Approximate reconstruction of encrypted databases

Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, Kenny Paterson
General message from previous talk:

Don’t use range queries with access pattern leakage!

Closer look:

› **KKNO16**: full reconstruction…
 - Assuming i.i.d. uniform queries.
 - $O(N^4 \log N)$ queries.

› **Kenny’s talk**: full reconstruction…
 - Assuming density.
 - $O(N \log N)$ queries.
New goal: δ-approximate reconstruction.

Recover the values of records within δN.

LMP18 approximate attack but: only improvement in log factor, complicated analysis, requires density…

→ We would like to get best possible reconstruction with given queries. And handle large N’s. And get rid of the density assumption, and i.i.d. queries.

Two new tools:

- VC theory (machine learning).
- PQ-trees.
Plan

1. VC theory.
2. PQ trees.
VC theory
Set X with probability distribution D.
Let $C \subseteq X$. Call it a concept.

\[
\Pr(C) \approx \frac{\#\text{points in } C}{\#\text{points total}}
\]

Sample complexity:
to measure $\Pr(C)$ within δ, you need $O(1/\delta^2)$ samples.
Now you have a set \mathcal{C} of concepts.

The set of samples drawn from X is an ε-sample iff for all C in \mathcal{C}:

$$\left| \Pr(C) - \frac{\text{#points in } C}{\text{#points total}} \right| \leq \varepsilon$$

V & C 1971:
If \mathcal{C} has **VC dimension** d, then the number of points to get an ε-sample whp is $O(d/\varepsilon^2 \log d/\varepsilon)$.

A set S of points in X is **shattered** by \mathcal{C} iff every subset of S can be written in the form $C \cap S$ for some C in \mathcal{C}.

The **VC dimension** of \mathcal{C} is the largest cardinality d such that every subset of X of size d is shattered.

For ranges, the VC dimension is 2.
Two main results: ε-samples and ε-nets

The set of samples drawn from X is an ε-sample iff for all C in \mathcal{C}:

$$\left| \Pr(C) - \frac{\text{# points in } C}{\text{# points total}} \right| \leq \varepsilon$$

→ If d is the VC dim, number of points to get an ε-sample whp is:

$$O\left(\frac{d}{\varepsilon^2 \log \frac{d}{\varepsilon}} \right)$$

The set of samples drawn from X is an ε-net iff for all C in \mathcal{C}:

$$\Pr(C) \geq \varepsilon \Rightarrow C \text{ contains a sample}$$

→ If d is the VC dim, number of points to get an ε-net whp is:

$$O\left(\frac{d}{\varepsilon \log \frac{d}{\varepsilon}} \right)$$
Example: learning range queries

Suppose we know the value of some records in the database (with uniformly random values).
+ we have access pattern leakage.

Q: How many known records do we need?

A: This is an ε-net.

$$X = \text{values } [1, N] \quad \mathcal{C} = \text{ranges}$$

so we need $O(1/\varepsilon \log 1/\varepsilon)$ known samples.
So this was an ε-net \Rightarrow we need $O(1/\varepsilon \log 1/\varepsilon)$ known samples.

Q: How about if we add complements? Multi-dimensional ranges? etc.

A: Actually we don’t care. All these things have finite VC dim.

In fact this is *actually* **PAC learning**.

PAC = Probably Approximately Correct.
Database reconstruction
Basic KKNO16 attack variant

Assume uniformly distributed range queries.

Idea: count times record is hit
→ estimate probability it’s hit
→ deduce its value

Fact: to correctly deduce all values within δN you need to correctly estimate all probabilities within $\varepsilon = \delta^2$.
Basic KKNO16 attack variant

...so we need to estimate the probability of each value being hit, all within $\varepsilon = \delta^2$...

This is an ε-sample.

$$X = \text{ranges} \quad \mathcal{C} = \{\{\text{ranges} \ni x\}: x \in [1,N]\}$$

so we need $O(1/\varepsilon^2 \log 1/\varepsilon)$ known samples.
Approximate KKNO attack

With uniformly distributed queries:

All values are in the database are recovered within δN after observing the access pattern of $O(1/\delta^4 \log 1/\delta)$ queries.

Remarks:

- KKNO16: $N^4 \log N \rightarrow$ Kenny’s talk: $N \log N$ with density
 \rightarrow this: $O(1)$ for approximate reconstruction within 5%…

- Setting $\delta = 1/N$ recovers KKNO’s attack.

- Lower bound of $\Omega(1/\delta^4)$.

- Direct application of VC theory.
Extensions of this approach

In fact $O(1/\delta^2 \log 1/\delta)$ queries suffice under very reasonable assumptions.

 e.g. there exists record in DB with value within $[N/8, 3N/8]$.

Other query types:

- Prefix queries on strings, wildcard queries, etc.
- “Meta-theorem”: all these have finite VC dim...
- This is WIP.

One limitation:

- VC theory gives bad constants.

 It says something of general behavior. Need experiments.
Limitation of previous result

So far we are assuming uniformly distributed queries.

This is not just an assumption about adversarial knowledge. This is an assumption that queries are independent identically distributed (i.i.d.).

This is quite unrealistic.

What can you learn without that hypothesis?
PQ trees
X: linearly ordered set. Order is unknown.

You are given a set S containing some intervals in X.

A PQ tree is a compact (linear in $|X|$) representation of the set of all permutations of X that are compatible with S.

As new sets are added to S, the PQ tree can be updated in linear time.

Was used in DR13, didn’t target reconstruction.
PQ trees

\(X = \{a, b, c, d, e\} \)

= any permutation of \{a, b, c\}.

\(P \)

\(Q \)

= ‘abc’ or ‘cba’.

\(P \)

\(Q \)

= ‘abc’ or ‘cba’, with ‘d’ and ‘e’ permuted in any way on either side.

Database order reconstruction

LMP18 (aka Kenny’s talk) reinterpreted: you fully recover order information with $O(N \log N)$ queries.

Density not required.

Density was only to convert from order to values.
Approximate order reconstruction

Approximate (order) reconstruction = full order reconstruction, except for values that are very close (less than δN apart).
Approximate order reconstruction

No information

1/δ log 1/δ queries

The proof uses an ε-net...

Full reconstruction

$N \log N$ queries

Interval $\leq \delta N$

Approximate reconstruction
Converting from order to values

Known (approximation of) database value distribution \rightarrow frequency matching.

Known (approximation of) query distribution, see previous attack.

Some known records \rightarrow order allows to compare records to known values.

…
Some history

OPE/ORE were developed to allow range queries. Leak order by design. Led to devastating leakage-abuse attacks GSB+17, DDC16.

Second-generation schemes eschew ORE to enable range queries without leaking order.

We just saw access pattern leaks order… So if you leak access pattern it’s back to square one!

(Difference: OPE/ORE attacks only required a snapshot adversary, now we need access pattern leakage.)
Features of the approximate order attack

It is **fully** general:

- Does not rely on i.i.d. queries.
- No density assumption.
- No dependency on N (for approximate order).

Also...

- Only $O(1/\delta \log 1/\delta)$ queries!
- Setting $\delta=1/N$ recovers LMP18. Without requiring density.
- Not “all or nothing”: precision improves with #queries.
Conclusion

Introduced approximate reconstruction.

Leads to very powerful attacks. Approximate order attack is very efficient with truly minimal assumption. Clarifies the setting.

Two techniques prove very potent in this setting:

- VC theory.
- PQ trees.

VC theory extends to other query classes (under investigation).