

Key-Recovery Attacks on ASASA

*Brice Minaud*¹, Patrick Derbez², Pierre-Alain Fouque³, Pierre Karpman⁴

¹ Université Rennes 1
² Université du Luxembourg
³ Université Rennes 1 et Institut Universitaire de France
⁴ Inria et Nanyang Technological University, Singapour

ASIACRYPT 2015

ASASA Structure

At Asiacrypt 2014, Biryukov, Bouillaguet and Khovratovich considered various applications of the ASASA structure.

Three uses cases were proposed in [BBK14]:

- →•1 "black-box" scheme \approx block cipher \times this paper
 - •2 "strong whitebox" schemes ≈ public-key encryption scheme
 - "Expanding S-box" scheme X Crypto'15 [GPT15]
 - " χ -based" scheme

same

attack!

- X this paper
- •1 "weak whitebox" scheme X this paper & [DDKL15]
 - 3

Plan

- **1.** Public-key χ -based ASASA scheme.
- 2. Cryptanalysis.
- **3.** Secret-key ASASA scheme.
- 4. Cryptanalysis (same).

Public-key ASASA

Multivariate Cryptography

Hard problem: solving a system of random, say, quadratic, equations over some finite field.

→ How to get an encryption scheme $\mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$:

Public key: encryption function **F** given as sequence of *n* quadratic polynomials in *n* variables.

Private key: hidden structure (decomposition) of **F** that makes it easy to invert.

- +: small message space, fast with private key.
- -: slow public-key operations, large key, no reduction.

Many proposed scheme follow an ASA structure.

Matsumoto-Imai, Hidden Field Equations, Oil and Vinegar...

Almost all have been broken.

History of ASASA

Idea already proposed by Goubin and Patarin: "2R" scheme (ICICS'97).

Broken by **decomposition** attacks.

- Introduced by Ding-Feng, Lam Kwok-Yan, and Dai Zong-Duo.
- Developped in a general setting by Faugère et al.

Structure ASASA + P [BBK14]

Note : this is slightly different from BBK14.

Instances of ASASA + P

Two instances were proposed in BBK14 :

• "Expanding S-boxes" : decomposition attack by Gilbert, Plût and Treger, Crypto'15.

• χ -based scheme: using the χ function of Keccak.

χ function of Keccak

Introduced by Daemen in 1995, known for its use in Keccak.

Invertible for odd number of bits.

χ -based instance

Attack!

A cube is an affine subspace [DS08].

Property : Let *f* be a degree-*d* polynomial over binary variables. If *C* is a cube of dimension d+1, then :

$$\sum_{c\in C}f(c)=0$$

Degree deficiency

 \rightarrow c has degree 3. Sums up to 0 over cube of dim 4.

• Let $a = product of 2 adjacent bits at the output of <math>\chi$.

Then *a* has degree 6.

• Let **b** = product of 2 **non-adjacent** bits at the output of χ .

Then **b** has degree 8.

Let λ_F be an output mask, i.e. we look at $\langle F | \lambda_F \rangle = x \mapsto \langle F(x) | \lambda_F \rangle$.

Then there exists a mask λ_G s.t. $\mathbf{F} \langle F | \lambda_F \rangle = \langle G | \lambda_G \rangle$.

Let λ_F , λ'_F be two output masks, and λ_G , λ'_G the associated masks.

• If λ_G and λ'_G activate single adjacent bits, $\langle F | \lambda_F \rangle \cdot \langle F | \lambda'_F \rangle$ has degree 6.

• Otherwise $\langle F | \lambda_F \rangle \cdot \langle F | \lambda'_F \rangle$ has degree 8.

Goal : Find λ_F , λ'_F such that $deg(\langle F|\lambda_F \rangle \cdot \langle F|\lambda'_F \rangle) = 6$

Let C be a dimension-7 cube. Then : $\sum_{c \in C} \langle F(c) | \lambda_F \rangle \cdot \langle F(c) | \lambda'_F \rangle = 0$

 \rightarrow we get an equation on λ_F , λ'_F .

View λ_F , λ'_F as two vectors of n binary unknowns: $(\lambda_0, \ldots, \lambda_{n-1})$ and $(\lambda'_0, \ldots, \lambda'_{n-1})$. Then:

$$\sum_{c \in C} \langle F(c) | \lambda \rangle \langle F(c) | \lambda' \rangle = \sum_{c \in C} \sum_{i < n} \lambda_i F_i(c) \sum_{j < n} \lambda'_j F_j(c)$$
$$= \sum_{i,j < n} \left(\sum_{c \in C} F_i(c) F_j(c) \right) \lambda_i \lambda'_j$$
$$= 0$$

 \Rightarrow We get a quadratic equation on the λ_i , λ'_i 's.

Each cube yields 1 quadratic equation on the λ_i, λ'_i 's.

Using relinearization, there are $127^2 \approx 2^{14}$ terms $\lambda_i \lambda'_j \rightarrow$ we need 2^{14} cubes of dimension 7.

Resolving the system yields solution masks. The last A layer is peeled off. The rest (ASAS) can be broken in negligible time.

Conclusion: the scheme is broken using 2^{21} CP, and time complexity $\approx 2^{39}$ (for inverting a binary matrix of size 2^{13}).

"Black-box" ASASA

SASAS structure

Analyzed by Biryukov and Shamir at Eurocrypt 2001.

Random Affine layer over *n* bits.

Random independent S-boxes over *k* bits each.

→ Goal: recover all internal
components (affine layers A and
S-boxes) with only "black-box"
access (KP/CP/CC).

Black-box ASASA [BBK14]

Degree of an S-box = 7.

Let a = product of 2 output bits of a single common S-box.

Then *a* has degree 7x7 = 49.

Let b = product of 2 output bits of two distinct S-boxes.

Then **b** has max degree (127).

Cryptanalyse de ASASA

Goal : Find λ_F , λ'_F such that deg $(\langle F | \lambda_F \rangle \cdot \langle F | \lambda'_F \rangle) = 49$

Let *C* be a dimension-50 cube. Then: $\sum_{c \in C} \langle F(c) | \lambda_F \rangle \cdot \langle F(c) | \lambda'_F \rangle = 0$

 \rightarrow we get an equation on λ_F , λ'_F .

Conclusion : All internal components are recovered in time and data complexity 2^{63} . In general: $n^2 2^{(m-1)^2}$. For comparison: the distinguisher is in 2^{50} . In general $2^{(m-1)^2+1}$.

Cryptanalysis de SASASASAS

Recent work by Biryukov et Khovratovich: the same attack extends ASASASA and even SASASASAS (ePrint, june 2015).

Indeed the main obstacle is that the overall function must not be full degree (\rightarrow use results by Boura, Canteaut and Cannière on the degree of composite boolean functions).

Conclusion

- A new attack on ASASA-type structures.
 - Not presented: LPN-based attack on the χ -based scheme, heuristic attack on white-box scheme.
 - Regarding multivariate ASASA proposals, [GPT15] and our result are somewhat complementary.
 - •Open problems:
 - Other applications of this type of attack.
 - Secure white-box scheme.

Thank you for your attention!

Questions ?