q) → Simulator
Symmetric Searchable Encryption (SSE) = keyword search:

- Data = collection of documents. e.g. messages.
- Search query = find documents containing given keyword(s).

Efficient solutions for leakage = search pattern + access pattern.

Some active topics:

- Forward and backward privacy [B16][BMO17][CPPJ18][SYL+18]...
- Locality [CT14][ANSS16][DPP18]...
Beyond Keyword Search

For an **encrypted database management system**:

- Data = collection of records.
 e.g. health records.
- Basic query examples:
 - find records with given value.
 e.g. patients aged 57.
 - find records within a given range.
 e.g. patients aged 55-65.
In this talk: **range queries**.

- Fundamental for any encrypted DB system.
- Many constructions out there.
- Simplest type of query that can't "just" be handled by an index.

Initial solutions: **Order-Preserving**, **Order-Revealing Encryption**.

Leakage-abuse attacks: order information can be used to infer (approximate) values. **Leaking order is too revealing**.

→ **"Second-generation" schemes** enable range queries without relying on OPE/ORE.

Still leak **access pattern**.
Range Queries

Range = [40, 100]

What can the server learn from the above leakage?
Let $N =$ number of possible values for the target attribute.

Strongest goal: full database reconstruction $=$ recovering the exact value of every record.

More general: approximate database reconstruction $=$ recovering all values within εN.

$\varepsilon = 0.05$ is recovery within 5%. $\varepsilon = 1/N$ is full recovery.

(“Sacrificial” recovery: values very close to 1 and N are excluded.)

[KKNO16]: full reconstruction in $O(N^4 \log N)$ queries, assuming i.i.d. uniform queries!
Database Reconstruction

[KKNO16]: full reconstruction in $O(N^4 \log N)$ queries!

This talk ([GLMP19], [LMP18]):

- $O(\epsilon^{-4} \log \epsilon^{-1})$ for approx. reconstruction.
- $O(\epsilon^{-2} \log \epsilon^{-1})$ with very mild hypothesis.
- $O(\epsilon^{-1} \log \epsilon^{-1})$ for approx. order rec.

Full. Rec.

- $O(N^4 \log N)$
- $O(N^2 \log N)$
- $O(N \log N)$

Lower Bound

- $\Omega(\epsilon^{-4})$
- $\Omega(\epsilon^{-2})$
- $\Omega(\epsilon^{-1} \log \epsilon^{-1})$

Full reconstruction in $O(N \log N)$ for dense DBs.

Scale-free: does not depend on size of DB or number of possible values.

→ Recovering all values in DB within 5% costs $O(1)$ queries!
Database Reconstruction

[KKNO16]: full reconstruction in $O(N^4 \log N)$ queries!

This talk ([GLMP19], subsuming [LMP18]):

- $O(\varepsilon^{-4} \log \varepsilon^{-1})$ for approx. reconstruction.
- $O(\varepsilon^{-2} \log \varepsilon^{-1})$ with very mild hypothesis.
- $O(\varepsilon^{-1} \log \varepsilon^{-1})$ for approx. order rec.

This talk.

Main tool:

- connection with statistical learning theory;
- especially, VC theory.
VC Theory

Uniform convergence result.

Now a foundation of learning theory, especially PAC (probably approximately correct) learning.

Wide applicability.

Fairly easy to state/use.

(You don't have to read the original article in Russian.)
Set X with probability distribution D.
Let $C \subseteq X$. Call it a concept.

$$\Pr(C) \approx \frac{\text{#points in } C}{\text{#points total}}$$

Sample complexity:
To measure $\Pr(C)$ within ε, you need $O(1/\varepsilon^2)$ samples.
Now: set \mathcal{C} of concepts.
Goal: approximate their probabilities *simultaneously*.

The set of samples drawn from X is an *\(\varepsilon\)-sample* iff for all C in \mathcal{C}:

$$\left| \Pr(C) - \frac{\# \text{points in } C}{\# \text{points total}} \right| \leq \varepsilon$$
How many samples do we need to get an \(\varepsilon \)-sample whp?

Union bound: yields a sample complexity that depends on \(|\mathcal{C}|\).

V & C 1971:
If \(\mathcal{C} \) has **VC dimension** \(d \), then the number of points to get an \(\varepsilon \)-sample whp is

\[
O\left(\frac{d}{\varepsilon^2} \log \frac{d}{\varepsilon} \right).
\]

Does not depend on \(|\mathcal{C}||)!
Remaining Q: *what is the VC dimension?*

A set of points is **shattered** by \mathcal{C} iff:

every subset of S is equal to $C \cap S$ for some C in \mathcal{C}.

Example. Take **2 points** in $X=[0,1]$. Concepts $\mathcal{C} =$ all ranges.

Subsets:

- \times (shaded)
- \circ (green)
- \circ (green)

<table>
<thead>
<tr>
<th>Subsets</th>
<th>Across C</th>
<th>Across B</th>
<th>Across A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 points =</td>
<td>SHATTERED</td>
<td>OK Range A</td>
<td>OK Range B</td>
</tr>
</tbody>
</table>
Example. Take 3 points in $X=[0,1]$. Concepts \mathcal{C} = all ranges.

Subset:

3 points = NOT SHATTERED

VC dimension of \mathcal{C} = largest integer d such that every set of d points in X is shattered.

E.g. VC dimension of ranges is 2.

What typically matters is just that VC dim is finite.
Database Reconstruction
Assume a uniform distribution on range queries. Induces a distribution f on the prob. that a given value is hit.

Idea: for each record...

1. Count frequency at which the record is hit. → gives estimate of probability it’s hit by uniform query.
2. deduce estimate of its value by “inverting” f.

Less probable

More probable
KKNO16-like Attack

Step 1: for all records, estimate the probability of the record being hit. This is an ε-sample!

$$X = \text{ranges} \quad \mathcal{C} = \{\text{ranges} \ni x \}: x \in [1,N]$$

so we need $O(\varepsilon^{-2} \log \varepsilon^{-1})$ queries.

Step 2: because f is quadratic, “inverting” f adds a square.

After $O(\varepsilon^{-4} \log \varepsilon^{-1})$ queries, the value of all records is recovered within εN.
We are assuming uniformly distributed queries.

In reality we are assuming:

- The adversary knows the query distribution.
- Queries are uniform.
- More fundamentally, queries are independent and identically distributed (i.i.d.).

This is not realistic.

What can we learn without that hypothesis?
Order Reconstruction
Problem Statement

What can the server learn from the above leakage?

This time we don't assume i.i.d. queries, or knowledge of their distribution.
Range Query Leakage

Query A matches records a, b, c.
Query B matches records b, c, d.

Then this is the only configuration (up to symmetry)!

\rightarrow we learn that records b, c are *between* a and d.

We learn something about the *order* of records.
Range Query Leakage

Query A matches records a, b, c.
Query B matches records b, c, d.
Query C matches records c, d.

Then the only possible order is a, b, c, d (or d, c, b, a)!

Challenges:

- How do we extract order information? (What *algorithm*?)
- How do we *quantify* and *analyze* how fast order is learned as more queries are observed?
Challenge 1: the Algorithm

Short answer: there is already an algorithm!

Long answer: **PQ-trees.**

X: linearly ordered set. Order is unknown.

You are given a set S containing some intervals in X.

A **PQ tree** is a compact (linear in $|X|$) representation of the set of all permutations of X that are compatible with S.

Can be updated in linear time.

Note: was used in [DR13], didn’t target reconstruction.
PQ Trees

Order is completely **unknown**.
- any permutation of *abc*.

Order is completely **known** (up to reflection).
- *abc*’or ‘*cba*’.

Combines in the natural way.
- ‘*abcde*’, ‘*abced*’, ‘*dabce*’, ‘*eabcd*’, ‘*deabc*’, ‘*edabc*’, ‘*cbade*’ etc.
Full Order Reconstruction

We want to quantify order learning...

No information

observe enough queries

Full reconstruction

P

Q

\[\cdots r_1 r_2 r_3 \cdots \]

\[\cdots r_1 r_2 r_3 \cdots \]
Challenge 2a: Quantify Order Learning

\[P \rightarrow Q \]

No information \hspace{1cm} Full reconstruction

\(r_1 \hspace{1cm} r_2 \hspace{1cm} r_3 \hspace{1cm} \ldots \)

\(r_1 \hspace{1cm} r_2 \hspace{1cm} r_3 \hspace{1cm} \ldots \)

\(\varepsilon \)-Approximate order reconstruction.

Roughly: we learn the order between two records as soon as their values are \(\geq \varepsilon N \) apart. (\(\varepsilon = 1/N \) is full reconstruction)
Approximate Order Reconstruction

No information

Full reconstruction

Diameter $\leq \varepsilon N$

ε-Approximate reconstruction

$\#\text{queries}$?
Intuition: if no query has an endpoint between a and b, then a and b can't be separated.

→ ε-approximate reconstruction is impossible.

You want a query endpoint to hit every interval $\geq \varepsilon N$. Conversely, with some other conditions it's enough.

Heavy sweeping of details under rug.
VC Theory Saves the Day (again)

\(\varepsilon \)-samples: the ratio of points hitting each concept is close to its probability.

What we want now: if a concept has high enough probability, it is hit by at least one point.

The set of samples drawn from \(X \) is an **\(\varepsilon \)-net** iff for all \(C \) in \(\mathcal{C} \):

\[
\Pr(C) \geq \varepsilon \Rightarrow C \text{ contains a sample}
\]

→ Number of points to get an \(\varepsilon \)-net whp:

\[
O\left(\frac{d}{\varepsilon} \log \frac{d}{\varepsilon} \right)
\]
Approximate Order Reconstruction

No information

\[O(\varepsilon^{-1} \log \varepsilon^{-1}) \text{ queries} \]

\[O(N \log N) \text{ queries} \]

Full reconstruction

\[\varepsilon\text{-Approximate reconstruction} \]

Note: some (weak) assumptions are swept under the rug.
Experiments

APPROXORDER experimental results

$R = 1000$, compared to theoretical ϵ-net bound

![Graph showing the relationship between the number of queries and the max. bucket diameter as a fraction of N. The graph includes lines for different values of N, with $N = 100$, $N = 1000$, $N = 10000$, and $N = 100000$. The theoretical bound is represented by a dashed line labeled $\epsilon^{-1} \log \epsilon^{-1}$.](image-url)
Closing Remarks
Severe attacks under minimal assumptions.

Analysis clarifies setting.

- Size of DB, or number of possible values, don't matter.
- What is really leaked is order of records.
- Various auxiliary info can get you from order to values.

Please don't use OPE/ORE.

Also avoid current encrypted DBs if you don't trust the server and care about privacy.

New solutions needed. E.g. efficient specialized ORAMs.
Connection to Machine Learning

‣ In this talk: VC theory.
‣ In the article: known query setting = PAC learning.
‣ Some results for general query classes.

Machine learning in crypto: also used for side channel attacks. Same general setting!

Natural connection between reconstructing secret information from leakage and machine learning.

Seems to be a powerful tool to understand the security implications of leakage. In side channels - use learning algorithms; here - use learning theory.